1
|
Negreiros RS, Lander N, Huang G, Cordeiro CD, Smith SA, Morrissey JH, Docampo R. Inorganic polyphosphate interacts with nucleolar and glycosomal proteins in trypanosomatids. Mol Microbiol 2018; 110:973-994. [PMID: 30230089 DOI: 10.1111/mmi.14131] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2018] [Indexed: 12/11/2022]
Abstract
Inorganic polyphosphate (polyP) is a polymer of three to hundreds of phosphate units bound by high-energy phosphoanhydride bonds and present from bacteria to humans. Most polyP in trypanosomatids is concentrated in acidocalcisomes, acidic calcium stores that possess a number of pumps, exchangers, and channels, and are important for their survival. In this work, using polyP as bait we identified > 25 putative protein targets in cell lysates of both Trypanosoma cruzi and Trypanosoma brucei. Gene ontology analysis of the binding partners found a significant over-representation of nucleolar and glycosomal proteins. Using the polyphosphate-binding domain (PPBD) of Escherichia coli exopolyphosphatase (PPX), we localized long-chain polyP to the nucleoli and glycosomes of trypanosomes. A competitive assay based on the pre-incubation of PPBD with exogenous polyP and subsequent immunofluorescence assay of procyclic forms (PCF) of T. brucei showed polyP concentration-dependent and chain length-dependent decrease in the fluorescence signal. Subcellular fractionation experiments confirmed the presence of polyP in glycosomes of T. brucei PCF. Targeting of yeast PPX to the glycosomes of PCF resulted in polyP hydrolysis, alteration in their glycolytic flux and increase in their susceptibility to oxidative stress.
Collapse
Affiliation(s)
- Raquel S Negreiros
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Noelia Lander
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.,Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Ciro D Cordeiro
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.,Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Stephanie A Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - James H Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.,Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
2
|
Lüscher A, Lamprea-Burgunder E, Graf FE, de Koning HP, Mäser P. Trypanosoma brucei adenine-phosphoribosyltransferases mediate adenine salvage and aminopurinol susceptibility but not adenine toxicity. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2013; 4:55-63. [PMID: 24596669 PMCID: PMC3940079 DOI: 10.1016/j.ijpddr.2013.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/30/2013] [Accepted: 12/03/2013] [Indexed: 11/30/2022]
Abstract
African trypanosomes possess two distinct adenine phosphoribosyltransferases. Trypanosoma brucei TbAPRT1 is cytosolic, TbAPRT2 localizes to the glycosome. Aprt1,2 null mutants are viable but do not incorporate adenine into nucleotides. Aprt1,2 null mutants are resistant to aminopurinol but still sensitive to adenine. Aminopurinol is a trypanocide with submicromolar activity against T. brucei.
African trypanosomes, like all obligate parasitic protozoa, cannot synthesize purines de novo and import purines from their hosts to build nucleic acids. The purine salvage pathways of Trypanosoma brucei being redundant, none of the involved enzymes is likely to be essential. Nevertheless they can be of pharmacological interest due to their role in activation of purine nucleobase or nucleoside analogues, which only become toxic when converted to nucleotides. Aminopurine antimetabolites, in particular, are potent trypanocides and even adenine itself is toxic to trypanosomes at elevated concentrations. Here we report on the T. brucei adenine phosphoribosyltransferases TbAPRT1 and TbAPRT2, encoded by the two genes Tb927.7.1780 and Tb927.7.1790, located in tandem on chromosome seven. The duplication is syntenic in all available Trypanosoma genomes but not in Leishmania. While TbAPRT1 is cytosolic, TbAPRT2 possesses a glycosomal targeting signal and co-localizes with the glycosomal marker aldolase. Interestingly, the distribution of glycosomal targeting signals among trypanosomatid adenine phosphoribosyltransferases is not consistent with their phylogeny, indicating that the acquisition of adenine salvage to the glycosome happened after the radiation of Trypanosoma. Double null mutant T. brucei Δtbaprt1,2 exhibited no growth phenotype but no longer incorporated exogenous adenine into the nucleotide pool. This, however, did not reduce their sensitivity to adenine. The Δtbaprt1,2 trypanosomes were resistant to the adenine isomer aminopurinol, indicating that it is activated by phosphoribosyl transfer. Aminopurinol was about 1000-fold more toxic to bloodstream-form T. brucei than the corresponding hypoxanthine isomer allopurinol. Aminopurinol uptake was not dependent on the aminopurine permease P2 that has been implicated in drug resistance.
