1
|
Yokota N, Takemi S, Sakata I. Effect of cholecystokinin on small intestinal motility in suncus murinus. Gen Comp Endocrinol 2023; 342:114352. [PMID: 37517599 DOI: 10.1016/j.ygcen.2023.114352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/17/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
In a fasting gastrointestinal tract, a characteristic cyclical rhythmic migrating motor complex (MMC) occur that comprises of three phases: I, II, and III. Among these, phase III contractions propagate from the stomach to the lower intestine in mammals, including humans, dogs, and Suncus murinus (suncus). Apart from the phase III of MMC propagating from the stomach, during the gastric phase II, small intestine-originated strong contractions propagate to the lower small intestine; however, the mechanism of contractions originating in the small intestine has not been clarified. In this study, we aimed to elucidate the role of cholecystokinin (CCK) in small intestinal motility. Administration of sulfated CCK-8 in phase I induced phase II-like contractions in the small intestine, which lasted for approximately 10-20 min and then returned to the baseline, while no change was observed in the stomach. Contractions of small intestine induced by CCK-8 were abolished by lorglumide, a CCK1 receptor antagonist. Gastrin, a ligand for the CCK2 receptor, evoked strong contractions in the stomach, but did not induce contractions in the small intestine. To examine the effect of endogenous CCK on contractions of small intestinal origin, lorglumide was administered during phase II. However, there was no change in the duodenal motility pattern, and strong contractions of small intestinal origin were not abolished by treatment with lorglumide. These results suggest that exogenous CCK stimulates contractions of small intestine via CCK1 receptors, whereas endogenous CCK is not involved in the strong contractions of small intestinal origin.
Collapse
Affiliation(s)
- Naho Yokota
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan
| | - Shota Takemi
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan; Research Area of Evolutionary Molecular Design, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan.
| |
Collapse
|
2
|
Li Y, Cui ZJ. Photodynamic Activation of the Cholecystokinin 1 Receptor with Tagged Genetically Encoded Protein Photosensitizers: Optimizing the Tagging Patterns. Photochem Photobiol 2022; 98:1215-1228. [PMID: 35211987 DOI: 10.1111/php.13611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/20/2022] [Indexed: 02/05/2023]
Abstract
Cholecystokinin 1 receptor (CCK1R) is activated photodynamically. For this to happen in situ, genetically encoded protein photosensitizers (GEPP) may be tagged to natively expressed CCK1R, but how to best tag GEPP has not been examined. Therefore, GEPP (miniSOG or KillerRed) was tagged to CCK1R and light-driven photodynamic CCK1R activation was monitored by Fura-2 fluorescent calcium imaging, to screen for optimized tagging patterns. Blue light-emitting diode irradiation of CHO-K1 cells expressing miniSOG fused to N- or C-terminus of CCK1R was found to both trigger persistent calcium oscillations-a hallmark of permanent photodynamic CCK1R activation. Photodynamic CCK1R activation was accomplished also with miniSOG fused to N-terminus of CCK1R via linker (GlySerGly)4 or 8 , but not linker (GSG)12 or an internal ribosomal entry site insert. KillerRed fused to N- or C-terminus of CCK1R after white light irradiation resulted in similar activation of in-frame CCK1R. Photodynamic CCK1R activation in miniSOG-CCK1R-CHO-K1 cells was blocked by singlet oxygen (1 O2 ) quencher uric acid or Trolox C, corroborating the role of 1 O2 as the reactive intermediate. It is concluded that photodynamic CCK1R activation can be achieved either with direct GEPP fusion to CCK1R or fusion via a short linker, fusion via long linkers might serve as the internal control.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Cell Biology, Beijing Normal University, Beijing, China
| | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing, China
| |
Collapse
|
3
|
