1
|
Gill J, Sharma A. Exploration of aminoacyl-tRNA synthetases from eukaryotic parasites for drug development. J Biol Chem 2022; 299:102860. [PMID: 36596362 PMCID: PMC9978631 DOI: 10.1016/j.jbc.2022.102860] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Parasitic diseases result in considerable human morbidity and mortality. The continuous emergence and spread of new drug-resistant parasite strains is an obstacle to controlling and eliminating many parasitic diseases. Aminoacyl-tRNA synthetases (aaRSs) are ubiquitous enzymes essential for protein synthesis. The design and development of diverse small molecule, drug-like inhibitors against parasite-encoded and expressed aaRSs have validated this enzyme family as druggable. In this work, we have compiled the progress to date towards establishing the druggability of aaRSs in terms of their biochemical characterization, validation as targets, inhibitor development, and structural interpretation from parasites responsible for malaria (Plasmodium), lymphatic filariasis (Brugia,Wuchereria bancrofti), giardiasis (Giardia), toxoplasmosis (Toxoplasma gondii), leishmaniasis (Leishmania), cryptosporidiosis (Cryptosporidium), and trypanosomiasis (Trypanosoma). This work thus provides a robust framework for the systematic dissection of aaRSs from these pathogens and will facilitate the cross-usage of potential inhibitors to jump-start anti-parasite drug development.
Collapse
Affiliation(s)
- Jasmita Gill
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Amit Sharma
- ICMR-National Institute of Malaria Research, New Delhi, India; Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
2
|
Lucchetti C, Genchi M, Venco L, Bazzocchi C, Kramer LH, Vismarra A. Optimized protocol for DNA/RNA co-extraction from adults of Dirofilaria immitis. MethodsX 2019; 6:2601-2605. [PMID: 31763192 PMCID: PMC6861604 DOI: 10.1016/j.mex.2019.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/27/2019] [Indexed: 12/21/2022] Open
Abstract
Dirofilaria immitis, the etiologic agent of canine heartworm disease, like several other filarial nematodes, harbors the bacterial endosymbiont Wolbachia. To investigate metabolic and functional pathways of D. immitis and Wolbachia individually, along with their interactions, the use of both transcriptomic and genome analysis has becoming increasingly popular. Although several commercial kits are available for the single extraction of either DNA or RNA, no specific protocol has been described for simultaneous extraction of DNA and RNA from such a large organism like an adult D. immitis, where female worms generally reach ∼25 cm in length. More importantly, adult worms of D. immitis can only be obtained either through necropsy of experimentally infected dogs or by minimally-invasive surgical heartworm removal of naturally infected dogs. This makes each individual worm sample extremely important. Thus, in the context of a project aimed at the evaluation of both gene expression analysis and Wolbachia population assessment following different treatments, an optimized protocol for co-extraction of DNA and RNA from a single sample of adult D. immitis has been developed. An optimized method for DNA/RNA co-extraction from large size nematodes using TRIzol® reagent. Allows maximum exploitation of unique samples as adults of D. immitis.
Collapse
Affiliation(s)
- Chiara Lucchetti
- Department of Veterinary Science, University of Parma, Parasitology Unit, Parma, 43126, PR, Italy
| | - Marco Genchi
- Department of Veterinary Science, University of Parma, Parasitology Unit, Parma, 43126, PR, Italy
| | - Luigi Venco
- Clinica Veterinaria Lago Maggiore, Arona, 28041, NO, Italy
| | - Chiara Bazzocchi
- Department of Veterinary Science, University of Milan, Milan, 20133, MI, Italy
| | - Laura H Kramer
- Department of Veterinary Science, University of Parma, Parasitology Unit, Parma, 43126, PR, Italy
| | - Alice Vismarra
- Department of Veterinary Science, University of Parma, Parasitology Unit, Parma, 43126, PR, Italy
| |
Collapse
|
3
|
Goel P, Parvez S, Sharma A. Genomic analyses of aminoacyl tRNA synthetases from human-infecting helminths. BMC Genomics 2019; 20:333. [PMID: 31046663 PMCID: PMC6498573 DOI: 10.1186/s12864-019-5679-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/09/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Helminth infections affect ~ 60% of the human population that lives in tropical and subtropical regions worldwide. These infections result in diseases like schistosomiasis, lymphatic filariasis, river blindness and echinococcosis. Here we provide a comprehensive computational analysis of the aminoacyl tRNA synthetase (aaRS) enzyme family from 27 human-infecting helminths. Our analyses support the idea that several helminth aaRSs can be targeted for drug repurposing or for development of new drugs. For experimental validation, we focused on Onchocerciasis (also known as "river blindness"), a filarial vector-borne disease that is prevalent in Africa and Latin America. We show that halofuginone (HF) can act as a potent inhibitor of Onchocerca volvulus prolyl tRNA synthetase (OvPRS). RESULTS The conserved enzyme family of aaRSs has been validated as druggable targets in numerous eukaryotic parasites. We thus embarked on assessing aaRSs from the genomes of 27 helminths that cause infections in humans. In order to