1
|
Possart K, Herrmann FC, Jose J, Schmidt TJ. In Silico and In Vitro Search for Dual Inhibitors of the Trypanosoma brucei and Leishmania major Pteridine Reductase 1 and Dihydrofolate Reductase. Molecules 2023; 28:7526. [PMID: 38005256 PMCID: PMC10673058 DOI: 10.3390/molecules28227526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The parasites Trypanosoma brucei (Tb) and Leishmania major (Lm) cause the tropical diseases sleeping sickness, nagana, and cutaneous leishmaniasis. Every year, millions of humans, as well as animals, living in tropical to subtropical climates fall victim to these illnesses' health threats. The parasites' frequent drug resistance and widely spread natural reservoirs heavily impede disease prevention and treatment. Due to pteridine auxotrophy, trypanosomatid parasites have developed a peculiar enzyme system consisting of dihydrofolate reductase-thymidylate synthase (DHFR-TS) and pteridine reductase 1 (PTR1) to support cell survival. Extending our previous studies, we conducted a comparative study of the T. brucei (TbDHFR, TbPTR1) and L. major (LmDHFR, LmPTR1) enzymes to identify lead structures with a dual inhibitory effect. A pharmacophore-based in silico screening of three natural product databases (approximately 4880 compounds) was performed to preselect possible inhibitors. Building on the in silico results, the inhibitory potential of promising compounds was verified in vitro against the recombinant DHFR and PTR1 of both parasites using spectrophotometric enzyme assays. Twelve compounds were identified as dual inhibitors against the Tb enzymes (0.2 μM < IC50 < 85.1 μM) and ten against the respective Lm enzymes (0.6 μM < IC50 < 84.5 μM). These highly promising results may represent the starting point for the future development of new leads and drugs utilizing the trypanosomatid pteridine metabolism as a target.
Collapse
Affiliation(s)
- Katharina Possart
- University of Muenster, Institute for Pharmaceutical Biology and Phytochemistry (IPBP), PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany; (K.P.); (F.C.H.)
| | - Fabian C. Herrmann
- University of Muenster, Institute for Pharmaceutical Biology and Phytochemistry (IPBP), PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany; (K.P.); (F.C.H.)
| | - Joachim Jose
- University of Muenster, Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany;
| | - Thomas J. Schmidt
- University of Muenster, Institute for Pharmaceutical Biology and Phytochemistry (IPBP), PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany; (K.P.); (F.C.H.)
| |
Collapse
|
2
|
Reyes-López M, Aguirre-Armenta B, Piña-Vázquez C, de la Garza M, Serrano-Luna J. Hemoglobin uptake and utilization by human protozoan parasites: a review. Front Cell Infect Microbiol 2023; 13:1150054. [PMID: 37360530 PMCID: PMC10289869 DOI: 10.3389/fcimb.2023.1150054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The protozoan disease is a major global health concern. Amoebiasis, leishmaniasis, Chagas disease, and African sleeping sickness affect several million people worldwide, leading to millions of deaths annually and immense social and economic problems. Iron is an essential nutrient for nearly all microbes, including invading pathogens. The majority of iron in mammalian hosts is stored intracellularly in proteins, such as ferritin and hemoglobin (Hb). Hb, present in blood erythrocytes, is a very important source of iron and amino acids for pathogenic microorganisms ranging from bacteria to eukaryotic pathogens, such as worms, protozoa, yeast, and fungi. These organisms have developed adequate mechanisms to obtain Hb or its byproducts (heme and globin) from the host. One of the major virulence factors identified in parasites is parasite-derived proteases, essential for host tissue degradation, immune evasion, and nutrient acquisition. The production of Hb-degrading proteases is a Hb uptake mechanism that degrades globin in amino acids and facilitates heme release. This review aims to provide an overview of the Hb and heme-uptake mechanisms utilized by human pathogenic protozoa to survive inside the host.