Li Y, Cui ZJ. Transmembrane Domain 3 Is a Transplantable Pharmacophore in the Photodynamic Activation of Cholecystokinin 1 Receptor. ACS Pharmacol Transl Sci 2022; 5:539-547. [PMID: 35983279 PMCID: PMC9379944 DOI: 10.1021/acsptsci.2c00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholecystokinin 1 receptor (CCK1R) is activated in photodynamic action by singlet oxygen, but detailed molecular mechanisms are not elucidated. To identify the pharmacophore(s) in photodynamic CCK1R activation, we examined photodynamic activation of point mutants CCK1RM121/3.32A, CCK1RM121/3.32Q, and a chimeric receptor with CCK1R transmembrane domain 3 (TM3) transplanted to muscarinic ACh receptor 3 (M3R) which is unaffected by photodynamic action. These engineered receptors were tagged at the N-terminus with genetically encoded protein photosensitizer miniSOG, and their light-driven photodynamic activation was compared to wild type CCK1R and M3R, as monitored by Fura-2 fluorescent calcium imaging. Photodynamic activations of miniSOG-CCK1RM121/3.32A and miniSOG-CCK1RM121/3.32Q were found to be 55% and 73%, respectively, when compared to miniSOG-CCK1R (100%), whereas miniSOG-M3R was not affected (0% activation). Notably, the chimeric receptor miniSOG-M3R-TM3CCK1R was effectively activated photodynamically (65%). These data suggest that TM3 is an important pharmacophore in photodynamic CCK1R activation, readily transplantable to nonsusceptible M3R for photodynamic activation.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China
| | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Verbeure W, van Goor H, Mori H, van Beek AP, Tack J, van Dijk PR. The Role of Gasotransmitters in Gut Peptide Actions. Front Pharmacol 2021; 12:720703. [PMID: 34354597 PMCID: PMC8329365 DOI: 10.3389/fphar.2021.720703] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 12/31/2022] Open
Abstract
Although gasotransmitters nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) receive a bad connotation; in low concentrations these play a major governing role in local and systemic blood flow, stomach acid release, smooth muscles relaxations, anti-inflammatory behavior, protective effect and more. Many of these physiological processes are upstream regulated by gut peptides, for instance gastrin, cholecystokinin, secretin, motilin, ghrelin, glucagon-like peptide 1 and 2. The relationship between gasotransmitters and gut hormones is poorly understood. In this review, we discuss the role of NO, CO and H2S on gut peptide release and functioning, and whether manipulation by gasotransmitter substrates or specific blockers leads to physiological alterations.
Collapse
Affiliation(s)
- Wout Verbeure
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Harry van Goor
- Departement of Endocrinology, University Medical Center Groningen, Groningen, Netherlands
| | - Hideki Mori
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - André P van Beek
- Departement of Endocrinology, University Medical Center Groningen, Groningen, Netherlands
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Peter R van Dijk
- Departement of Endocrinology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
5
|
|
6
|
Gong YY, Si XM, Lin L, Lu J. Mechanisms of cholecystokinin-induced calcium mobilization in gastric antral interstitial cells of Cajal. World J Gastroenterol 2012; 18:7184-7193. [PMID: 23326123 PMCID: PMC3544020 DOI: 10.3748/wjg.v18.i48.7184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 10/09/2012] [Accepted: 11/06/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of sulfated cholecystokinin-8 (CCK-8S) on calcium mobilization in cultured murine gastric antral interstitial cells of Cajal (ICC) and its possible mechanisms.
METHODS: ICC were isolated from the gastric antrum of mice and cultured. Immunofluorescence staining with a monoclonal antibody for c-Kit was used to identify ICC. The responsiveness of ICC to CCK-8S was measured using Fluo-3/AM based digital microfluorimetric measurement of intracellular Ca2+ concentration ([Ca2+]i). A confocal laser scanning microscope was used to monitor [Ca2+]i changes. The selective CCK1 receptor antagonist lorglumide, the intracellular Ca2+-ATPase inhibitor thapsigargin, the type III inositol 1,4,5-triphosphate (InsP3) receptor blocker xestospongin C and the L-type voltage-operated Ca2+ channel inhibitor nifedipine were used to examine the mechanisms of [Ca2+]i elevation caused by CCK-8S. Immunoprecipitation and Western blotting were used to determine the regulatory effect of PKC on phosphorylation of type III InsP3 receptor (InsP3R3) in ICC. Protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) and inhibitor chelerythrine were used to assess the role of PKC in the CCK-8S-evoked [Ca2+]i increment of ICC.
