1
|
Reimão JQ, Coser EM, Lee MR, Coelho AC. Laboratory Diagnosis of Cutaneous and Visceral Leishmaniasis: Current and Future Methods. Microorganisms 2020; 8:E1632. [PMID: 33105784 PMCID: PMC7690623 DOI: 10.3390/microorganisms8111632] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease with two main clinical forms: cutaneous and visceral leishmaniasis. Diagnosis of leishmaniasis is still a challenge, concerning the detection and correct identification of the species of the parasite, mainly in endemic areas where the absence of appropriate resources is still a problem. Most accessible methods for diagnosis, particularly in these areas, do not include the identification of each one of more than 20 species responsible for the disease. Here, we summarize the main methods used for the detection and identification of leishmaniasis that can be performed by demonstration of the parasite in biological samples from the patient through microscopic examination, by in vitro culture or animal inoculation; by molecular methods through the detection of parasite DNA; or by immunological methods through the detection of parasite antigens that may be present in urine or through the detection of specific antibodies against the parasite. Potential new methods that can be applied for laboratory diagnosis of leishmaniasis are also discussed.
Collapse
Affiliation(s)
- Juliana Quero Reimão
- Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí, Jundiaí 13202-550, Brazil; (J.Q.R.); (M.R.L.)
| | - Elizabeth Magiolo Coser
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil;
| | - Monica Ran Lee
- Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí, Jundiaí 13202-550, Brazil; (J.Q.R.); (M.R.L.)
| | - Adriano Cappellazzo Coelho
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil;
| |
Collapse
|
2
|
Martínez-Calvillo S, Florencio-Martínez LE, Nepomuceno-Mejía T. Nucleolar Structure and Function in Trypanosomatid Protozoa. Cells 2019; 8:cells8050421. [PMID: 31071985 PMCID: PMC6562600 DOI: 10.3390/cells8050421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/12/2022] Open
Abstract
The nucleolus is the conspicuous nuclear body where ribosomal RNA genes are transcribed by RNA polymerase I, pre-ribosomal RNA is processed, and ribosomal subunits are assembled. Other important functions have been attributed to the nucleolus over the years. Here we review the current knowledge about the structure and function of the nucleolus in the trypanosomatid parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania ssp., which represent one of the earliest branching lineages among the eukaryotes. These protozoan parasites present a single nucleolus that is preserved throughout the closed nuclear division, and that seems to lack fibrillar centers. Trypanosomatids possess a relatively low number of rRNA genes, which encode rRNA molecules that contain large expansion segments, including several that are trypanosomatid-specific. Notably, the large subunit rRNA (28S-type) is fragmented into two large and four small rRNA species. Hence, compared to other organisms, the rRNA primary transcript requires additional processing steps in trypanosomatids. Accordingly, this group of parasites contains the highest number ever reported of snoRNAs that participate in rRNA processing. The number of modified rRNA nucleotides in trypanosomatids is also higher than in other organisms. Regarding the structure and biogenesis of the ribosomes, recent cryo-electron microscopy analyses have revealed several trypanosomatid-specific features that are discussed here. Additional functions of the nucleolus in trypanosomatids are also reviewed.
Collapse
Affiliation(s)
- Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| | - Luis E Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| | - Tomás Nepomuceno-Mejía
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| |
Collapse
|
3
|
Akhoundi M, Downing T, Votýpka J, Kuhls K, Lukeš J, Cannet A, Ravel C, Marty P, Delaunay P, Kasbari M, Granouillac B, Gradoni L, Sereno D. Leishmania infections: Molecular targets and diagnosis. Mol Aspects Med 2017; 57:1-29. [PMID: 28159546 DOI: 10.1016/j.mam.2016.11.012] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022]
Abstract
Progress in the diagnosis of leishmaniases depends on the development of effective methods and the discovery of suitable biomarkers. We propose firstly an update classification of Leishmania species and their synonymies. We demonstrate a global map highlighting the geography of known endemic Leishmania species pathogenic to humans. We summarize a complete list of techniques currently in use and discuss their advantages and limitations. The available data highlights the benefits of molecular markers in terms of their sensitivity and specificity to quantify variation from the subgeneric level to species complexes, (sub) species within complexes, and individual populations and infection foci. Each DNA-based detection method is supplied with a comprehensive description of markers and primers and proposal for a classification based on the role of each target and primer in the detection, identification and quantification of leishmaniasis infection. We outline a genome-wide map of genes informative for diagnosis that have been used for Leishmania genotyping. Furthermore, we propose a classification method based on the suitability of well-studied molecular markers for typing the 21 known Leishmania species pathogenic to humans. This can be applied to newly discovered species and to hybrid strains originating from inter-species crosses. Developing more effective and sensitive diagnostic methods and biomarkers is vital for enhancing Leishmania infection control programs.