Collapse
Affiliation(s)
- Alexandra Lüscher
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | | | - Fabrice E Graf
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ; University of Basel, 4000 Basel, Switzerland
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8RA, UK
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ; University of Basel, 4000 Basel, Switzerland
| |
Collapse
|
3
|
Colasante C, Alibu VP, Kirchberger S, Tjaden J, Clayton C, Voncken F. Characterization and developmentally regulated localization of the mitochondrial carrier protein homologue MCP6 from Trypanosoma brucei. EUKARYOTIC CELL 2007; 5:1194-205. [PMID: 16896205 PMCID: PMC1539146 DOI: 10.1128/ec.00096-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proteins of the mitochondrial carrier family (MCF) are located mainly in the inner mitochondrial membrane and mediate the transport of a large range of metabolic intermediates. The genome of Trypanosoma brucei harbors 29 genes encoding different MCF proteins. We describe here the characterization of MCP6, a novel T. brucei MCF protein. Sequence comparison and phylogenetic reconstruction revealed that MCP6 is closely related to different mitochondrial ADP/ATP and calcium-dependent solute carriers, including the ATP-Mg/Pi carrier of Homo sapiens. However, MCP6 lacks essential amino acids and sequence motifs conserved in these metabolite transporters, and functional reconstitution and transport assays with E. coli suggested that this protein indeed does not function as an ADP/ATP or ATP-Mg/Pi carrier. The subcellular localization of MCP6 is developmentally regulated: in bloodstream-form trypanosomes, the protein is predominantly glycosomal, whereas in the procyclic form, it is found mainly in the mitochondria. Depletion of MCP6 in procyclic trypanosomes resulted in growth inhibition, an increased cell size, aberrant numbers of nuclei and kinetoplasts, and abnormal kinetoplast morphology, suggesting that depletion of MCP6 inhibits division of the kinetoplast.
Collapse
Affiliation(s)
- Claudia Colasante
- Zentrum für Molekulare Biologie (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
4
|
de Koning HP, Bridges DJ, Burchmore RJS. Purine and pyrimidine transport in pathogenic protozoa: From biology to therapy. FEMS Microbiol Rev 2005; 29:987-1020. [PMID: 16040150 DOI: 10.1016/j.femsre.2005.03.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 03/22/2005] [Accepted: 03/24/2005] [Indexed: 01/10/2023] Open
Abstract
Purine salvage is an essential function for all obligate parasitic protozoa studied to date and most are also capable of efficient uptake of preformed pyrimidines. Much progress has been made in the identification and characterisation of protozoan purine and pyrimidine transporters. While the genes encoding protozoan or metazoan pyrimidine transporters have yet to be identified, numerous purine transporters have now been cloned. All protozoan purine transporter-encoding genes characterised to date have been of the Equilibrative Nucleoside Transporter family conserved in a great variety of eukaryote organisms. However, these protozoan transporters have been shown to be sufficiently different from mammalian transporters to mediate selective uptake of therapeutic agents. Recent studies are increasingly addressing the structure and substrate recognition mechanisms of these vital transport proteins.