Collapse
|
3
|
Silva CFM, Pinto DCGA, Fernandes PA, Silva AMS. Evolution of Acridines and Xanthenes as a Core Structure for the Development of Antileishmanial Agents. Pharmaceuticals (Basel) 2022; 15:ph15020148. [PMID: 35215261 PMCID: PMC8879592 DOI: 10.3390/ph15020148] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, leishmaniasis constitutes a public health issue in more than 88 countries, affecting mainly people from the tropics, subtropics, and the Mediterranean area. Every year, the prevalence of this infectious disease increases, with the appearance of 1.5–2 million new cases of cutaneous leishmaniasis and 500,000 cases of visceral leishmaniasis, endangering approximately 350 million people worldwide. Therefore, the absence of a vaccine or effective treatment makes the discovery and development of new antileishmanial therapies one of the focuses for the scientific community that, in association with WHO, hopes to eradicate this disease shortly. This paper is intended to highlight the relevance of nitrogen- and oxygen-containing tricyclic heterocycles, particularly acridine and xanthene derivatives, for the development of treatments against leishmaniasis. Thus, in this review, a thorough compilation of the most promising antileishmanial acridine and xanthene derivatives is performed from both natural and synthetic origins. Additionally, some structure–activity relationship studies are also depicted and discussed to provide insight into the optimal structural features responsible for these compounds’ antileishmanial activity.
Collapse
Affiliation(s)
- Carlos F. M. Silva
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.F.M.S.); (A.M.S.S.)
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.F.M.S.); (A.M.S.S.)
- Correspondence:
| | - Pedro A. Fernandes
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal;
| | - Artur M. S. Silva
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.F.M.S.); (A.M.S.S.)
| |
Collapse
|
4
|
Rastogi R, Kapoor A, Verma JK, Ansari I, Sood C, Kumar K, Mukhopadhyay A. Rab5b function is essential to acquire heme from hemoglobin endocytosis for survival of Leishmania. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118868. [PMID: 33011192 DOI: 10.1016/j.bbamcr.2020.118868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/02/2020] [Accepted: 09/18/2020] [Indexed: 01/22/2023]
Abstract
Previously, we showed that Rab5a and Rab5b differentially regulate fluid-phase and receptor-mediated endocytosis in Leishmania, respectively. To unequivocally demonstrate the role of Rab5b in hemoglobin endocytosis in Leishmania, we generated null-mutants of Rab5b parasites by sequentially replacing both copies of LdRab5b with the hygromycin and neomycin resistance gene cassettes. LdRab5b-/- null-mutant parasite was confirmed by qPCR analysis of genomic DNA using LdRab5b specific primers. LdRab5b-/- cells showed severe growth defect indicating essential function of LdRab5b in parasite. To characterize the role of Rab5b in Hb endocytosis in parasites, LdRab5b-/- cells were rescued by exogenous addition of hemin in growth medium. Our results showed that LdRab5b-/- cells are relatively smaller in size. Ultrastructural analysis revealed the presence of relatively enlarged flagellar pocket and bigger intracellular vesicles in these cells in comparison to control cells. Both promastigotes and amastigotes of Rab5b null-mutant parasites were unable to internalize Hb but fluid phase endocytosis of different markers was not affected. However, complementation of LdRab5b:WT in LdRab5b-/- cells (LdRab5b-/-:pRab5b:WT) rescued Hb internalization in these cells. Interestingly, LdRab5b-/- cells showed significantly less Hb-receptor on cell surface in comparison to control cells indicating a block in HbR trafficking. Finally, we showed that LdRab5b-/- parasites can infect the macrophages but are unable to survive after 96 h of infection in comparison to control cells. However, supplementation of hemin in the growth medium significantly rescued LdRab5b-/-Leishmania survival in macrophage indicating that LdRab5b function is essential for the acquisition of heme from internalized Hb for the survival of Leishmania.