delineate the distribution of aaRSs per genome we utilized Hidden Markov Models of aaRS catalytic domains to identify all orthologues. We note that Fasciola hepatica genome encodes the highest number of aaRS-like proteins (69) whereas Taenia asiatica has the lowest count (32). The number of genes for any particular aaRS-like protein varies from 1 to 8 in these 27 studied helminths. Sequence alignments of helminth-encoded lysyl, prolyl, leucyl and threonyl tRNA synthetases suggest that various known aaRS inhibitors like Cladosporin, Halofuginone, Benzoborale and Borrelidin may be of utility against helminths. The recombinantly expressed Onchocerca volvulus PRS was used as proof of concept for targeting aaRS with drug-like molecules like HF. CONCLUSIONS Systematic analysis of unique subdomains within helminth aaRSs reveals the presence of a number of non-canonical domains like PAC3, Utp-14, Pex2_Pex12 fused to catalytic domains in the predicted helminth aaRSs. We have established a platform for biochemical validation of a large number of helminth aaRSs that can be targeted using available inhibitors to jump-start drug repurposing against human helminths.
Collapse
Affiliation(s)
- Preeti Goel
- 0000 0004 0498 7682grid.425195.eStructural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India ,0000 0004 0498 8167grid.411816.bDepartment of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110063 India
| | - Suhel Parvez
- 0000 0004 0498 8167grid.411816.bDepartment of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110063 India
| | - Amit Sharma
- 0000 0004 0498 7682grid.425195.eStructural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| |
Collapse
|
4
|
Francklyn CS, Mullen P. Progress and challenges in aminoacyl-tRNA synthetase-based therapeutics. J Biol Chem 2019; 294:5365-5385. [PMID: 30670594 DOI: 10.1074/jbc.rev118.002956] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are universal enzymes that catalyze the attachment of amino acids to the 3' ends of their cognate tRNAs. The resulting aminoacylated tRNAs are escorted to the ribosome where they enter protein synthesis. By specifically matching amino acids to defined anticodon sequences in tRNAs, ARSs are essential to the physical interpretation of the genetic code. In addition to their canonical role in protein synthesis, ARSs are also involved in RNA splicing, transcriptional regulation, translation, and other aspects of cellular homeostasis. Likewise, aminoacylated tRNAs serve as amino acid donors for biosynthetic processes distinct from protein synthesis, including lipid modification and antibiotic biosynthesis. Thanks to the wealth of details on ARS structures and functions and the growing appreciation of their additional roles regulating cellular homeostasis, opportunities for the development of clinically useful ARS inhibitors are emerging to manage microbial and parasite infections. Exploitation of these opportunities has been stimulated by the discovery of new inhibitor frameworks, the use of semi-synthetic approaches combining chemistry and genome engineering, and more powerful techniques for identifying leads from the screening of large chemical libraries. Here, we review the inhibition of ARSs by small molecules, including the various families of natural products, as well as inhibitors developed by either rational design or high-throughput screening as antibiotics and anti-parasitic therapeutics.
Collapse
Affiliation(s)
- Christopher S Francklyn
- From the Department of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Patrick Mullen
- From the Department of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont 05405
| |
Collapse
|
5
|
Structure-function studies of the asparaginyl-tRNA synthetase from Fasciola gigantica: understanding the role of catalytic and non-catalytic domains. Biochem J 2018; 475:3377-3391. [DOI: 10.1042/bcj20180700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 01/14/2023]
Abstract
The asparaginyl-tRNA synthetase (NRS) catalyzes the attachment of asparagine to its cognate tRNA during translation. NRS first catalyzes the binding of Asn and ATP to form the NRS-asparaginyl adenylate complex, followed by the esterification of Asn to its tRNA. We investigated the role of constituent domains in regulating the structure and activity of Fasciola gigantica NRS (FgNRS). We cloned the full-length FgNRS, along with its various truncated forms, expressed, and purified the corresponding proteins. Size exclusion chromatography indicated a role of the anticodon-binding domain (ABD) of FgNRS in protein dimerization. The N-terminal domain (NTD) was not essential for cognate tRNA binding, and the hinge region between the ABD and the C-terminal domain (CTD) was crucial for regulating the enzymatic activity. Molecular docking and fluorescence quenching experiments elucidated the binding affinities of the substrates to various domains. The molecular dynamics simulation of the modeled protein showed the presence of an unstructured region between the NTD and ABD that exhibited a large number of conformations over time, and further analysis indicated this region to be intrinsically disordered. The present study provides information on the structural and functional regulation, protein-substrate(s) interactions and dynamics, and the role of non-catalytic domains in regulating the activity of FgNRS.