RESULTS: ICC were successfully isolated from the gastric antrum of mice and cultured. Cultured ICC were identified by immunofluorescence staining. When given 80 nmol/L or more than 80 nmol/L CCK-8S, the [Ca2+]i in ICC increased and 100 nmol/L CCK-8S significantly increased the mean [Ca2+]i by 59.30% ± 4.85% (P < 0.01). Pretreatment of ICC with 5 μmol/L lorglumide inhibited 100 nmol/L CCK-8S-induced [Ca2+]i increment from 59.30% ± 4.85% to 14.97% ± 9.05% (P < 0.01), suggesting a CCK1R-mediated event. Emptying of intracellular calcium stores by thapsigargin (5 μmol/L) prevented CCK-8S (100 nmol/L) from inducing a [Ca2+]i increase. Moreover, pretreatment with xestospongin C (1 μmol/L) could also abolish the CCK-8S-induced effect, indicating that Ca2+ release from InsP3R-operated stores appeared to be a major mechanism responsible for CCK-8S-induced calcium mobilization in ICC. On the other hand, by removing extracellular calcium or blocking the L-type voltage-operated calcium channel with nifedipine, a smaller but significant rise in the [Ca2+]i could be still elicited by CCK-8S. These data suggest that the [Ca2+]i release is not stimulated or activated by the influx of extracellular Ca2+ in ICC, but the influx of extracellular Ca2+ can facilitate the [Ca2+]i increase evoked by CCK-8S. CCK-8S increased the phosphorylation of InsP3R3, which could be prevented by chelerythrine. Pretreatment with lorglumide (5 μmol/L) could significantly reduce the CCK-8S intensified phosphorylation of InsP3R3. In the positive control group, treatment of cells with PMA also resulted in an enhanced phosphorylation of InsP3R3. Pretreatment with various concentrations of PMA (10 nmol/L-10 μmol/L) apparently inhibited the effect of CCK-8S and the effect of 100 nmol/L PMA was most obvious. Likewise, the effect of CCK-8S was augmented by the pretreatment with chelerythrine (10 nmol/L-10 μmol/L) and 100 nmol/L chelerythrine exhibited the maximum effect.
CONCLUSION: CCK-8S increases [Ca2+]i in ICC via the CCK1 receptor. This effect depends on the release of InsP3R-operated Ca2+ stores, which is negatively regulated by PKC-mediated phosphorylation of InsP3R3.
Collapse
|
7
|
Tjong Y, Ip S, Lao L, Fong HHS, Sung JJY, Berman B, Che C. Analgesic effect of Coptis chinensis rhizomes (Coptidis Rhizoma) extract on rat model of irritable bowel syndrome. JOURNAL OF ETHNOPHARMACOLOGY 2011; 135:754-61. [PMID: 21511022 PMCID: PMC3100428 DOI: 10.1016/j.jep.2011.04.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/23/2011] [Accepted: 04/05/2011] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coptis chinensis rhizomes (Coptidis Rhizoma, CR), also known as "Huang Lian", is a common component of traditional Chinese herbal formulae used for the relief of abdominal pain and diarrhea. Yet, the action mechanism of CR extract in the treatment of irritable bowel syndrome is unknown. Thus, the aim of our present study is to investigate the effect of CR extract on neonatal maternal separation (NMS)-induced visceral hyperalgesia in rats and its underlying action mechanisms. MATERIALS AND METHODS Male Sprague-Dawley rats were subjected to 3-h daily maternal separation from postnatal day 2 to day 21 to form the NMS group. The control group consists of unseparated normal (N) rats. From day 60, rats were administrated CR (0.3, 0.8 and 1.3 g/kg) or vehicle (Veh; 0.5% carboxymethylcellulose solution) orally for 7 days for the test and control groups, respectively. RESULTS Electromyogram (EMG) signals in response to colonic distension were measured with the NMS rats showing lower pain threshold and increased EMG activity than those of the unseparated (N) rats. CR dose-dependently increased pain threshold response and attenuated EMG activity in the NMS rats. An enzymatic immunoassay study showed that CR treatment significantly reduced the serotonin (5HT) concentration from the distal colon of NMS rats compared to the Veh (control) group. Real-time quantitative PCR and Western-blotting studies showed that CR treatment substantially reduced NMS induced cholecystokinin (CCK) expression compared with the Veh group. CONCLUSIONS These results suggest that CR extract robustly reduces visceral pain that may be mediated via the mechanism of decreasing 5HT release and CCK expression in the distal colon of rats.
Collapse
Affiliation(s)
- Yungwui Tjong
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| | | | | | | | | | | | | |
Collapse
|
8
|
Meng D, Cao Y, Fu J, Chen R, Lu L, Tu Y. Sonographic Assessment of Ceftriaxone-Associated Biliary Pseudolithiasis in Chinese Children. J Int Med Res 2010; 38:2004-10. [PMID: 21227004 DOI: 10.1177/147323001003800614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this randomized, single-blind, case-controlled, prospective study, the incidence and outcome of ceftriaxone-associated biliary pseudolithiasis in Chinese children was evaluated via ultrasonography. A total of 108 children diagnosed with hepatobiliary infection or pneumonia were randomized to receive ceftriaxone or ceftazidime. Serial gallbladder sonograms were obtained on days 1, 5 − 7 and 10 − 14 of therapy. Gallstones were detected in 43.10% of patients in the ceftriaxone-treated group and in 2.00% of the ceftazidime-treated group. The incidence of pseudolithiasis was significantly higher in the ceftriaxone-treated than the ceftazidime-treated group. Biliary precipitation abnormalities appeared after 2 − 7 days of treatment. After gallstones were found, the drug was stopped and symptoms resolved within 1 − 2 days. This study suggests that the risk of ceftriaxone-associated biliary pseudolithiasis should be considered when treating Chinese children.