Collapse
Affiliation(s)
- Ruchir Rastogi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anjali Kapoor
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India; National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitender Kumar Verma
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Irshad Ansari
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Chandni Sood
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kamal Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Amitabha Mukhopadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
5
|
Deda DK, Iglesias BA, Alves E, Araki K, Garcia CRS. Porphyrin Derivative Nanoformulations for Therapy and Antiparasitic Agents. Molecules 2020; 25:molecules25092080. [PMID: 32365664 PMCID: PMC7249045 DOI: 10.3390/molecules25092080] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Porphyrins and analogous macrocycles exhibit interesting photochemical, catalytic, and luminescence properties demonstrating high potential in the treatment of several diseases. Among them can be highlighted the possibility of application in photodynamic therapy and antimicrobial/antiparasitic PDT, for example, of malaria parasite. However, the low efficiency generally associated with their low solubility in water and bioavailability have precluded biomedical applications. Nanotechnology can provide efficient strategies to enhance bioavailability and incorporate targeted delivery properties to conventional pharmaceuticals, enhancing the effectiveness and reducing the toxicity, thus improving the adhesion to the treatment. In this way, those limitations can be overcome by using two main strategies: (1) Incorporation of hydrophilic substituents into the macrocycle ring while controlling the interaction with biological systems and (2) by including them in nanocarriers and delivery nanosystems. This review will focus on antiparasitic drugs based on porphyrin derivatives developed according to these two strategies, considering their vast and increasing applications befitting the multiple roles of these compounds in nature.
Collapse
Affiliation(s)
- Daiana K. Deda
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes 748, Butanta, Sao Paulo, SP 05508-000, Brazil; (D.K.D.); (K.A.)
| | - Bernardo A. Iglesias
- Bioinorganic and Porphyrinoid Materials Laboratory, Department of Chemistry, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS 97105-900, Brazil;
| | - Eduardo Alves
- Department of Life Science, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK;
| | - Koiti Araki
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes 748, Butanta, Sao Paulo, SP 05508-000, Brazil; (D.K.D.); (K.A.)
| | - Celia R. S. Garcia
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Sao Paulo, SP 05508-900, Brazil
- Correspondence: ; Tel.: +55-11-2648-0954
| |
Collapse
|
6
|
Orrego LM, Cabello-Donayre M, Vargas P, Martínez-García M, Sánchez C, Pineda-Molina E, Jiménez M, Molina R, Pérez-Victoria JM. Heme synthesis through the life cycle of the heme auxotrophic parasite Leishmania major. FASEB J 2019; 33:13367-13385. [PMID: 31553893 DOI: 10.1096/fj.201901274rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme is an essential molecule synthetized through a broadly conserved 8-step route that has been lost in trypanosomatid parasites. Interestingly, Leishmania reacquired by horizontal gene transfer from γ-proteobacteria the genes coding for the last 3 enzymes of the pathway. Here we show that intracellular amastigotes of Leishmania major can scavenge heme precursors from the host cell to fulfill their heme requirements, demonstrating the functionality of this partial pathway. To dissect its role throughout the L. major life cycle, the significance of L. major ferrochelatase (LmFeCH), the terminal enzyme of the route, was evaluated. LmFeCH expression in a heterologous system demonstrated its activity. Knockout promastigotes lacking lmfech were not able to use the ferrochelatase substrate protoporphyrin IX as a source of heme. In vivo infection of Phlebotomus perniciosus with knockout promastigotes shows that LmFeCH is not required for their development in the sandfly. In contrast, the replication of intracellular amastigotes was hampered in vitro by the deletion of lmfech. However, LmFeCH-/- parasites produced disease in a cutaneous leishmaniasis murine model in a similar way as control parasites. Therefore, although L. major can synthesize de novo heme from macrophage precursors, this activity is dispensable being an unsuited target for leishmaniasis treatment.-Orrego, L. M., Cabello-Donayre, M., Vargas, P., Martínez-García, M., Sánchez, C., Pineda-Molina, E., Jiménez, M., Molina, R., Pérez-Victoria, J. M. Heme synthesis through the life cycle of the heme auxotrophic parasite Leishmania major.