Collapse
|
6
|
Park JS, Park MC, Lee KY, Goughnour PC, Jeong SJ, Kim HS, Kim HJ, Lee BJ, Kim S, Han BW. Unique N-terminal extension domain of human asparaginyl-tRNA synthetase elicits CCR3-mediated chemokine activity. Int J Biol Macromol 2018; 120:835-845. [PMID: 30171954 DOI: 10.1016/j.ijbiomac.2018.08.171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
Abstract
Asparaginyl-tRNA synthetase (NRS) is not only essential in protein translation but also associated with autoimmune diseases. Particularly, patients with antibodies that recognize NRS often develop interstitial lung disease (ILD). However, the underlying mechanism of how NRS is recognized by immune cells and provokes inflammatory responses is not well-understood. Here, we found that the crystal structure of the unique N-terminal extension domain of human NRS (named as UNE-N, where -N denotes NRS) resembles that of the chemotactic N-terminal domain of NRS from a filarial nematode, Brugia malayi, which recruits and activates specific immune cells by interacting with CXC chemokine receptor 1 and 2. UNE-N induced migration of CC chemokine receptor 3 (CCR3)-expressing cells. The chemokine activity of UNE-N was significantly reduced by suppressing CCR3 expression with CCR3-targeting siRNA, and the loop3 region of UNE-N was shown to interact mainly with the extracellular domains of CCR3 in nuclear magnetic resonance perturbation experiments. Based on these results, evolutionarily acquired UNE-N elicits chemokine activities that would promote NRS-CCR3-mediated proinflammatory signaling in ILD.
Collapse
Affiliation(s)
- Joon Sung Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Chul Park
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Young Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Peter C Goughnour
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Jae Jeong
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoun Sook Kim
- Therapeutic Target Discovery Branch, Division of Precision Medicine and Cancer Informatics, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Yakobov N, Debard S, Fischer F, Senger B, Becker HD. Cytosolic aminoacyl-tRNA synthetases: Unanticipated relocations for unexpected functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:387-400. [PMID: 29155070 DOI: 10.1016/j.bbagrm.2017.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Prokaryotic and eukaryotic cytosolic aminoacyl-tRNA synthetases (aaRSs) are essentially known for their conventional function of generating the full set of aminoacyl-tRNA species that are needed to incorporate each organism's repertoire of genetically-encoded amino acids during ribosomal translation of messenger RNAs. However, bacterial and eukaryotic cytosolic aaRSs have been shown to exhibit other essential nonconventional functions. Here we review all the subcellular compartments that prokaryotic and eukaryotic cytosolic aaRSs can reach to exert either a conventional or nontranslational role. We describe the physiological and stress conditions, the mechanisms and the signaling pathways that trigger their relocation and the new functions associated with these relocating cytosolic aaRS. Finally, given that these relocating pools of cytosolic aaRSs participate to a wide range of cellular pathways beyond translation, but equally important for cellular homeostasis, we mention some of the pathologies and diseases associated with the dis-regulation or malfunctioning of these nontranslational functions.
Collapse
Affiliation(s)
- Nathaniel Yakobov
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Sylvain Debard
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Frédéric Fischer
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Bruno Senger
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Hubert Dominique Becker
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France.