Collapse
Affiliation(s)
| | - Y Cao
- Department of Emergency Medicine
| | - J Fu
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - R Chen
- Department of Haematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | | | - Y Tu
- Department of Emergency Medicine
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
9
|
Abstract
The aim of the present review is to synthesise and summarise our recent knowledge on the involvement of cholecystokinin (CCK) and gastrin peptides and their receptors in the control of digestive functions and more generally their role in the field of nutrition in mammals. First, we examined the release of these peptides from the gut, focusing on their molecular forms, the factors regulating their release and the signalling pathways mediating their effects. Second, general physiological effects of CCK and gastrin peptides are described with regard to their specific receptors and the role of CCK on vagal mucosal afferent nerve activities. Local effects of CCK and gastrin in the gut are also reported, including gut development, gastrointestinal motility and control of pancreatic functions through vagal afferent pathways, including NO. Third, some examples of the intervention of the CCK and gastrin peptides are exposed in diseases, taking into account intervention of the classical receptor subtypes (CCK1 and CCK2 receptors) and their heterodimerisation as well as CCK-C receptor subtype. Finally, applications and future challenges are suggested in the nutritional field (performances) and in therapy with regards to the molecular forms or in relation with the type of receptor as well as new techniques to be utilised in detection or in therapy of disease. In conclusion, the present review underlines recent developments in this field: CCK and gastrin peptides and their receptors are the key factor of nutritional aspects; a better understanding of the mechanisms involved may increase the efficiency of the nutritional functions and the treatment of abnormalities under pathological conditions.
Collapse
|
10
|
Portincasa P, Di Ciaula A, Wang HH, Palasciano G, van Erpecum KJ, Moschetta A, Wang DQH. Coordinate regulation of gallbladder motor function in the gut-liver axis. Hepatology 2008; 47:2112-26. [PMID: 18506897 DOI: 10.1002/hep.22204] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gallstones are one of the most common digestive diseases with an estimated prevalence of 10%-15% in adults living in the western world, where cholesterol-enriched gallstones represent 75%-80% of all gallstones. In cholesterol gallstone disease, the gallbladder becomes the target organ of a complex metabolic disease. Indeed, a fine coordinated hepatobiliary and gastrointestinal function, including gallbladder motility in the fasting and postprandial state, is of crucial importance to prevent crystallization and precipitation of excess cholesterol in gallbladder bile. Also, gallbladder itself plays a physiopathological role in biliary lipid absorption. Here, we present a comprehensive view on the regulation of gallbladder motor function by focusing on recent discoveries in animal and human studies, and we discuss the role of the gallbladder in the pathogenesis of gallstone formation.
Collapse
Affiliation(s)
- Piero Portincasa
- Department of Internal Medicine and Public Medicine, Clinica Medica A. Murri, University of Bari Medical School, Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
11
|
Fornai M, Colucci R, Antonioli L, Crema F, Buccianti P, Chiarugi M, Baschiera F, Ghisu N, Tuccori M, Blandizzi C, Del Tacca M. Cholecystokinin CCK2 receptors mediate the peptide's inhibitory actions on the contractile activity of human distal colon via the nitric oxide pathway. Br J Pharmacol 2007; 151:1246-53. [PMID: 17572695 PMCID: PMC2189827 DOI: 10.1038/sj.bjp.0707339] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Cholecystokinin is known to exert stimulant actions on intestinal motility via activation of type 1 cholecystokinin receptors (CCK(1)). However, the role played by cholecystokinin 2 (CCK(2)) receptors in the regulation of gut motility remains undetermined. This study was designed to examine the influence of CCK(2) receptors on the contractile activity of human distal colon. EXPERIMENTAL APPROACH The effects of compounds acting on CCK(2) receptors were assessed in vitro on motor activity of longitudinal smooth muscle, under basal conditions as well as in the presence of KCl-induced contractions or transmural electrical stimulation. KEY RESULTS Cholecystokinin octapeptide sulphate induced concentration-dependent contractions which were enhanced by GV150013 (CCK(2) receptor antagonist; +57% at 0.01 microM). These effects were unaffected by tetrodotoxin. The enhancing actions of GV150013 on contractions evoked by cholecystokinin octapeptide sulphate were unaffected by N(omega)-propyl-L-arginine (NPA, neuronal nitric oxide synthase inhibitor), while they were prevented by N(omega)-nitro-L-arginine methylester (L-NAME, non-selective nitric oxide synthase inhibitor). In the presence of KCl-induced contractions, cholecystokinin octapeptide sulphate elicited concentration-dependent relaxations (-36%), which were unaffected by NPA, but were counteracted by GV150013 or L-NAME. The application of electrical stimuli evoked phasic contractions which were enhanced by GV150013 (+41 % at 0.01 microM). CONCLUSIONS AND IMPLICATIONS CCK(2) receptors mediate inhibitory actions of cholecystokinin on motor activity of human distal colon. It is suggested that CCK(2) receptors exert their modulating actions through a nitric oxide pathway, independent of the activity of the neuronal nitric oxide synthase isoform.