Collapse
Affiliation(s)
- Mohammad Akhoundi
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France.
| | - Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Jan Votýpka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic; Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Katrin Kuhls
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic; Canadian Institute for Advanced Research, Toronto, Canada
| | - Arnaud Cannet
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Christophe Ravel
- French National Reference Centre on Leishmaniasis, Montpellier University, Montpellier, France
| | - Pierre Marty
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Pascal Delaunay
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France
| | - Mohamed Kasbari
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, ANSES, Laboratoire de Santé Animale, Maisons-Alfort, Cedex, France
| | - Bruno Granouillac
- IRD/UMI 233, INSERM U1175, Montpellier University, Montpellier, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France
| | - Luigi Gradoni
- Unit of Vector-borne Diseases and International Health, Istituto Superiore di Sanità, Rome, Italy
| | - Denis Sereno
- MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France; Intertryp UMR IRD177, Centre IRD de Montpellier, Montpellier, France
| |
Collapse
|
4
|
Optimized CRISPR-Cas9 Genome Editing for Leishmania and Its Use To Target a Multigene Family, Induce Chromosomal Translocation, and Study DNA Break Repair Mechanisms. mSphere 2017; 2:mSphere00340-16. [PMID: 28124028 PMCID: PMC5244264 DOI: 10.1128/msphere.00340-16] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022] Open
Abstract
Leishmania parasites cause human leishmaniasis. To accelerate characterization of Leishmania genes for new drug and vaccine development, we optimized and simplified the CRISPR-Cas9 genome-editing tool for Leishmania. We show that co-CRISPR targeting of the miltefosine transporter gene and serial transfections of an oligonucleotide donor significantly eased isolation of edited mutants. This cotargeting strategy was efficiently used to delete all 11 members of the A2 virulence gene family. This technical advancement is valuable, since there are many gene clusters and supernumerary chromosomes in the various Leishmania species and isolates. We simplified this CRISPR system by developing a gRNA and Cas9 coexpression vector which could be used to delete genes in various Leishmania species. This CRISPR system could also be used to generate specific chromosomal translocations, which will help in the study of Leishmania gene expression and transcription control. This study also provides new information about double-strand DNA break repair mechanisms in Leishmania. CRISPR-Cas9-mediated genome editing has recently been adapted for Leishmania spp. parasites, the causative agents of human leishmaniasis. We have optimized this genome-editing tool by selecting for cells with CRISPR-Cas9 activity through cotargeting the miltefosine transporter gene; mutation of this gene leads to miltefosine resistance. This cotargeting strategy integrated into a triple guide RNA (gRNA) expression vector was used to delete all 11 copies of the A2 multigene family; this was not previously possible with the traditional gene-targeting method. We found that the Leishmania donovani rRNA promoter is more efficient than the U6 promoter in driving gRNA expression, and sequential transfections of the oligonucleotide donor significantly eased the isolation of edited mutants. A gRNA and Cas9 coexpression vector was developed that was functional in all tested Leishmania species, including L. donovani, L. major, and L. mexicana. By simultaneously targeting sites from two different chromosomes, all four types of targeted chromosomal translocations were generated, regardless of the polycistronic transcription direction from the parent chromosomes. It was possible to use this CRISPR system to create a single conserved amino acid substitution (A189G) mutation for both alleles of RAD51, a DNA recombinase involved in homology-directed repair. We found that RAD51 is essential for L. donovani survival based on direct observation of the death of mutants with both RAD51 alleles disrupted, further confirming that this CRISPR system can reveal gene essentiality. Evidence is also provided that microhomology-mediated end joining (MMEJ) plays a major role in double-strand DNA break repair in L. donovani. IMPORTANCELeishmania parasites cause human leishmaniasis. To accelerate characterization of Leishmania genes for new drug and vaccine development, we optimized and simplified the CRISPR-Cas9 genome-editing tool for Leishmania. We show that co-CRISPR targeting of the miltefosine transporter gene and serial transfections of an oligonucleotide donor significantly eased isolation of edited mutants. This cotargeting strategy was efficiently used to delete all 11 members of the A2 virulence gene family. This technical advancement is valuable, since there are many gene clusters and supernumerary chromosomes in the various Leishmania species and isolates. We simplified this CRISPR system by developing a gRNA and Cas9 coexpression vector which could be used to delete genes in various Leishmania species. This CRISPR system could also be used to generate specific chromosomal translocations, which will help in the study of Leishmania gene expression and transcription control. This study also provides new information about double-strand DNA break repair mechanisms in Leishmania.
Collapse
|
5
|
Soysa R, Tran KD, Ullman B, Yates PA. Integrating ribosomal promoter vectors that offer a choice of constitutive expression profiles in Leishmania donovani. Mol Biochem Parasitol 2016; 204:89-92. [PMID: 26844641 DOI: 10.1016/j.molbiopara.2016.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 01/05/2016] [Accepted: 01/28/2016] [Indexed: 12/17/2022]
Abstract
We have designed a novel series of integrating ribosomal RNA promoter vectors with five incrementally different constitutive expression profiles, covering a 250-fold range. Differential expression was achieved by placing different combinations of synthetic or leishmanial DNA sequences upstream and downstream of the transgene coding sequence in order to modulate pre-mRNA processing efficiency and mRNA stability, respectively. All of the vectors have extensive multiple cloning sites, and versions are available for producing N- or C- terminal GFP fusions at each of the possible relative expression levels. In addition, the modular configuration of the vectors allows drug resistance cassettes and other components to be readily exchanged. In toto, these vectors should be useful additions to the toolkit available for molecular and genetic studies of Leishmania donovani.