| |
Collapse
|
8
|
Brugia malayi Asparaginyl-tRNA Synthetase Stimulates Endothelial Cell Proliferation, Vasodilation and Angiogenesis. PLoS One 2016; 11:e0146132. [PMID: 26751209 PMCID: PMC4709172 DOI: 10.1371/journal.pone.0146132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/14/2015] [Indexed: 11/24/2022] Open
Abstract
A hallmark of chronic infection with lymphatic filarial parasites is the development of lymphatic disease which often results in permanent vasodilation and lymphedema, but all of the mechanisms by which filarial parasites induce pathology are not known. Prior work showed that the asparaginyl-tRNA synthetase (BmAsnRS) of Brugia malayi, an etiological agent of lymphatic filariasis, acts as a physiocrine that binds specifically to interleukin-8 (IL-8) chemokine receptors. Endothelial cells are one of the many cell types that express IL-8 receptors. IL-8 also has been reported previously to induce angiogenesis and vasodilation, however, the effect of BmAsnRS on endothelial cells has not been reported. Therefore, we tested the hypothesis that BmAsnRS might produce physiological changes in endothelial by studying the in vitro effects of BmAsnRS using a human umbilical vein cell line EA.hy926 and six different endothelial cell assays. Our results demonstrated that BmAsnRS produces consistent and statistically significant effects on endothelial cells that are identical to the effects of VEGF, vascular endothelial growth factor. This study supports the idea that new drugs or immunotherapies that counteract the adverse effects of parasite-derived physiocrines may prevent or ameliorate the vascular pathology observed in patients with lymphatic filariasis.
Collapse
|
9
|
Arya H, Coumar MS. Virtual screening of traditional Chinese medicine (TCM) database: identification of fragment-like lead molecules for filariasis target asparaginyl-tRNA synthetase. J Mol Model 2014; 20:2266. [PMID: 24842326 DOI: 10.1007/s00894-014-2266-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/23/2014] [Indexed: 12/28/2022]
Abstract
Lymphatic filariasis (LF) is a vector borne infectious disease caused by the nematode Wuchereria bancrofti, Brugia malayi, and Brugia timori. Over 120 million people are affected by LF in the world, of which two-thirds are in Asia. The infection restricts the normal flow of lymph from the infected area resulting in swelling of the extremities and causing permanent disability. As the available drugs for the treatment of LF are becoming ineffective due to the development of resistance, there is an urgent need to find new leads for drug development. In this study, asparaginyl-tRNA synthetase (AsnRS; PDB ID: 2XGT) essential for the protein bio-synthesis in the filarial nematode was used to carry out virtual screening (VS) of plant constituents from traditional Chinese medicine (TCM) database. Docking as well as E-pharmacophore based VS were carried out to identify the hits. The top scoring hits, Agri 1 (1,3,8-trihydroxy-4,5-dimethoxyxanthen-9-one-3-O-beta-D-glucopyranoside) and Agri 2 (5,7-dihydroxy-2-propylchromone 7-O-beta-D-glucopyranoside), constituents of Agrimonia pilosa, were selected for molecular dynamics (MD) simulation study for 10 ns. MD simulation showed that both the glycosides Agri 1 and Agri 2 were forming stable interactions with the target protein. Moreover, docking and MD simulation of the lead A (1,3,8-trihydroxy-4,5-dimethoxyxanthen-9-one; Mol. Wt.: 304.25; CLogP: 3.07) and lead B (5,7-dihydroxy-2-propylchromone; Mol. Wt.: 220.22; CLogP: 3.02), the aglycones of Agri 1 and Agri 2, respectively, were carried out with the target AsnRS. The in silico investigations of the aglycones suggest that the lead B could be a suitable fragment-like lead molecule for anti-filarial drug discovery.
Collapse
Affiliation(s)
- Hemant Arya
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry, 605014, India
| | | |
Collapse
|
10
|
Pham JS, Dawson KL, Jackson KE, Lim EE, Pasaje CFA, Turner KEC, Ralph SA. Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2013; 4:1-13. [PMID: 24596663 PMCID: PMC3940080 DOI: 10.1016/j.ijpddr.2013.10.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 01/02/2023]
Abstract
Aminoacyl-tRNA synthetases are essential and many aaRS inhibitors kill parasites. We examine compound inhibitors tested experimentally against parasite aaRSs. Successful inhibitors were discovered by both phenotype and target-based approaches. Selectivity and resistance are ongoing challenges for development of parasite drugs.