Collapse
Affiliation(s)
- M Fornai
- Division of Pharmacology and Chemotherapy, Department of Internal Medicine, University of Pisa Pisa, Italy
| | - R Colucci
- Division of Pharmacology and Chemotherapy, Department of Internal Medicine, University of Pisa Pisa, Italy
| | - L Antonioli
- Division of Pharmacology and Chemotherapy, Department of Internal Medicine, University of Pisa Pisa, Italy
| | - F Crema
- Department of Internal Medicine and Therapeutics, University of Pavia Pavia, Italy
| | - P Buccianti
- Department of Surgery, University of Pisa Pisa, Italy
| | - M Chiarugi
- Department of Surgery, University of Pisa Pisa, Italy
| | - F Baschiera
- Division of Pharmacology and Chemotherapy, Department of Internal Medicine, University of Pisa Pisa, Italy
| | - N Ghisu
- Division of Pharmacology and Chemotherapy, Department of Internal Medicine, University of Pisa Pisa, Italy
| | - M Tuccori
- Division of Pharmacology and Chemotherapy, Department of Internal Medicine, University of Pisa Pisa, Italy
| | - C Blandizzi
- Division of Pharmacology and Chemotherapy, Department of Internal Medicine, University of Pisa Pisa, Italy
- Author for correspondence:
| | - M Del Tacca
- Division of Pharmacology and Chemotherapy, Department of Internal Medicine, University of Pisa Pisa, Italy
| |
Collapse
|
12
|
Berna MJ, Jensen RT. Role of CCK/gastrin receptors in gastrointestinal/metabolic diseases and results of human studies using gastrin/CCK receptor agonists/antagonists in these diseases. Curr Top Med Chem 2007; 7:1211-31. [PMID: 17584143 PMCID: PMC2718729 DOI: 10.2174/156802607780960519] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this paper, the established and possible roles of CCK1 and CCK2 receptors in gastrointestinal (GI) and metabolic diseases are reviewed and available results from human agonist/antagonist studies are discussed. While there is evidence for the involvement of CCK1R in numerous diseases including pancreatic disorders, motility disorders, tumor growth, regulation of satiety and a number of CCK-deficient states, the role of CCK1R in these conditions is not clearly defined. There are encouraging data from several clinical studies of CCK1R antagonists in some of these conditions, but their role as therapeutic agents remains unclear. The role of CCK2R in physiological (atrophic gastritis, pernicious anemia) and pathological (Zollinger-Ellison syndrome) hypergastrinemic states, its effects on the gastric mucosa (ECL cell hyperplasia, carcinoids, parietal cell mass) and its role in acid-peptic disorders are clearly defined. Furthermore, recent studies point to a possible role for CCK2R in a number of GI malignancies. Current data from human studies of CCK2R antagonists are presented and their potential role in the treatment of these conditions reviewed. Furthermore, the role of CCK2 receptors as targets for medical imaging is discussed.
Collapse
Affiliation(s)
- Marc J. Berna
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
13
|
Fornai M, Colucci R, Antonioli L, Baschiera F, Ghisu N, Tuccori M, Gori G, Blandizzi C, Del Tacca M. CCK2 receptors mediate inhibitory effects of cholecystokinin on the motor activity of guinea-pig distal colon. Eur J Pharmacol 2006; 557:212-20. [PMID: 17208221 DOI: 10.1016/j.ejphar.2006.11.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 11/13/2006] [Accepted: 11/16/2006] [Indexed: 01/29/2023]
Abstract
Cholecystokinin and related peptides are involved in the control of intestinal motility and cholecystokinin receptor ligands might represent new pharmacological tools for the treatment of symptoms associated with functional bowel disorders. However, the respective roles played by cholecystokinin receptor subtypes and the mechanisms underlying these regulatory actions remain undetermined. This study was designed to examine the influence of cholecystokinin receptor subtypes on the motor activity of guinea-pig distal colon. The effects of drugs acting on CCK1 and CCK2 receptors were assessed in vitro on the contractile activity of longitudinal smooth muscle, both under basal conditions and in the presence of transmural electrical stimulation or KCl-induced contractions. The application of cholecystokinin octapeptide sulphate (cholecystokinin-8S) to colonic preparations induced concentration-dependent contractions which were prevented by devazepide (CCK1 receptor antagonist), enhanced by GV150013 (CCK2 receptor antagonist) or N(omega)-nitro-L-arginine methylester (L-NAME, nitric oxide synthase inhibitor), and unaffected by tetrodotoxin. The application of gastrin-17 to colonic preparations resulted in relaxant responses which were insensitive to devazepide, and prevented by GV150013, L-NAME or tetrodotoxin. L-NAME, N(omega)-propyl-L-arginine (NPA, neuronal nitric oxide synthase inhibitor) or GV150013 enhanced electrically evoked contractile responses, whereas devazepide did not. When tested in the presence of L-NAME or NPA the enhancing effect of GV150013 on electrically induced contractions no longer occurred. In the presence of KCl-induced pre-contractions, cholecystokinin-8S or gastrin-17 evoked concentration-dependent relaxations, which were unaffected by devazepide and were counteracted by GV150013, L-NAME, NPA or tetrodotoxin. In conclusion, the present results indicate that, at level of distal colon, CCK1 receptors mediate direct contractile effects on smooth muscle, whereas CCK2 receptors on enteric neurons mediate relaxant responses via nitric oxide release.