Collapse
Affiliation(s)
- Radika Soysa
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Khoa D Tran
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Buddy Ullman
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Phillip A Yates
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
6
|
Conserved Curvature of RNA Polymerase I Core Promoter Beyond rRNA Genes: The Case of the Tritryps. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 13:355-63. [PMID: 26718450 PMCID: PMC4747651 DOI: 10.1016/j.gpb.2015.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/17/2015] [Accepted: 09/24/2015] [Indexed: 11/23/2022]
Abstract
In trypanosomatids, the RNA polymerase I (RNAPI)-dependent promoters controlling the ribosomal RNA (rRNA) genes have been well identified. Although the RNAPI transcription machinery recognizes the DNA conformation instead of the DNA sequence of promoters, no conformational study has been reported for these promoters. Here we present the in silico analysis of the intrinsic DNA curvature of the rRNA gene core promoters in Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. We found that, in spite of the absence of sequence conservation, these promoters hold conformational properties similar to other eukaryotic rRNA promoters. Our results also indicated that the intrinsic DNA curvature pattern is conserved within the Leishmania genus and also among strains of T. cruzi and T. brucei. Furthermore, we analyzed the impact of point mutations on the intrinsic curvature and their impact on the promoter activity. Furthermore, we found that the core promoters of protein-coding genes transcribed by RNAPI in T. brucei show the same conserved conformational characteristics. Overall, our results indicate that DNA intrinsic curvature of the rRNA gene core promoters is conserved in these ancient eukaryotes and such conserved curvature might be a requirement of RNAPI machinery for transcription of not only rRNA genes but also protein-coding genes.
Collapse
|
7
|
Abstract
The prokaryotic CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9, an RNA-guided endonuclease, has been shown to mediate efficient genome editing in a wide variety of organisms. In the present study, the CRISPR-Cas9 system has been adapted to Leishmania donovani, a protozoan parasite that causes fatal human visceral leishmaniasis. We introduced the Cas9 nuclease into L. donovani and generated guide RNA (gRNA) expression vectors by using the L. donovani rRNA promoter and the hepatitis delta virus (HDV) ribozyme. It is demonstrated within that L. donovani mainly used homology-directed repair (HDR) and microhomology-mediated end joining (MMEJ) to repair the Cas9 nuclease-created double-strand DNA break (DSB). The nonhomologous end-joining (NHEJ) pathway appears to be absent in L. donovani. With this CRISPR-Cas9 system, it was possible to generate knockouts without selection by insertion of an oligonucleotide donor with stop codons and 25-nucleotide homology arms into the Cas9 cleavage site. Likewise, we disrupted and precisely tagged endogenous genes by inserting a bleomycin drug selection marker and GFP gene into the Cas9 cleavage site. With the use of Hammerhead and HDV ribozymes, a double-gRNA expression vector that further improved gene-targeting efficiency was developed, and it was used to make precise deletion of the 3-kb miltefosine transporter gene (LdMT). In addition, this study identified a novel single point mutation caused by CRISPR-Cas9 in LdMT (M381T) that led to miltefosine resistance, a concern for the only available oral antileishmanial drug. Together, these results demonstrate that the CRISPR-Cas9 system represents an effective genome engineering tool for L. donovani. Leishmania donovani is the causative agent of fatal visceral leishmaniasis. To understand Leishmania infection and pathogenesis and identify new drug targets for control of leishmaniasis, more-efficient ways to manipulate this parasite genome are required. In this study, we have implemented CRISPR-Cas9 genome-editing technology in L. donovani. Both single- and dual-gRNA expression vectors were developed using a strong RNA polymerase I promoter and ribozymes. With this system, it was possible to generate loss-of-function insertion and deletion mutations and introduce drug selection markers and the GFP sequence precisely into the L. donovani genome. These methods greatly improved the ability to manipulate this parasite genome and will help pave the way for high-throughput functional analysis of Leishmania genes. This study further revealed that double-stranded DNA breaks created by CRISPR-Cas9 were repaired by the homology-directed repair (HDR) pathway and microhomology-mediated end joining (MMEJ) in Leishmania.
Collapse
|
8
|
Hernández R, Cevallos AM. Ribosomal RNA gene transcription in trypanosomes. Parasitol Res 2014; 113:2415-24. [PMID: 24828347 DOI: 10.1007/s00436-014-3940-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/01/2014] [Indexed: 11/30/2022]
Abstract
Leishmania major, Trypanosoma cruzi and Trypanosoma brucei are pathogenic species from the order Kinetoplastida. The molecular and cellular studies of parasites, such as of the biosynthesis of essential macromolecules, are important in designing successful strategies for control. A major stage in ribosome biogenesis is the transcription of genes encoding ribosomal (r)RNA. These genes are transcribed in trypanosome cells by RNA polymerase I, similar to what occurs in all eukaryotes analysed to date. In addition, and most remarkably, the African species, T. brucei, transcribe their major cell surface protein genes using this class of polymerase. Since its discovery, the research interest in this phenomenon has been overwhelming; therefore, analysis of the canonical, yet essential, transcription of rRNA has been comparatively neglected. In this work, a review of rRNA gene transcription and data on gene promoter structures, transcription machineries and epigenetic conditions is presented for trypanosomatids. Because species-specific molecules represent potential targets for chemotherapy, their existence within trypanosomes is highlighted.
Collapse
Affiliation(s)
- Roberto Hernández
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Ciudad Universitaria, 04510, México, D.F., Mexico,
| | | |
Collapse
|
9
|
Regulation of gene expression in protozoa parasites. J Biomed Biotechnol 2010; 2010:726045. [PMID: 20204171 PMCID: PMC2830571 DOI: 10.1155/2010/726045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/10/2009] [Accepted: 01/08/2010] [Indexed: 12/25/2022] Open
Abstract
Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.