Collapse
Affiliation(s)
- Lina M Orrego
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - María Cabello-Donayre
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - Paola Vargas
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - Marta Martínez-García
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - Clara Sánchez
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - Estela Pineda-Molina
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - Maribel Jiménez
- Unidad de Entomología Médica, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Molina
- Unidad de Entomología Médica, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| |
Collapse
|
7
|
Lechuga GC, Pereira MCS, Bourguignon SC. Heme metabolism as a therapeutic target against protozoan parasites. J Drug Target 2018; 27:767-779. [DOI: 10.1080/1061186x.2018.1536982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Guilherme Curty Lechuga
- Laboratório de Interação celular e molecular, Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Rua Outeiro São João Batista, Rio de Janeiro, Brazil
- Fundação Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, Brazil
- Instituto de Biologia, Programa de Pós-graduação em Ciências e Biotecnologia (PPBI), Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Mirian C. S. Pereira
- Fundação Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, Brazil
| | - Saulo C. Bourguignon
- Laboratório de Interação celular e molecular, Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Rua Outeiro São João Batista, Rio de Janeiro, Brazil
- Instituto de Biologia, Programa de Pós-graduação em Ciências e Biotecnologia (PPBI), Universidade Federal Fluminense, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Lenta BN, Ngatchou J, Frese M, Ladoh-Yemeda F, Voundi S, Nardella F, Michalek C, Wibberg D, Ngouela S, Tsamo E, Kaiser M, Kalinowski J, Sewald N. Purpureone, an antileishmanial ergochrome from the endophytic fungus Purpureocillium lilacinum. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/znb-2016-0128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The ethyl acetate extracts prepared from the mycelia of three endophytic fungi Purpureocillium lilacinum, Aspergillus sp., and Fusarium sp., isolated from the roots of Rauvolfia macrophylla (Apocynaceae) were screened for their antiprotozoal activity in vitro against Plasmodium falciparum (NF54), Leishmania donovani, Trypanosoma brucei rhodesiense, and Trypanosoma cruzi. Amongst these extracts, the one from P. lilacinum showed potent antileishmanial activity against L. donovani (IC50 value of 0.174 μg mL−1) with good selectivity (SI=94.9) toward the L6 cell line, whereas the other extracts were inactive and not selective. The fractionation and purification of the active extract from P. lilacinum by column chromatography over silica gel yielded a new ergochromone derivative (1), together with six known compounds: (22E,24R)-stigmasta-5,7,22-trien-3-β-ol (2), (22E,24R)-stigmasta-4,6,8(14),22-tetraen-3-one (3), emodin (4), chrysophanol (5), aloe-emodin (6), and palmitic acid, whose structures were elucidated spectroscopically. Compound 1 was tested in vitro for its antiparasitic activities against the above listed parasites and for its antimicrobial activity against Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Escherichia coli, Providencia stuartii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The compound displayed potent antileishmanial activity against L. donovani with an IC50 value of 0.63 μg mL−1 (0.87 μm) with good selectivity (SI=49.5) toward the L6 cell line. It also exhibited good antibacterial activity against three of the tested microbial strains B. cereus, E. coli ATCC879, and P. stuartii ATCC29916 with minimum inhibitory concentrations below 62.6 μg mL−1. Compound 1 is thus a promising active compound that could be investigated for antileishmanial and antimicrobial drug development.