Collapse
Affiliation(s)
- Matteo Fornai
- Division of Pharmacology and Chemotherapy, Department of Internal Medicine, University of Pisa, Via Roma, 55, 56126 Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jones NA, Morton MF, Prendergast CE, Powell GL, Shankley NP, Hollingsworth SJ. Neuromedin U stimulates contraction of human long saphenous vein and gastrointestinal smooth muscle in vitro. ACTA ACUST UNITED AC 2006; 136:109-16. [PMID: 16782214 DOI: 10.1016/j.regpep.2006.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 05/02/2006] [Accepted: 05/12/2006] [Indexed: 11/18/2022]
Abstract
The neuropeptide Neuromedin U (NMU) stimulates smooth muscle contraction, and modulates local blood flow and adrenocortical function via two endogenous receptors, NMU1 and NMU2. Although its amino-acid sequence is highly conserved across species, the physiological effects of NMU are variable between species and little is known of its effects on human tissues. We have examined the contractile effects of NMU-25 on human smooth muscles of the gastrointestinal (GI) tract (ascending colon, gallbladder) and long saphenous vein (LSV) using in vitro organ bath bioassays. From LSV, ileum, gallbladder, caecum and colon, NMU receptor transcripts were amplified by RT-PCR and expression levels were determined by semi-quantitative scanning densitometry. NMU-25 produced a concentration-dependent, sustained contraction of isolated smooth muscle (p[A](50)+/-s.e.m., ascending colon, 8.93+/-0.18; gallbladder, 7.01+/-0.15; LSV, 8.67+/-0.09). NMU1 and NMU2 receptor transcription was detected in all tissues; transcription of both receptors was similar in gallbladder, but NMU1 receptor transcription was predominant in the sigmoid colon and LSV. In summary, these studies indicate that NMU may control tone in the human GI tract and LSV through an action on smooth muscle. Development of NMU receptor subtype-selective ligands will aid the further elucidation of the physiological roles of NMU and its two receptors.
Collapse
Affiliation(s)
- Neil A Jones
- Department of Surgery, Royal Free and University College Medical School, The Middlesex Hospital, Mortimer Street, London W1T 3AA, UK
| | | | | | | | | | | |
Collapse
|
15
|
Büyükafşar K, Akça T, Nalan Tiftik R, Sahan-Firat S, Aydin S. Contribution of Rho-kinase in human gallbladder contractions. Eur J Pharmacol 2006; 540:162-7. [PMID: 16730697 DOI: 10.1016/j.ejphar.2006.04.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 04/11/2006] [Accepted: 04/25/2006] [Indexed: 01/19/2023]
Abstract
Rho/Rho-kinase-mediated pathway has been involved in a variety of physiological processes, including Ca2+ sensitization, which enhances smooth muscle contraction. In this study, first of all we investigated the expression of Rho-kinase (ROCK-2) and then the role of this protein in the control of smooth muscle contraction in the isolated human gallbladder. For this purpose, we examined the effects of a selective Rho-kinase inhibitor, (+)- (R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride monohydrate (Y-27632, 10(-8)-3x10(-5) M) on carbachol (10(-8)-10(-4) M), cholecystokinin-8 (10(-8) M), endothelin-1 (10(-8) M), histamine (10(-5) M), neurokinin A (10(-7)-10(-6) M), 5-hydroxytryptamine (10(-6)-10(-5) M) and potassium chloride (KCl, 25-50 mM)-induced contractions as well as spontaneous contractile activity. Y-27632 (10(-5) M) significantly reduced 5-hydroxytryptamine, neurokinin A and KCl-induced contractions. Moreover, this Rho-kinase inhibitor (10(-8)-3x10(-5) M, cumulatively) relaxed the contractions produced by cholecystokinin-8, endothelin-1 and histamine in a concentration-dependent manner, being the pEC50 values for Y-27632 5.74+/-0.12, 5.33+/-0.09 and 5.95+/-0.18, respectively. Carbachol (10(-8)-10(-4) M) produced concentration-dependent contractions, which were also inhibited significantly by Y-27632. In addition, the spontaneous contractile activity was suppressed in the presence of Y-27632 (10(-6)-10(-5) M). Moreover, Western blot analysis has revealed that Rho-kinase is expressed in homogenates of the human gallbladder. Taken together, these results show that Rho-kinase is expressed in the human gallbladder, and it has an essential role in agonists and depolarization-induced contractions as well as spontaneous contractile activity.