Collapse
|
10
|
Gene expression in trypanosomatid parasites. J Biomed Biotechnol 2010; 2010:525241. [PMID: 20169133 PMCID: PMC2821653 DOI: 10.1155/2010/525241] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/04/2009] [Indexed: 12/21/2022] Open
Abstract
The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.
Collapse
|
11
|
Torres-Machorro AL, Hernández R, Cevallos AM, López-Villaseñor I. Ribosomal RNA genes in eukaryotic microorganisms: witnesses of phylogeny? FEMS Microbiol Rev 2010; 34:59-86. [DOI: 10.1111/j.1574-6976.2009.00196.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
12
|
Abreu-Blanco MT, Ramírez JL, Pinto-Santini DM, Papadopoulou B, Guevara P. Analysis of ribosomal RNA transcription termination and 3' end processing in Leishmania amazonensis. Gene 2009; 451:15-22. [PMID: 19914359 DOI: 10.1016/j.gene.2009.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 10/11/2009] [Accepted: 11/03/2009] [Indexed: 11/16/2022]
Abstract
The control of gene expression in the human parasite Leishmania occurs mainly at the post-transcriptional level. Nevertheless, basic cell processes such as ribosome biogenesis seem to be conserved. Mature ribosomal RNAs (rRNAs) are synthesized from typical RNA polymerase I (Pol I) promoters and processed by pathways analogous to other eukaryotes. To further understand Pol I transcription control in these parasites, we have analyzed transcription termination and processing of the rDNA in Leishmania amazonensis. 3'-end S1 mapping of rRNA precursors identified three termini, one corresponding to the mature 28S rRNA and two to the rDNA intergenic spacer (IGS), termed T1 and T2, for precursors which are 185 and 576 nucleotides longer, respectively. Both T1 and T2 are associated with conserved G + C rich elements that have the potential to form hairpin structures and T-rich clusters. We found that two fragments of 423 bp and 233 bp, flanking sites T1 and T2 respectively when placed upstream of the green fluorescent protein gene (GFP), negatively affected the Pol I-driven transcription of this gene, which suggests the presence of a transcription terminator element in these regions. Deletion analysis pointed to a CCCTTTT heptamer as part of the putative terminator and suggested that the hairpins are processing signals.
Collapse
Affiliation(s)
- María Teresa Abreu-Blanco
- Laboratorio de Genética Molecular. Instituto de Biología Experimental. Universidad Central de Venezuela. Apartado Postal 48162. Caracas 1041A. Venezuela
| | | | | | | | | |
Collapse
|
13
|
Breton M, Zhao C, Ouellette M, Tremblay MJ, Papadopoulou B. A recombinant non-pathogenic Leishmania vaccine expressing human immunodeficiency virus 1 (HIV-1) Gag elicits cell-mediated immunity in mice and decreases HIV-1 replication in human tonsillar tissue following exposure to HIV-1 infection. J Gen Virol 2007; 88:217-225. [PMID: 17170454 DOI: 10.1099/vir.0.81995-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Live-vector human immunodeficiency virus (HIV) vaccines are an integral part of a number of HIV vaccine regimens currently under evaluation that have yielded promising results in pre-clinical testing. In this report, a non-pathogenic protozoan parasitic vector, Leishmania tarentolae, which shares common target cells with HIV-1, was used to express full-length HIV-1 Gag protein. Immunization of BALB/c mice with recombinant L. tarentolae led to the expansion of HIV-1 Gag-specific T cells and stimulated CD8+ T cells to produce gamma interferon in response to specific viral Gag epitopes. A booster immunization with recombinant L. tarentolae elicited effector memory HIV-1 Gag-specific CD4+ T lymphocytes and increased antibody titres against HIV-1 Gag. Most importantly, immunization of human tonsillar tissue cultured ex vivo with Gag-expressing L. tarentolae vaccine vector elicited a 75 % decrease in virus replication following exposure of the immunized tonsils to HIV-1 infection. These results demonstrated that recombinant L. tarentolae is capable of eliciting effective immune responses in mice and human systems, respectively, and suggest that this novel non-pathogenic recombinant vaccine vector shows excellent promise as a vaccination strategy against HIV-1.
Collapse
Affiliation(s)
- Marie Breton
- Research Centre in Infectious Diseases, CHUL Research Centre of Laval University and Department of Medical Biology, Faculty of Medicine, Laval University, QC G1V 4G2, Canada
| | - Chenqi Zhao
- Research Centre in Infectious Diseases, CHUL Research Centre of Laval University and Department of Medical Biology, Faculty of Medicine, Laval University, QC G1V 4G2, Canada
| | - Marc Ouellette
- Research Centre in Infectious Diseases, CHUL Research Centre of Laval University and Department of Medical Biology, Faculty of Medicine, Laval University, QC G1V 4G2, Canada
| | - Michel J Tremblay
- Research Centre in Infectious Diseases, CHUL Research Centre of Laval University and Department of Medical Biology, Faculty of Medicine, Laval University, QC G1V 4G2, Canada
| | - Barbara Papadopoulou
- Research Centre in Infectious Diseases, CHUL Research Centre of Laval University and Department of Medical Biology, Faculty of Medicine, Laval University, QC G1V 4G2, Canada
| |
Collapse
|
14
|
Figueroa-Angulo E, María Cevallos A, Zentella A, López-Villaseñor I, Hernández R. Potential regulatory elements in the Trypanosoma cruzi rRNA gene promoter. ACTA ACUST UNITED AC 2006; 1759:497-501. [PMID: 17050002 DOI: 10.1016/j.bbaexp.2006.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/13/2006] [Accepted: 09/14/2006] [Indexed: 11/30/2022]
Abstract
The Trypanosoma cruzi rRNA gene promoter was characterized by deletion and point mutation analyses. A core of 89 bp was identified as the minimal region with full promoter activity. This core region is flanked upstream by a control element that stimulates its activity, and downstream by a novel down regulating region of about 200 bp. A point mutation analysis of the transcription start region evidenced 7 contiguous nucleotides where individual substitutions produced in all cases a defective promoter. It is generally accepted that the anciently speciated trypanosomatids lack strict promoters for protein coding genes transcribed by RNA polymerase II. The occurrence of a well structured rRNA gene promoter in these species suggests an early appearance of the RNA polymerase I promoters in the evolution of eukaryotic cells.