Aminoacyl-tRNA synthetases are central enzymes in protein translation, providing the charged tRNAs needed for appropriate construction of peptide chains. These enzymes have long been pursued as drug targets in bacteria and fungi, but the past decade has seen considerable research on aminoacyl-tRNA synthetases in eukaryotic parasites. Existing inhibitors of bacterial tRNA synthetases have been adapted for parasite use, novel inhibitors have been developed against parasite enzymes, and tRNA synthetases have been identified as the targets for compounds in use or development as antiparasitic drugs. Crystal structures have now been solved for many parasite tRNA synthetases, and opportunities for selective inhibition are becoming apparent. For different biological reasons, tRNA synthetases appear to be promising drug targets against parasites as diverse as Plasmodium (causative agent of malaria), Brugia (causative agent of lymphatic filariasis), and Trypanosoma (causative agents of Chagas disease and human African trypanosomiasis). Here we review recent developments in drug discovery and target characterisation for parasite aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- James S Pham
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Karen L Dawson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Katherine E Jackson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Erin E Lim
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Charisse Flerida A Pasaje
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Kelsey E C Turner
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
11
|
Yu Z, Vodanovic-Jankovic S, Kron M, Shen B. New WS9326A congeners from Streptomyces sp. 9078 inhibiting Brugia malayi asparaginyl-tRNA synthetase. Org Lett 2012; 14:4946-9. [PMID: 22967068 PMCID: PMC3460372 DOI: 10.1021/ol302298k] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Lymphatic filariasis is caused by the Brugia malayi parasite. Three new congeners of the depsipeptide WS9326A (1), WS9326C (2), WS9326D (3), and WS9326E (4), were isolated from Streptomyces sp. 9078 by using a B. malayi asparaginyl-tRNA synthetase (BmAsnRS) inhibition assay. WS9326D specifically inhibits the BmAsnRS, kills the adult B. malayi parasite, and does not exhibit significant general cytotoxicity to human hepatic cells, representing a new lead scaffold for antifilarial drug discovery.
Collapse
Affiliation(s)
- Zhiguo Yu
- Department of Chemistry, the Scripps Research Institute, Jupiter, Florida 33458, USA
| | | | | | | |
Collapse
|
12
|
Kron MA, Wang C, Vodanovic-Jankovic S, Howard OMZ, Kuhn LA. Interleukin-8-like activity in a filarial asparaginyl-tRNA synthetase. Mol Biochem Parasitol 2012; 185:66-9. [PMID: 22710390 DOI: 10.1016/j.molbiopara.2012.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 11/30/2022]
Abstract
A wide range of secondary biological functions have been documented for eukaryotic aminoacyl-tRNA synthetases including roles in transcriptional regulation, mitochondrial RNA splicing, cell growth, and chemokine-like activities. The asparaginyl-tRNA synthetase (AsnRS) of the filarial nematode, Brugia malayi, is a highly expressed excretory-secretory molecule which activates interleukin 8 (IL-8) receptors via extracellular domains that are different from those used by IL-8. Recent success in determining the complete atomic structure of the B. malayi AsnRS provided the opportunity to map its chemokine-like activity. Chemotaxis assays demonstrated that IL-8-like activity is localized in a novel 80 amino acid amino terminal substructure. Structural homology searches revealed similarities between that domain in B. malayi AsnRS and substructures involved in receptor binding by human IL-8. These observations provide important new insights into how parasite-derived molecules may play a role in the modulation of immune cell function.
Collapse
Affiliation(s)
- Michael A Kron
- Department of Medicine, Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI 53092, USA.
| | | | | | | | | |
Collapse
|
13
|
Crepin T, Peterson F, Haertlein M, Jensen D, Wang C, Cusack S, Kron M. A hybrid structural model of the complete Brugia malayi cytoplasmic asparaginyl-tRNA synthetase. J Mol Biol 2010; 405:1056-69. [PMID: 21134380 DOI: 10.1016/j.jmb.2010.11.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/18/2010] [Accepted: 11/22/2010] [Indexed: 11/15/2022]
Abstract
Aminoacyl-tRNA synthetases are validated molecular targets for anti-infective drug discovery because of their essentiality in protein synthesis. Thanks to genome sequencing, it is now possible to systematically study aminoacyl-tRNA synthetases from human eukaryotic parasites as putative targets for novel drug discovery. As part of a program targeting class IIb asparaginyl-tRNA synthetases (AsnRS) from the parasitic nematode Brugia malayi for anti-filarial drugs, we report the complete structure of a eukaryotic AsnRS. Metazoan and fungal AsnRS differ from their bacterial homologues by the addition of a conserved N-terminal extension of about 110 residues whose structure we have determined by solution NMR for the B. malayi enzyme. In addition, we solved by X-ray crystallography a series of structures of the catalytically active N-terminally truncated enzyme (residues 112-548), allowing the structural basis for the mechanism of asparagine activation to be elucidated. The N-terminal domain contains a structured region with a novel fold featuring a lysine-rich helix that is shown by NMR to interact with tRNA. This is connected by an unstructured tether to the remainder of the enzyme, which is highly similar to the known structure of bacterial AsnRS. These data enable a model of the complete AsnRS-tRNA complex to be constructed.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Aspartate-tRNA Ligase/chemistry