Collapse
Affiliation(s)
- Bruno Ndjakou Lenta
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé 1, P.O. Box 47, Yaoundé, Cameroon
- Chemistry Department, Organic and Bioorganic Chemistry, Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany
| | - Jules Ngatchou
- Department of Organic Chemistry, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Marcel Frese
- Chemistry Department, Organic and Bioorganic Chemistry, Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany
| | - Flora Ladoh-Yemeda
- Department of Microbiology, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Steve Voundi
- Department of Microbiology, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Flore Nardella
- Laboratoire d’Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Labex Médalis, Faculté de Pharmacie, 67412 Illkirch, France
| | - Carmela Michalek
- Chemistry Department, Organic and Bioorganic Chemistry, Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany
| | - Daniel Wibberg
- Centrum für Biotechnologie – CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Silvère Ngouela
- Department of Organic Chemistry, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Etienne Tsamo
- Department of Organic Chemistry, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Jörn Kalinowski
- Centrum für Biotechnologie – CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Norbert Sewald
- Chemistry Department, Organic and Bioorganic Chemistry, Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany
| |
Collapse
|
9
|
Bahl S, Parashar S, Malhotra H, Raje M, Mukhopadhyay A. Functional Characterization of Monomeric GTPase Rab1 in the Secretory Pathway of Leishmania. J Biol Chem 2015; 290:29993-30005. [PMID: 26499792 DOI: 10.1074/jbc.m115.670018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 12/20/2022] Open
Abstract
Leishmania secretes a large number of its effectors to the extracellular milieu. However, regulation of the secretory pathway in Leishmania is not well characterized. Here, we report the cloning, expression, and characterization of the Rab1 homologue from Leishmania. We have found that LdRab1 localizes in Golgi in Leishmania. To understand the role of LdRab1 in the secretory pathway of Leishmania, we have generated transgenic parasites overexpressing GFP-LdRab1:WT, GFP-LdRab1:Q67L (a GTPase-deficient dominant positive mutant of Rab1), and GFP-LdRab1:S22N (a GDP-locked dominant negative mutant of Rab1). Surprisingly, our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N does not disrupt the trafficking and localization of hemoglobin receptor in Leishmania. To determine whether the Rab1-dependent secretory pathway is conserved in parasites, we have analyzed the role of LdRab1 in the secretion of secretory acid phosphatase and Ldgp63 in Leishmania. Our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N significantly inhibits the secretion of secretory acid phosphatase by Leishmania. We have also found that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N retains RFP-Ldgp63 in Golgi and blocks the secretion of Ldgp63, whereas the trafficking of RFP-Ldgp63 in GFP-LdRab1:WT-expressing cells is unaltered in comparison with control cells. Taken together, our results have shown that the Rab1-regulated secretory pathway is well conserved, and hemoglobin receptor trafficking follows an Rab1-independent secretory pathway in Leishmania.
Collapse
Affiliation(s)
- Surbhi Bahl
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | - Smriti Parashar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | | | - Manoj Raje
- the Institute of Microbial Technology, Chandigarh 160036, India
| | - Amitabha Mukhopadhyay
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| |
Collapse
|
10
|
Renberg RL, Yuan X, Samuel TK, Miguel DC, Hamza I, Andrews NW, Flannery AR. The Heme Transport Capacity of LHR1 Determines the Extent of Virulence in Leishmania amazonensis. PLoS Negl Trop Dis 2015; 9:e0003804. [PMID: 26001191 PMCID: PMC4441390 DOI: 10.1371/journal.pntd.0003804] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/01/2015] [Indexed: 12/14/2022] Open
Abstract
Leishmania spp. are trypanosomatid parasites that replicate intracellularly in macrophages, causing serious human morbidity and mortality throughout the world. Trypanosomatid protozoa cannot synthesize heme, so must acquire this essential cofactor from their environment. Earlier studies identified LHR1 as a Leishmania amazonensis transmembrane protein that mediates heme uptake. Null mutants of LHR1 are not viable and single knockout strains have reduced virulence, but very little is known about the properties of LHR1 directly associated with heme transport. Here, we use functional assays in Saccharomyces cerevisiae to show that specific tyrosine residues within the first three predicted transmembrane domains of LHR1 are required for efficient heme uptake. These tyrosines are unique to LHR1, consistent with the low similarity between LHR1 and its corresponding homologs in C. elegans and human. Substitution of these tyrosines in LHR1 resulted in varying degrees of heme transport inhibition, phenotypes that closely mirrored the impaired ability of L. amazonensis to replicate as intracellular amastigotes in macrophages and generate cutaneous lesions in mice. Taken together, our results imply that the mechanism for heme transport by LHR1 is distinctive and may have adapted to secure heme, a limiting cofactor, inside the host. Since LHR1 is significantly divergent from the human heme transporter HRG1, our findings lay the groundwork for selective targeting of LHR1 by small molecule antagonists. Leishmania are protozoan parasites that infect humans and replicate intracellularly in macrophages, cells normally engaged in protecting the host from pathogens. These parasites have several strategies to survive inside the hostile environment of the host macrophage, and one of these strategies involves heme acquisition. Heme is an iron-containing molecule that is essential for many cellular functions. Unlike mammalian cells, Leishmania parasites cannot synthesize heme, so must acquire it from the host cell. In earlier work we found that the parasites express a surface protein, LHR1, which transports heme into the parasites. In this study we identified specific amino acids in LHR1 that are required for heme transport. When expressed in yeast cells, LHR1 carrying these mutations had defects in heme transport that were equivalent to the inhibition in virulence observed when these proteins were expressed in Leishmania and tested in macrophage and mouse infection assays. These critical amino acids do not exist in the human heme transporter, indicating that LHR1 is a promising target for the development of specific drugs for the treatment of leishmaniasis and possibly other serious parasitic diseases, such as Chagas’ disease and sleeping sickness.