Collapse
Affiliation(s)
- Elisa Figueroa-Angulo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70-228, 04510 México DF, Mexico
| | | | | | | | | |
Collapse
|
15
|
Coppel RL, Black CG. Parasite genomes. Int J Parasitol 2005; 35:465-79. [PMID: 15826640 DOI: 10.1016/j.ijpara.2005.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 02/24/2005] [Accepted: 02/24/2005] [Indexed: 01/01/2023]
Abstract
The availability of genome sequences and the associated transcriptome and proteome mapping projects has revolutionised research in the field of parasitology. As more parasite species are sequenced, comparative and phylogenetic comparisons are improving the quality of gene prediction and annotation. Genome sequences of parasites are also providing important data sets for understanding parasite biology and identifying new vaccine candidates and drug targets. We review some of the preliminary conclusions from examination of parasite genome sequences and discuss some of the bioinformatics approaches taken in this analysis.
Collapse
Affiliation(s)
- Ross L Coppel
- Department of Microbiology and the Victorian Bioinformatics Consortium, Monash University, Melbourne, Vic. 3800, Australia.
| | | |
Collapse
|
16
|
Martínez-Calvillo S, Nguyen D, Stuart K, Myler PJ. Transcription initiation and termination on Leishmania major chromosome 3. EUKARYOTIC CELL 2004; 3:506-17. [PMID: 15075279 PMCID: PMC387636 DOI: 10.1128/ec.3.2.506-517.2004] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genome projects involving Leishmania and other trypanosomatids have revealed that most genes in these organisms are organized into large clusters of genes on the same DNA strand. We have previously shown that transcription of the entire Leishmania major Friedlin (LmjF) chromosome 1 (chr1) initiates bidirectionally between two divergent gene clusters. Here, we analyze transcription of LmjF chr3, which contains two convergent clusters of 67 and 30 genes, separated by a tRNA gene, with a single divergent protein-coding gene located close to the "left" telomere. Nuclear run-on analyses indicate that specific transcription of chr3 initiates bidirectionally between the single subtelomeric gene and the adjacent 67-gene cluster, close to the "right" telomere upstream of the 30-gene cluster, and upstream of the tRNA gene. Transcription on both strands terminates within the tRNA-gene region. Transient-transfection studies support the role of the tRNA-gene region as a transcription terminator for RNA polymerase II (Pol II) and Pol III, and also for Pol I.
Collapse
MESH Headings
- Amanitins/pharmacology
- Animals
- Artificial Gene Fusion
- Base Sequence
- Chromosomes/physiology
- Chromosomes/radiation effects
- DNA, Intergenic/genetics
- DNA, Intergenic/physiology
- DNA, Single-Stranded/analysis
- DNA-Directed RNA Polymerases/antagonists & inhibitors
- DNA-Directed RNA Polymerases/physiology
- Dicarboxylic Acids/pharmacology
- Genes, Protozoan/genetics
- Leishmania/genetics
- Leishmania/radiation effects
- Luciferases/analysis
- Luciferases/genetics
- Molecular Sequence Data
- Multigene Family/genetics
- Nucleic Acid Hybridization/methods
- Organophosphorus Compounds/pharmacology
- RNA, Messenger/analysis
- RNA, Transfer, Lys/genetics
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
- Transcription, Genetic/radiation effects
- Ultraviolet Rays
Collapse
|
17
|
López-Villaseñor I, Contreras AP, López-Griego L, Alvarez-Sánchez E, Hernández R. Trichomonas vaginalis ribosomal DNA: analysis of the intergenic region and mapping of the transcription start point. Mol Biochem Parasitol 2004; 137:175-9. [PMID: 15279964 DOI: 10.1016/j.molbiopara.2004.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 03/26/2004] [Accepted: 04/08/2004] [Indexed: 10/26/2022]
Affiliation(s)
- Imelda López-Villaseñor
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70-228, 04510 Mexico DF, Mexico.