- Aspartate-tRNA Ligase/genetics
- Aspartate-tRNA Ligase/metabolism
- Base Sequence
- Brugia malayi/enzymology
- Brugia malayi/genetics
- Catalytic Domain
- Crystallography, X-Ray
- Cytoplasm/enzymology
- DNA Primers/genetics
- Enzyme Activation
- Helminth Proteins/chemistry
- Helminth Proteins/genetics
- Helminth Proteins/metabolism
- Humans
- Models, Molecular
- Molecular Sequence Data
- Nuclear Magnetic Resonance, Biomolecular
- Protein Structure, Tertiary
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Thibaut Crepin
- European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38142 Grenoble Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Growth factors and chemotactic factors from parasitic helminths: molecular evidence for roles in host-parasite interactions versus parasite development. Int J Parasitol 2010; 40:761-73. [PMID: 20359480 DOI: 10.1016/j.ijpara.2010.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 01/04/2023]
Abstract
For decades molecular helminthologists have been interested in identifying proteins expressed by the parasite that have roles in modulating the host immune response. In some cases, the aim was targeting parasite-derived orthologues of mammalian cytokines and growth factors known to have functions in immune modulation. In others, novel proteins without homology to mammalian cytokines were isolated by investigating effects of purified worm extracts on various immunological processes. Often, the role parasite-derived growth factors play in worm development was ignored. Here, we review growth factors and chemotactic factors expressed by parasitic helminths and discuss their recognised and potential roles in immunomodulation and/or parasite development.
Collapse
|
15
|
Kron MA, Cichanowicz S, Hendrick A, Liu A, Leykam J, Kuhn LA. Using structural analysis to generate parasite-selective monoclonal antibodies. Protein Sci 2008; 17:983-9. [PMID: 18411421 DOI: 10.1110/ps.073429808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Diagnosis of eukaryotic parasitic infection using antibody-based tests such as ELISAs (enzyme-linked immunosorbent assays) is often problematic because of the need to differentiate between homologous host and pathogen proteins and to ensure that antibodies raised against a peptide will also bind to the peptide in the context of its three-dimensional protein structure. Filariasis caused by the nematode, Brugia malayi, is an important worldwide tropical disease in which parasites disappear from the bloodstream during daylight hours, thus hampering standard microscopic diagnostic methods. To address this problem, a structural approach was used to develop monoclonal antibodies (mAbs) that detect asparaginyl-tRNA synthetase (AsnRS) secreted from B. malayi. B. malayi and human AsnRS amino acid sequences were aligned to identify regions that are relatively unconserved, and a 1.9 A crystallographic structure of B. malayi AsnRS was used to identify peptidyl regions that are surface accessible and available for antibody binding. Sequery and SSA (Superpositional Structural Analysis) software was used to analyze which of these peptides was most likely to maintain its native conformation as a synthetic peptide, and its predicted helical structure was confirmed by NMR. A 22-residue peptide was synthesized to produce murine mAbs. Four IgG(1) mAbs were identified that recognized the synthetic peptide and the full-length parasite AsnRS, but not human AsnRS. The specificity and affinity of mAbs was confirmed by Western blot, immunohistochemistry, surface plasmon resonance, and enzyme inhibition assays. These results support the success of structural modeling to choose peptides for raising selective antibodies that bind to the native protein.
Collapse
Affiliation(s)
- Michael A Kron
- Department of Medicine, Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Kron M, Leykam J, Kopaczewski J, Matus I. Identification of diadenosine triphosphate in Brugia malayi by reverse phase high performance liquid chromatography and MALDI mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 856:234-8. [PMID: 17631429 PMCID: PMC2044565 DOI: 10.1016/j.jchromb.2007.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 05/31/2007] [Accepted: 06/10/2007] [Indexed: 11/21/2022]
Abstract
The presence of diadenosine oligophosphates (ApnA) in eukaryotic pathogens has been difficult technically to assess and thus is often overlooked. ApnA are a family of intercellular and intracellular signaling molecules and their biological activities differ relative to the number of phosphate moieties. The application of mass spectrometry to differentiate nucleotide phosphates has been limited by the high salt content in tissue extracts, enzymatic reactions or high performance liquid chromatography (HPLC) buffers, as well as the potential for sample loss when processing and desalting small biological samples. To address this problem a simple reverse phase HPLC (RP-HPLC) method using volatile organic buffers at low pH was developed to create elution profiles of adenosine and diadenosine phosphates. To test this method on a eukaryotic pathogen, small intravascular human filarial parasites (Brugia malayi) were extracted in phosphate buffered saline and a nucleotide phosphate profile was visualized by RP-HPLC. A major peak eluting at 10.4 min was analyzed directly by mass spectrometry and this confirmed the presence of significant quantities of diadenosine triphosphate, Ap3A. Application of this simplified RP-HPLC method will facilitate research on the normal and pathophysiological effects of ApnA particularly in situations when analysis of small biological samples is required.