Collapse
Affiliation(s)
- Rebecca L. Renberg
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Xiaojing Yuan
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Tamika K. Samuel
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Danilo C. Miguel
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Iqbal Hamza
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Norma W. Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail: ,
| | - Andrew R. Flannery
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- PathSensors, Inc., Baltimore, Maryland, United States of America
| |
Collapse
|
11
|
Guha R, Gupta D, Rastogi R, Vikram R, Krishnamurthy G, Bimal S, Roy S, Mukhopadhyay A. Vaccination with leishmania hemoglobin receptor-encoding DNA protects against visceral leishmaniasis. Sci Transl Med 2014; 5:202ra121. [PMID: 24027025 DOI: 10.1126/scitranslmed.3006406] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Leishmaniasis is a severe infectious disease. Drugs used for leishmaniasis are very toxic, and no vaccine is available. We found that the hemoglobin receptor (HbR) of Leishmania was conserved across various strains of Leishmania, and anti-HbR antibody could be detected in kala-azar patients' sera. Our results showed that immunization with HbR-DNA induces complete protection against virulent Leishmania donovani infection in both BALB/c mice and hamsters. Moreover, HbR-DNA immunization stimulated the production of protective cytokines like interferon-γ (IFN-γ), interleukin-12 (IL-12), and tumor necrosis factor-α (TNF-α) with concomitant down-regulation of disease-promoting cytokines like IL-10 and IL-4. HbR-DNA vaccination also induced a protective response by generating multifunctional CD4(+) and CD8(+) T cells. All HbR-DNA-vaccinated hamsters showed sterile protection and survived during an experimental period of 8 months. These findings demonstrate the potential of HbR as a vaccine candidate against visceral leishmaniasis.
Collapse
Affiliation(s)
- Rajan Guha
- Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abada Z, Cojean S, Pomel S, Ferrié L, Akagah B, Lormier AT, Loiseau PM, Figadère B. Synthesis and antiprotozoal activity of original porphyrin precursors and derivatives. Eur J Med Chem 2013; 67:158-65. [PMID: 23851117 DOI: 10.1016/j.ejmech.2013.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/28/2013] [Accepted: 06/02/2013] [Indexed: 10/26/2022]
Abstract
Importance of heme in African trypanosomes, Leishmania sp. and Plasmodium sp. metabolisms justifies considering the potential of porphyrins and their precursors and derivatives as potential antiparasitic agents by interfering with heme metabolism. Consequently, twenty-four porphyrin precursors and derivatives were evaluated against Leishmania donovani, Trypanosoma brucei and Plasmodium sp. The best active compound against Trypanosoma brucei brucei was a new porphyrin derivative; compound 4i, with a MEC value of 6.25 μM justifying further in vivo evaluation. Whereas these compounds were not active against intramacrophage amastigotes of L. donovani, another new porphyrin derivative, compound 4f was active in vitro against Plasmodium falciparum at 20 nM and a slight delay of mice survival was observed on the Plasmodium berghei/Swiss mice model at 50 μmol/kg/day × 4. Pharmacomodulations should be further developed relying on a better knowledge on the porphyrin behaviour into the parasites comparatively to host cells.