Collapse
Affiliation(s)
- Kansu Büyükafşar
- Department of Pharmacology, Medical Faculty, Mersin University, Campus Yenişehir 33169 Mersin, Turkey.
| | | | | | | | | |
Collapse
|
16
|
Sahan-Firat S, Tiftik RN, Nacak M, Büyükafşar K. Rho kinase expression and its central role in ovine gallbladder contractions elicited by a variety of excitatory stimuli. Eur J Pharmacol 2005; 528:169-75. [PMID: 16324691 DOI: 10.1016/j.ejphar.2005.10.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 10/21/2005] [Accepted: 10/26/2005] [Indexed: 12/18/2022]
Abstract
Rho kinase has contractile activity, which induces Ca2+ sensitization in various cells. Several receptors are linked to the Rho/Rho-kinase pathway. Therefore, in this study we aimed to demonstrate the central importance of this novel pathway for diverse excitatory stimuli in the smooth muscle of the sheep gallbladder. Accordingly, the effects of a Rho kinase inhibitor, (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride monohydrate (Y-27632, 10(-8)-3 x 10(-5) M), were investigated on cholecystokinin-8 (CCK-8, 10(-8) M), endothelin-1 (10(-8) M), carbachol (10(-6)-10(-5) M), 5-hydroxytryptamine (5-HT, 10(-6)-10(-5) M), histamine (10(-6)-10(-5) M), phenylephrine (10(-5)-10(-4) M), neurokinin A (10(-7)-10(-6) M), electrical field stimulation (40 V, 0.5 ms, 2, 4, 8, 16, 32 Hz, 15 s, 3 min intervals) and potassium chloride (KCl, 25-50 mM)-induced contractions as well as spontaneous contractile activity. Electrical field stimulation evoked tetrodotoxin (3 x 10(-6) M)-sensitive reproducible contractions, which were inhibited by atropine (2 x 10(-6) M) and potentiated by eserine (5 x 10(-7) M). EFS-induced contraction was significantly inhibited by Y-27632 (10(-5) M). In addition, spontaneous contractile activity was suppressed in the presence of the compound (10(-6)-10(-5) M). This Rho kinase inhibitor also dramatically decreased the contractions elicited by 5-HT, neurokinin A and carbachol. KCl-induced contraction, which was not atropine-sensitive, was also conspicuously attenuated by Y-27632. Moreover, Y-27632 (10(-8)-3 x 10(-5) M) relaxed gallbladder strips that were contracted by histamine, endothelin-1, CCK-8 and phenylephrine in a concentration-dependent manner. pEC50 values for Y-27632 were 6.25+/-0.10, 5.79+/-0.12, 5.83+/-0.09 and 5.70+/-0.13 for the contraction elicited by histamine, CCK-8, endothelin-1 and phenylephrine, respectively. Furthermore, we also demonstrated Rho kinase protein expression (ROCK-1 and ROCK-2) by Western blot analysis. In conclusion, ROCK is expressed in the smooth muscle of the ovine gallbladder, and it has a central role in the contractile activity induced by diverse excitatory stimuli.