| | | | | | | | | |
Collapse
|
18
|
Monnerat S, Martinez-Calvillo S, Worthey E, Myler PJ, Stuart KD, Fasel N. Genomic organization and gene expression in a chromosomal region of Leishmania major. Mol Biochem Parasitol 2004; 134:233-43. [PMID: 15003843 DOI: 10.1016/j.molbiopara.2003.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Revised: 11/27/2003] [Accepted: 12/11/2003] [Indexed: 11/29/2022]
Abstract
Little is known about the relation between the genome organization and gene expression in Leishmania. Bioinformatic analysis can be used to predict genes and find homologies with known proteins. A model was proposed, in which genes are organized into large clusters and transcribed from only one strand, in the form of large polycistronic primary transcripts. To verify the validity of this model, we studied gene expression at the transcriptional, post-transcriptional and translational levels in a unique locus of 34kb located on chr27 and represented by cosmid L979. Sequence analysis revealed 115 ORFs on either DNA strand. Using computer programs developed for Leishmania genes, only nine of these ORFs, localized on the same strand, were predicted to code for proteins, some of which show homologies with known proteins. Additionally, one pseudogene, was identified. We verified the biological relevance of these predictions. mRNAs from nine predicted genes and proteins from seven were detected. Nuclear run-on analyses confirmed that the top strand is transcribed by RNA polymerase II and suggested that there is no polymerase entry site. Low levels of transcription were detected in regions of the bottom strand and stable transcripts were identified for four ORFs on this strand not predicted to be protein-coding. In conclusion, the transcriptional organization of the Leishmania genome is complex, raising the possibility that computer predictions may not be comprehensive.
Collapse
Affiliation(s)
- Séverine Monnerat
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | | | | | | | | | | |
Collapse
|
19
|
Sreenivas G, Raju BVS, Singh R, Selvapandiyan A, Duncan R, Sarkar D, Nakhasi HL, Salotra P. DNA polymorphism assay distinguishes isolates of Leishmania donovani that cause kala-azar from those that cause post-kala-azar dermal Leishmaniasis in humans. J Clin Microbiol 2004; 42:1739-41. [PMID: 15071036 PMCID: PMC387559 DOI: 10.1128/jcm.42.4.1739-1741.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leishmania donovani in India causes visceral infection (kala-azar) and dermal infection (post-kala-azar dermal leishmaniasis). We report here the identification of polymorphism in a well-defined genetic locus among the Leishmania parasites causing the visceral and dermal manifestations, in a comparison of 15 post-kala-azar dermal leishmaniasis and 12 kala-azar patient isolates.
Collapse
|
20
|
Boucher N, McNicoll F, Laverdière M, Rochette A, Chou MN, Papadopoulou B. The ribosomal RNA gene promoter and adjacent cis-acting DNA sequences govern plasmid DNA partitioning and stable inheritance in the parasitic protozoan Leishmania. Nucleic Acids Res 2004; 32:2925-36. [PMID: 15161957 PMCID: PMC419617 DOI: 10.1093/nar/gkh617] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Detailed analysis of the Leishmania donovani ribosomal RNA (rRNA) gene promoter region has allowed the identification of cis-acting sequences involved in plasmid DNA partitioning and stable plasmid inheritance. We report that plasmids bearing the 350 bp rRNA promoter along with the 200 bp region immediately 3' to the promoter exhibited a 6.5-fold increase in transformation frequency and were transmitted to daughter cells as single-copy molecules. This is in contrast to what has been observed for plasmid molecules in this organism so far. Moreover, we show that these low-copy-number plasmids displayed a remarkable mitotic stability in the absence of selective pressure. The region in the vicinity of the RNA pol I transcription initiation site, and also in the adjacent 200 nt, displays a complex structural organization and shares sequence similarity to the yeast autonomously replicating consensus sequence and centromere DNA elements. Deletion analyses indicated that these elements were necessary but not sufficient for plasmid DNA partitioning and stable inheritance, and that the rRNA promoter region was required for optimal function. These results suggest an interplay between RNA pol I transcription, DNA replication, DNA partitioning and mitotic stability in trypanosomatids. This is the first example of defined DNA elements for plasmid partitioning and stable inheritance in the protozoan parasite Leishmania.
Collapse
Affiliation(s)
- Nathalie Boucher
- Infectious Disease Research Center, CHUL Research Center, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Schimanski B, Laufer G, Gontcharova L, Günzl A. The Trypanosoma brucei spliced leader RNA and rRNA gene promoters have interchangeable TbSNAP50-binding elements. Nucleic Acids Res 2004; 32:700-9. [PMID: 14757834 PMCID: PMC373353 DOI: 10.1093/nar/gkh231] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the protist parasite Trypanosoma brucei, the small nuclear spliced leader (SL) RNA and the large rRNAs are key molecules for mRNA maturation and protein synthesis, respectively. The SL RNA gene (SLRNA) promoter recruits RNA polymerase II and consists of a bipartite upstream sequence element (USE) and an element close to the transcription initiation site. Here, we analyzed the distal part of the ribosomal (RRNA) promoter and identified two sequence blocks which, in reverse orientation, closely resemble the SLRNA USE by both sequence and spacing. A detailed mutational analysis revealed that the ribosomal (r)USE is essential for efficient RRNA transcription in vivo and that it functions in an orientation-dependent manner. Moreover, we showed that USE and rUSE are functionally interchangeable and that rUSE stably interacted with an essential factor of SLRNA transcription. Finally, we demonstrated that the T.brucei homolog of the recently characterized transcription factor p57 of the related organism Leptomonas seymouri specifically bound to USE and rUSE. Since p57 and its T.brucei counterpart are homologous to SNAP50, a component of the human small nuclear RNA gene activation protein complex (SNAPc), both SLRNA and RRNA transcription in T.brucei may depend on a SNAPc-like transcription factor.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line