Collapse
Affiliation(s)
- Michael Kron
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | | | | | | |
Collapse
|
17
|
Rao RU, Weil GJ, Fischer K, Supali T, Fischer P. Detection of Brugia parasite DNA in human blood by real-time PCR. J Clin Microbiol 2006; 44:3887-93. [PMID: 16957038 PMCID: PMC1698366 DOI: 10.1128/jcm.00969-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brugian filariasis (caused by the nematodes Brugia malayi and B. timori) is an important cause of disability in Southeast Asia. Improved diagnostic tests are needed for filariasis elimination programs (to identify areas of endemicity and to monitor progress) and for diagnosis of the disease in infected individuals. We have developed and evaluated two real-time PCR assays for detecting Brugia DNA in human blood and compared the results of these assays to those of "gold standard" assays. One assay uses a TaqMan probe (TaqM) to amplifiy a 320-bp "HhaI repeat" DNA sequence. The other assay uses a minor groove binding probe (MGB) and modified nucleotides in primers (Eclipse MGB) to amplify a 120-bp fragment of the HhaI repeat. This assay detects 22 copies of the target sequence, and it is more sensitive than the TaqM assay. Both assays were evaluated with human blood samples from two different areas of endemicity. The MGB assay was as sensitive as membrane filtration and microscopy for the detection of B. malayi infection in 57 blood samples recovered at night from patients in Sulawesi, Indonesia. The MGB assay also detected parasite DNA in 17 of 31 (55%) of microfilaria-negative day blood samples from these subjects. This test was more sensitive than the conventional and the TaqM PCRs (and was almost as sensitive as night blood membrane filtration) for the detection of infection in 52 blood samples recovered at night from individuals in an area of B. timori endemicity on Alor Island, Indonesia, where microfilaria-positive individuals had low densities after mass treatment. Thus, the Eclipse MGB real-time PCR assay is a sensitive means of detecting Brugia parasite DNA in human blood.
Collapse
Affiliation(s)
- Ramakrishna U Rao
- Department of Internal Medicine, Infectious Diseases Division, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8051, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
18
|
Sukuru SCK, Crepin T, Milev Y, Marsh LC, Hill JB, Anderson RJ, Morris JC, Rohatgi A, O'Mahony G, Grøtli M, Danel F, Page MGP, Härtlein M, Cusack S, Kron MA, Kuhn LA. Discovering New Classes of Brugia malayi Asparaginyl-tRNA Synthetase Inhibitors and Relating Specificity to Conformational Change. J Comput Aided Mol Des 2006; 20:159-78. [PMID: 16645791 DOI: 10.1007/s10822-006-9043-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 03/12/2006] [Indexed: 11/28/2022]
Abstract
SLIDE software, which models the flexibility of protein and ligand side chains while docking, was used to screen several large databases to identify inhibitors of Brugia malayi asparaginyl-tRNA synthetase (AsnRS), a target for anti-parasitic drug design. Seven classes of compounds identified by SLIDE were confirmed as micromolar inhibitors of the enzyme. Analogs of one of these classes of inhibitors, the long side-chain variolins, cannot bind to the adenosyl pocket of the closed conformation of AsnRS due to steric clashes, though the short side-chain variolins identified by SLIDE apparently bind isosterically with adenosine. We hypothesized that an open conformation of the motif 2 loop also permits the long side-chain variolins to bind in the adenosine pocket and that their selectivity for Brugia relative to human AsnRS can be explained by differences in the sequence and conformation of this loop. Loop flexibility sampling using Rigidity Optimized Conformational Kinetics (ROCK) confirms this possibility, while scoring of the relative affinities of the different ligands by SLIDE correlates well with the compounds' ranks in inhibition assays. Combining ROCK and SLIDE provides a promising approach for exploiting conformational flexibility in structure-based screening and design of species selective inhibitors.