Collapse
Affiliation(s)
- Zahra Abada
- UMR CNRS 8076, LERMIT, Université Paris-Sud, Laboratoire de Pharmacognosie, UFR de Pharmacie, Châtenay-Malabry F-92296, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Agarwal S, Rastogi R, Gupta D, Patel N, Raje M, Mukhopadhyay A. Clathrin-mediated hemoglobin endocytosis is essential for survival of Leishmania. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1065-77. [DOI: 10.1016/j.bbamcr.2013.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 12/21/2012] [Accepted: 01/08/2013] [Indexed: 11/27/2022]
|
14
|
|
15
|
Campos-Salinas J, Cabello-Donayre M, García-Hernández R, Pérez-Victoria I, Castanys S, Gamarro F, Pérez-Victoria JM. A new ATP-binding cassette protein is involved in intracellular haem trafficking in Leishmania. Mol Microbiol 2011; 79:1430-44. [PMID: 21255121 DOI: 10.1111/j.1365-2958.2010.07531.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The characterization of LABCG5, a new intracellular ATP-binding cassette protein in Leishmania donovani, is described. Unlike other ABCG half-transporters, LABCG5 is not involved in either drug resistance or phospholipid efflux. However, we provide evidence suggesting that this protein is involved in intracellular haem trafficking. Thus, downregulation of LABCG5 function produced upon overexpression of an inactive version of the protein caused a dramatic growth arrest unless a haemin supplement was added or the mutated gene was eliminated. Supplementation with haemoglobin, an upstream metabolite normally sufficient to meet parasite haem requirements, was unable to rescue the growth defect phenotype. Haemoglobin endocytosis was not hampered in dominant-negative parasites and neither was haem uptake, a process that we show here to be dependent on a specific transporter. In contrast, LABCG5 function was required for the correct intracellular trafficking of haemoglobin-bound porphyrins to the mitochondria, not affecting the routing of free haem. Finally, LABCG5 binds haem through hydrophobic and electrostatic interactions. Altogether, these data suggest that LABCG5 is involved in the salvage of the haem released after the breakdown of internalized haemoglobin. As Leishmania is auxotrophic for haem, the pharmacological targeting of this route could represent a novel approach to control fatal visceral leishmaniasis.
Collapse
Affiliation(s)
- Jenny Campos-Salinas
- Instituto de Parasitología y Biomedicina 'López-Neyra', CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, 18100 Armilla, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Souza CF, Carneiro AB, Silveira AB, Laranja GAT, Silva-Neto MAC, Costa SCGD, Paes MC. Heme-induced Trypanosoma cruzi proliferation is mediated by CaM kinase II. Biochem Biophys Res Commun 2009; 390:541-6. [PMID: 19818332 DOI: 10.1016/j.bbrc.2009.09.135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 09/30/2009] [Indexed: 10/20/2022]
Abstract
Trypanosoma cruzi, the etiologic agent of Chagas disease, is transmitted through triatomine vectors during their blood-meal on vertebrate hosts. These hematophagous insects usually ingest approximately 10mM of heme bound to hemoglobin in a single meal. Blood forms of the parasite are transformed into epimastigotes in the crop which initiates a few hours after parasite ingestion. In a previous work, we investigated the role of heme in parasite cell proliferation and showed that the addition of heme significantly increased parasite proliferation in a dose-dependent manner [1]. To investigate whether the heme effect is mediated by protein kinase signalling pathways, parasite proliferation was evaluated in the presence of several protein kinase (PK) inhibitors. We found that only KN-93, a classical inhibitor of calcium-calmodulin-dependent kinases (CaMKs), blocked heme-induced cell proliferation. KN-92, an inactive analogue of KN-93, was not able to block this effect. A T. cruzi CaMKII homologue is most likely the main enzyme involved in this process since parasite proliferation was also blocked when Myr-AIP, an inhibitory peptide for mammalian CaMKII, was included in the cell proliferation assay. Moreover, CaMK activity increased in parasite cells with the addition of heme as shown by immunological and biochemical assays. In conclusion, the present results are the first strong indications that CaMKII is involved in the heme-induced cell signalling pathway that mediates parasite proliferation.