- DNA/genetics
- DNA/metabolism
- DNA-Binding Proteins/chemistry
- Enhancer Elements, Genetic/genetics
- Gene Expression Regulation/genetics
- Molecular Sequence Data
- Mutagenesis, Site-Directed/genetics
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA Polymerase II/metabolism
- RNA, Protozoan/biosynthesis
- RNA, Protozoan/genetics
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal/genetics
- RNA, Spliced Leader/biosynthesis
- RNA, Spliced Leader/genetics
- Response Elements/genetics
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Transcription, Genetic/genetics
- Transcriptional Activation
- Trypanosoma brucei brucei/genetics
Collapse
Affiliation(s)
- Bernd Schimanski
- Center for Microbial Pathogenesis, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3710, USA
| | | | | | | |
Collapse
|
22
|
Orlando TC, Rubio MAT, Sturm NR, Campbell DA, Floeter-Winter LM. Intergenic and external transcribed spacers of ribosomal RNA genes in lizard-infecting Leishmania: molecular structure and phylogenetic relationship to mammal-infecting Leishmania in the subgenus Leishmania (Leishmania). Mem Inst Oswaldo Cruz 2002; 97:695-701. [PMID: 12219138 DOI: 10.1590/s0074-02762002000500020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To establish the relationships of the lizard- and mammal-infecting Leishmania, we characterized the intergenic spacer region of ribosomal RNA genes from L. tarentolae and L. hoogstraali. The organization of these regions is similar to those of other eukaryotes. The intergenic spacer region was approximately 4 kb in L. tarentolae and 5.5 kb in L. hoogstraali. The size difference was due to a greater number of 63-bp repetitive elements in the latter species. This region also contained another element, repeated twice, that had an inverted octanucleotide with the potential to form a stem-loop structure that could be involved in transcription termination or processing events. The ribosomal RNA gene localization showed a distinct pattern with one chromosomal band (2.2 Mb) for L. tarentolae and two (1.5 and 1.3 Mb) for L. hoogstraali. The study also showed sequence differences in the external transcribed region that could be used to distinguish lizard Leishmania from the mammalian Leishmania. The intergenic spacer region structure features found among Leishmania species indicated that lizard and mammalian Leishmania are closely related and support the inclusion of lizard-infecting species into the subgenus Sauroleishmania proposed by Saf'janova in 1982.
Collapse
Affiliation(s)
- Tereza C Orlando
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brasil
| | | | | | | | | |
Collapse
|
23
|
de Andrade Stempliuk V, Floeter-Winter LM. Functional domains of the rDNA promoter display a differential recognition in Leishmania. Int J Parasitol 2002; 32:437-47. [PMID: 11849640 DOI: 10.1016/s0020-7519(01)00371-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A construct containing the RNA polymerase I promoter of Leishmania (L.) amazonensis, driving the expression of cloramphenicol acetyl transferase reporter gene, was better recognised by heterologous hosts species Leishmania (L.) major and Leishmania (L.) mexicana than by the homologous host L. (L.) amazonensis. The rDNA promoter domains responsible for recognition were functionally mapped. The core domain (-74 to +170) conferred a barely equal recognition on homologous or heterologous cells, slightly favouring to the later. Addition of the upstream domain (-196 to -74) repressed the expression in all cells tested. The third domain, consisting of repeated elements (upstream to -196 in L. (L.) amazonensis), enhanced by about 20 times the core activity of homologous species and by about 40 times the heterologous ones. Gel mobility shift patterns generated by the binding of core sequence of L. (L.) amazonensis to nuclear extracts of the Leishmania species suggested that the rDNA transcriptional machinery is a complex DNA-protein association particular for each species. A model is proposed to explain the mechanism and possible interactions of transcription machinery in the regulation of rDNA expression in phylogenically related organisms.
Collapse
Affiliation(s)
- Valeska de Andrade Stempliuk
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, 05508-900, São Paulo, SP, Brazil
| | | |
Collapse
|
24
|
Yan S, Martinez-Calvillo S, Schnaufer A, Sunkin S, Myler PJ, Stuart K. A low-background inducible promoter system in Leishmania donovani. Mol Biochem Parasitol 2002; 119:217-23. [PMID: 11814573 DOI: 10.1016/s0166-6851(01)00418-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We report here a second-generation tetracycline-responsive repressor-operator system in Leishmania donovani. In this system, expression of a reporter luciferase gene (LUC) is driven by the inducible Leishmania ribosomal RNA promoter on the DNA strand opposite to a hygromycin resistance gene (HYG) whose expression is driven by the endogenous pol I promoter on chromosome 27 (rDNA locus) or the endogenous pol II promoter on chromosome 35 (LD1 locus). Transgenic cell lines showed regulation of LUC gene expression over three orders of magnitude. In the absence of tetracycline, luciferase expression levels were 2-3-fold higher than machine background when integrated into the LD1 locus, but was over 10-fold higher than machine background when integrated into the rDNA locus.