Collapse
Affiliation(s)
- Sai Chetan K Sukuru
- Department of Biochemistry and Molecular Biology, Michigan State University, 502C Biochemistry Building, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Li BW, Rush AC, Crosby SD, Warren WC, Williams SA, Mitreva M, Weil GJ. Profiling of gender-regulated gene transcripts in the filarial nematode Brugia malayi by cDNA oligonucleotide array analysis. Mol Biochem Parasitol 2005; 143:49-57. [PMID: 15992941 DOI: 10.1016/j.molbiopara.2005.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 05/02/2005] [Accepted: 05/11/2005] [Indexed: 11/17/2022]
Abstract
Microarray technology permits high-throughput comparisons of gene expression in different parasite stages or sexes and has been used widely. We report the first use of this technology for analysis of gene expression in filarial male and female worms. The slide array (comprised of 65-mer oligos representing 3569 EST clusters) was spotted with sequences selected from the extensive Brugia malayi EST database (). Arrays were hybridized with Cy dye labeled male and female cDNA. The experimental design included both biological and technical (dye-flip) replicates. The data were normalized for background and probe intensity, and the relative abundance of hybridized cDNA for each spot was determined. Genes showing two-fold or greater differences with P<0.05 were considered gender-regulated candidates. One thousand one hundred and seventy of 2443 clusters (48%) with signals above threshold in at least one sex were considered as gender-regulated gene candidates. This included 520 and 650 clusters up-regulated in male and female worms, respectively. Fifty of 53 (94%) gender-regulated candidate genes identified by microarray analysis were confirmed by real-time RT-PCR. Approximately 61% of gender-regulated genes had significant similarity to known genes in other organisms such as Caenorhabditis elegans. Many C. elegans homologues of these genes have been reported to have reproductive phenotypes (sterility or abnormal embryo development) by RNA interference. This study has provided the first broad view of gender-regulated gene expression in B. malayi; this should lead to improved understanding of reproduction in filarial nematodes. More generally, this approach holds great promise as a means of studying stage-specific or tissue-specific gene expression in parasitic nematodes.
Collapse
Affiliation(s)
- Ben-Wen Li
- Infectious Diseases Division, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Pink R, Hudson A, Mouriès MA, Bendig M. Opportunities and Challenges in Antiparasitic Drug Discovery. Nat Rev Drug Discov 2005; 4:727-40. [PMID: 16138106 DOI: 10.1038/nrd1824] [Citation(s) in RCA: 338] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
New antiparasitic drugs are urgently needed to treat and control diseases such as malaria, leishmaniasis, sleeping sickness and filariasis, which affect millions of people each year. However, because the majority of those infected live in countries in which the prospects of any financial return on investment are too low to support market-driven drug discovery and development, alternative approaches are needed. In this article, challenges and opportunities for antiparasitic drug discovery are considered, highlighting some of the progress that has been made in recent years, partly through scientific advances, but also by more effective partnership between the public and private sectors.
Collapse
Affiliation(s)
- Richard Pink
- TDR (the UNICEF/UNDP/World Bank/WHO/Special Programme for Research and Training in Tropical Diseases), Geneva 1211, Switzerland
| | | | | | | |
Collapse
|
21
|
Kron MA, Petridis M, Haertlein M, Libranda-Ramirez B, Scaffidi LE. Do tissue levels of autoantigenic aminoacyl-tRNA synthetase predict clinical disease? Med Hypotheses 2005; 65:1124-7. [PMID: 16085368 DOI: 10.1016/j.mehy.2005.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 06/07/2005] [Indexed: 11/27/2022]
Abstract
The etiologies of most autoimmune diseases are not completely understood. Aminoacyl-tRNA synthetases (AARS) are a family of heterogenous enzymes responsible for protein synthesis and whose secondary functions include a role in autoimmune myositis. A subset of patients with idiopathic inflammatory myopathies demonstrate autoantibody against specific cytoplasmic AARS and the human asparaginyl-tRNA synthetase (AsnRS) has been shown to be a potent chemokine that interacts with CCR3 chemokine receptors. One way in which a chemotactic cytoplasmic enzyme might contribute to tissue inflammation is if it were abundant in a specific injured tissue and thereby released to the microenvironment at times of cellular damage. To test this hypothesis, the relative levels of AsnRS mRNA were studied in six human tissues. A 1.6 kbF RNA probe identified highly variable levels of the corresponding mRNA in Northern blot analysis of human lung, brain, heart, skeletal muscle, pancreas and liver. The highest levels of signal were noted in muscle and pancreas. Polyclonal antibody raised against recombinant human AsnRS identified abundant antigenic material in the pancreas, in particular in islet cells. Thus, the local abundance of an endogenous pro-inflammatory autoantigen may provide one explanation for perpetuation or exacerbation of tissue specific immune-mediated pathologies.
Collapse
Affiliation(s)
- Michael A Kron
- Institute of International Health, Colleges of Osteopathic and Human Medicine, B-301 West Fee Hall, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | |
Collapse
|