Collapse
Affiliation(s)
- C F Souza
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | | | | | | | | | | | | |
Collapse
|
17
|
Leishmania requires Rab7-mediated degradation of endocytosed hemoglobin for their growth. Proc Natl Acad Sci U S A 2008; 105:3980-5. [PMID: 18319337 DOI: 10.1073/pnas.0800404105] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leishmania is unable to synthesize heme and must acquire it from exogenous source, the mechanism of which is not known. We have shown that Leishmania endocytoses hemoglobin (Hb) and subsequently degrade it probably to generate heme. To understand how internalized Hb is degraded, we have cloned and expressed Rab7 homolog from Leishmania donovani. Interestingly, Rab7 in Leishmania is found to be localized both on early and late endocytic compartment and regulates both uptake and degradation of endocytosed Hb demonstrating that Rab7 in Leishmania play a very unique role connecting both early and late events of Hb endocytosis. Our data also indicate that overexpression of Rab7:WT in Leishmania induces transport of Hb to lysosomes and rapidly degrade internalized Hb. Whereas Hb transport to lysosomes and its degradation is significantly inhibited in cells overexpressing Rab7:T21N, a GDP locked mutant of Rab7. Moreover, cells overexpressing Rab7:T21N grow at a slower rate (<50%) compared with control Leishmania. Addition of exogenous hemin recovers the growth of Rab7:T21N mutant cells almost to the control level, suggesting that intracellular heme generated by Rab7-mediated Hb degradation is required for optimal growth of the parasites. Thus, our results identify a potential target which might be exploited to suppress the growth of Leishmania.
Collapse
|
18
|
Leishmanicidal and cholinesterase inhibiting activities of phenolic compounds from Allanblackia monticola and Symphonia globulifera. Molecules 2007; 12:1548-57. [PMID: 17960072 DOI: 10.3390/12081548] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/08/2007] [Accepted: 07/09/2007] [Indexed: 12/12/2022] Open
Abstract
In a preliminary antiprotozoal screening of several Clusiaceae species, the methanolic extracts of Allanblackia monticola and Symphonia globulifera showed high in vitro leishmanicidal activity. Further bioguided phytochemical investigation led to the isolation of four benzophenones: guttiferone A (1), garcinol (2), cambogin (3) and guttiferone F (4), along with three xanthones: allanxanthone A (5), xanthone V1 (6) and globulixanthone C (7) as active constituents. Compounds 1 and 6 were isolated from S. globulifera leaves, while compounds 2-5 were obtained from A. monticola fruits. Guttiferone A (1) and F (4) showed particulary strong leishmanicidal activity in vitro, with IC50 values (0.2 microM and 0.16 microM, respectively) comparable to that of the reference compound, miltefosine (0.46 microM). Although the leishmanicidal activity is promising, the cytotoxicity profile of these compounds prevent at this state further in vivo biological evaluation. In addition, all the isolated compounds were tested in vitro for their anticholinesterase properties. The four benzophenones showed potent anticholinesterase properties towards acetylcholinesterase (AChE) and butylcholinesterase (AChE). For AChE, the IC50 value (0.66 microM) of garcinol (2) was almost equal to that of the reference compound galanthamine (0.50 microM). Furthermore, guttiferone A (1) and guttiferone F (4) (IC50 = 2.77 and 3.50 microM, respectively) were more active than galanthamine (IC50 = 8.5) against BChE.
Collapse
|
19
|
Abstract
Leishmaniasis is a widespread arthropod-borne protozoan zoonosis caused by more than 21 Leishmania species. Vectors are sandflies of different genera. The disease is classified into "Old World" versus "New World" leishmaniasis and further subclassified in cutaneous, mucocutaneous and visceral forms. Most therapeutic approaches are not evidence-based. We report a patient with facial cutaneous Leishmania tropica infection which proved to be resistant to various therapeutic regimes. Excellent results were achieved with photodynamic therapy.
Collapse
Affiliation(s)
- Sirius Sohl
- Tino Wetzig Clinic and Polyclinic for Dermatology, Venerology, and Allergology, University Clinic, Leipzig University, Germany.
| | | | | | | |
Collapse
|