Collapse
Affiliation(s)
- Shaofeng Yan
- Seattle Biomedical Research Institute, 4 Nickerson Street, Seattle, WA 98109-1651, USA
| | | | | | | | | | | |
Collapse
|
25
|
Boucher N, McNicoll F, Dumas C, Papadopoulou B. RNA polymerase I-mediated transcription of a reporter gene integrated into different loci of Leishmania. Mol Biochem Parasitol 2002; 119:153-8. [PMID: 11755199 DOI: 10.1016/s0166-6851(01)00410-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Nathalie Boucher
- Faculté de Médecine, Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, Université Laval, Pavillon CHUL, 2705 boul. Laurier, Ste-Foy, G1V 4G2, Québec, Canada
| | | | | | | |
Collapse
|
26
|
Martínez-Calvillo S, Sunkin SM, Yan S, Fox M, Stuart K, Myler PJ. Genomic organization and functional characterization of the Leishmania major Friedlin ribosomal RNA gene locus. Mol Biochem Parasitol 2001; 116:147-57. [PMID: 11522348 DOI: 10.1016/s0166-6851(01)00310-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sequence and gene organization of the ribosomal RNA (rRNA) genes of Leishmania major Friedlin (LmjF) were determined. Interestingly, the rDNA repeat unit contained a duplicated 526 bp fragment at the 3' end of the unit with two copies of the LSUepsilon rRNA gene. Our results suggested the presence of only approximately 24 copies of the rRNA unit per diploid genome in LmjF. Repetitive elements (IGSRE) of 63 bp occurred in the intergenic spacer (IGS) between the LSUepsilon and the SSU rRNA genes. Among the different rDNA units, the region containing the IGSRE fluctuated in length from approximately 1.3 to approximately 18 kb. The transcription initiation site (TIS) of the rRNA unit was localized by primer extension to 1043 bp upstream of the SSU gene and 184 bp downstream of the IGSRE. Sequence comparison among several species of Leishmania showed a high degree of conservation around the TIS. Moreover, the IGSRE also showed considerable similarity between Leishmania species. In transient transfection assays, a fragment containing the TIS directed a 164- to 178-fold increase in luciferase activity over the no-insert control, indicating the presence of a promoter within this 391 bp fragment. The LmjF promoter region was also functional in other species of Leishmania. Nuclear run-on analyses demonstrated that only the rRNA-coding strand is transcribed, downstream of this RNA polymerase I (pol I) promoter. These experiments also suggested that transcription terminates upstream of the IGSRE.
Collapse
Affiliation(s)
- S Martínez-Calvillo
- Seattle Biomedical Research Institute, 4 Nickerson Street, Seattle, WA 98109-1651, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
The prokaryotic tetracycline-responsive repressor/operator system has proven to be useful for studying the function of essential genes and the expression of toxic gene products in a number of organisms, including Trypanosoma brucei. We report here the adaptation of this system for use in Leishmania. The inducible promoter construct contains a bleomycin resistance-luciferase fusion (BLE-LUC) gene driven by an rRNA promoter with two copies of the TetO sequence inserted two nucleotides upstream of the transcriptional start site. This construct showed regulation of BLE-LUC expression by two orders of magnitude when targeted into the rDNA locus in the reverse orientation relative to transcription of the rRNA genes in a Leishmania donovani cell line expressing TETR. The luciferase expression level in the absence of tetracycline was approximately 50-fold lower than that in the tubulin locus (where it is transcribed by pol II), while the expression level in the presence of tetracycline was approximately five-fold higher than that from the tubulin locus. There was no linear relationship between the level of TETR expression and the regulation, and changing of positions of operator did not increase regulation.
Collapse
Affiliation(s)
- S Yan
- Seattle Biomedical Research Institute, 4 Nickerson Street, Seattle, WA 98109-1651, USA
| | | | | |
Collapse
|
28
|
Schnare MN, Collings JC, Spencer DF, Gray MW. The 28S-18S rDNA intergenic spacer from Crithidia fasciculata: repeated sequences, length heterogeneity, putative processing sites and potential interactions between U3 small nucleolar RNA and the ribosomal RNA precursor. Nucleic Acids Res 2000; 28:3452-61. [PMID: 10982863 PMCID: PMC110749 DOI: 10.1093/nar/28.18.3452] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2000] [Revised: 07/17/2000] [Accepted: 07/28/2000] [Indexed: 11/12/2022] Open
Abstract
In Crithidia fasciculata, the ribosomal RNA (rRNA) gene repeats range in size from approximately 11 to 12 kb. This length heterogeneity is localized to a region of the intergenic spacer (IGS) that contains tandemly repeated copies of a 19mer sequence. The IGS also contains four copies of an approximately 55 nt repeat that has an internal inverted repeat and is also present in the IGS of Leishmania species. We have mapped the C.fasciculata transcription initiation site as well as two other reverse transcriptase stop sites that may be analogous to the A0 and A' pre-rRNA processing sites within the 5' external transcribed spacer (ETS) of other eukaryotes. Features that could influence processing at these sites include two stretches of conserved primary sequence and three secondary structure elements present in the 5' ETS. We also characterized the C.fasciculata U3 snoRNA, which has the potential for base-pairing with pre-rRNA sequences. Finally, we demonstrate that biosynthesis of large subunit rRNA in both C. fasciculata and Trypanosoma brucei involves 3'-terminal addition of three A residues that are not present in the corresponding DNA sequences.
Collapse
MESH Headings
- Animals
- Base Pairing
- Base Sequence
- Conserved Sequence
- Crithidia fasciculata/genetics
- Crithidia fasciculata/metabolism
- DNA, Protozoan/genetics
- DNA, Protozoan/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- Genetic Heterogeneity
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Repetitive Sequences, Nucleic Acid
- Restriction Mapping
- Sequence Alignment
- Sequence Analysis, DNA
- Trypanosoma brucei brucei/genetics
Collapse
Affiliation(s)
- M N Schnare
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | | | |
Collapse
|