Collapse
Affiliation(s)
- Harry P de Koning
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
5
|
Zarella-Boitz JM, Rager N, Jardim A, Ullman B. Subcellular localization of adenine and xanthine phosphoribosyltransferases in Leishmania donovani. Mol Biochem Parasitol 2004; 134:43-51. [PMID: 14747142 DOI: 10.1016/j.molbiopara.2003.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The subcellular location of a protein is a critical factor in its physiological function and an important consideration in therapeutic paradigms that target the protein. Because Leishmania donovani cannot synthesize purine nucleotides de novo, they rely predominantly upon therapeutically germane phosphoribosyltransferase (PRT) enzymes, hypoxanthine-guanine PRT (HGPRT), adenine PRT (APRT), and xanthine PRT (XPRT), for purine acquisition from the host. Previous studies have shown that the L. donovani HGPRT is localized to the glycosome, a fuel-metabolizing microbody that is unique to kinetoplastid parasites [J. Biol. Chem. 273 (1998) 1534]. The sequences of the other two PRTs indicate that XPRT, but not APRT, possesses a COOH-terminal tripeptide that mediates protein targeting to the glycosome. To determine definitively the intracellular milieu of APRT and XPRT, polyclonal antibodies were raised to each recombinant protein. APRT and XPRT were then shown by immunofluorescence to be localized to the cytosol and glycosome, respectively. The glycosomal milieu for XPRT was also verified by immunoelectron microscopy. Amputation of the glycosomal targeting signal from XPRT resulted in protein mislocalization to the cytosol, but the cytosolic xprt was still functional with respect to purine salvage. These studies establish that APRT is cytosolic and XPRT, like the homologous HGPRT, is glycosomal and demonstrate that a mutant xprt protein that mislocalizes to the cytosol is still functional and supports parasite viability.
Collapse
Affiliation(s)
- Jan M Zarella-Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | | | | | |
Collapse
|
6
|
Wilkinson SR, Meyer DJ, Taylor MC, Bromley EV, Miles MA, Kelly JM. The Trypanosoma cruzi enzyme TcGPXI is a glycosomal peroxidase and can be linked to trypanothione reduction by glutathione or tryparedoxin. J Biol Chem 2002; 277:17062-71. [PMID: 11842085 DOI: 10.1074/jbc.m111126200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma cruzi glutathione-dependent peroxidase I (TcGPXI) can reduce fatty acid, phospholipid, and short chain organic hydroperoxides utilizing a novel redox cycle in which enzyme activity is linked to the reduction of trypanothione, a parasite-specific thiol, by glutathione. Here we show that TcGPXI activity can also be linked to trypanothione reduction by an alternative pathway involving the thioredoxin-like protein tryparedoxin. The presence of this new pathway was first detected using dialyzed soluble fractions of parasite extract. Tryparedoxin was identified as the intermediate molecule following purification, sequence analysis, antibody studies, and reconstitution of the redox cycle in vitro. The system can be readily saturated by trypanothione, the rate-limiting step being the interaction of trypanothione with the tryparedoxin. Both tryparedoxin and TcGPXI operate by a ping-pong mechanism. Overexpression of TcGPXI in transfected parasites confers increased resistance to exogenous hydroperoxides. TcGPXI contains a carboxyl-terminal tripeptide (ARI) that could act as a targeting signal for the glycosome, a kinetoplastid-specific organelle. Using immunofluorescence, tagged fluorescent proteins, and biochemical fractionation, we have demonstrated that TcGPXI is localized to both the glycosome and the cytosol. The ability of TcGPXI to use alternative electron donors may reflect their availability at the corresponding subcellular sites.
Collapse
Affiliation(s)
- Shane R Wilkinson
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Protozoan parasites are incapable of synthesizing purine nucleotides de novo and so must salvage preformed purines from their hosts. This process of purine acquisition is initiated by the translocation of preformed host purines across parasite or host membranes. Here, we report upon the identification and isolation of DNAs encoding parasite nucleoside transporters and the functional characterization of these proteins in various expression systems. These potential approaches provide a powerful approach for a thorough molecular and biochemical dissection of nucleoside transport in protozoan parasites.
Collapse
Affiliation(s)
- N S Carter
- Dept of Biochemistry and Molecular Biology, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA
| | | | | |
Collapse
|