Collapse
Affiliation(s)
- Seyhan Sahan-Firat
- Department of Pharmacology Medical Faculty Mersin University Campus Yenişehir 33169 Mersin, Turkey
| | | | | | | |
Collapse
|
17
|
Abstract
Recent research has provided new information about drugs that could be used to treat functional motility disorders. Promotility drugs accelerate gastric emptying or colonic transit and these properties may contribute to their efficacy in treating symptoms associated with gastroparesis, functional dyspepsia or constipation. 5-Hydroxytryptamine4 receptors are targets for drugs (tegaserod, renzapride) that treat symptoms in constipated irritable bowel syndrome patients and in gastroparesis. Drugs acting at motilin (erythromycin) and cholecystokinin-1 (dexloxiglumide) receptors accelerate gastric emptying. Dexloxiglumide might be useful in the treatment of functional dyspepsia particularly that associated with lipid intake. Alvimopan is a mu-opioid receptor antagonist that does not cross the blood brain barrier. Alvimopan is effective in treating postsurgical ileus and perhaps opiate-induced bowel dysfunction. Successes and failures of recent efforts to develop promotility agents revealed opportunities and challenges for developing new promotility drugs. The pharmacological properties of partial agonists might be exploited to develop effective promotility drugs. However, opposing actions of promotility agents on motility (increased contraction vs decreased accommodation) limit the clinical efficacy of drugs with these opposing actions. Selection of appropriate patient populations for evaluation of new drugs is also critical.
Collapse
Affiliation(s)
- J J Galligan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
18
|
Morton MF, Liu PQ, Reik A, de la Rosa R, Mendel M, Li XY, Case C, Pabo C, Moreno V, Pyati J, Shankley NP. Pharmacological analysis of CCK2 receptors up-regulated using engineered transcription factors. ACTA ACUST UNITED AC 2005; 129:227-32. [PMID: 15927720 DOI: 10.1016/j.regpep.2005.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 02/08/2005] [Indexed: 11/23/2022]
Abstract
Designed zinc finger proteins (ZFPs) regulate expression of target genes when coupled to activator or repressor domains. Transfection of ZFPs into cell lines can create expression systems where the targeted endogenous gene is transcribed and the protein of interest can be investigated in its own cellular context. Here we describe the pharmacological investigation of an expression system generated using CCK2 receptor-selective ZFPs transfected into human embryonic kidney cells (HEKZFP system). The receptors expressed in this system, in response to ZFP expression, were functional in calcium mobilization studies and the potency of the agonists investigated was consistent with their action at CCK2 receptors (CCK-8S pA50 = 9.05+/-0.11, pentagastrin pA50 = 9.11+/-0.13). In addition, binding studies were conducted using [125I]-BH-CCK-8S as radioligand. The saturation binding analysis of this radioligand was consistent with a single population of high affinity CCK receptors (pK(D) = 10.24). Competition studies were also conducted using a number of previously well-characterized CCK-receptor selective ligands; JB93182, YF476, PD-134,308, SR27897, dexloxiglumide, L-365,260 and L-364,718. Overall, the estimated affinity values for these ligands were consistent with their interaction at CCK2 receptors. Therefore, CCK2 receptors up-regulated using zinc finger protein technology can provide an alternative to standard transfection techniques for the pharmacological analysis of compounds.
Collapse
Affiliation(s)
- Magda F Morton
- Johnson & Johnson Pharmaceutical Research & Development, LLC., 3210 Merryfield Row, San Diego, CA, 92121, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Varga G, Bálint A, Burghardt B, D'Amato M. Involvement of endogenous CCK and CCK1 receptors in colonic motor function. Br J Pharmacol 2004. [PMID: 15100163 DOI: 10.1038/sj.bjp.0705769141/8/1275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cholecystokinin (CCK) is a brain-gut peptide; it functions both as a neuropeptide and as a gut hormone. Although the pancreas and the gallbladder were long thought to be the principal peripheral targets of CCK, CCK receptors are found throughout the gut. It is likely that CCK has a physiological role not only in the stimulation of pancreatic and biliary secretions but also in the regulation of gastrointestinal motility. The motor effects of CCK include postprandial inhibition of gastric emptying and inhibition of colonic transit. It is now evident that at least two different receptors, CCK(1) and CCK(2) (formerly CCK-A and CCK-B, respectively), mediate the actions of CCK. Both localization and functional studies suggest that the motor effects of CCK are mediated by CCK(1) receptors in humans. Since CCK is involved in sensory and motor responses to distension in the intestinal tract, it may contribute to the symptoms of constipation, bloating and abdominal pain that are often characteristic of functional gastrointestinal disorders in general and irritable bowel syndrome (IBS), in particular. CCK(1) receptor antagonists are therefore currently under development for the treatment of constipation-predominant IBS. Clinical studies suggest that CCK(1) receptor antagonists are effective facilitators of gastric emptying and inhibitors of gallbladder contraction and can accelerate colonic transit time in healthy volunteers and patients with IBS. These drugs are therefore potentially of great value in the treatment of motility disorders such as constipation and constipation-predominant IBS.
Collapse
Affiliation(s)
- Gábor Varga
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43, Budapest 1083, Hungary.
| | | | | | | |
Collapse
|
20
|
Varga G, Bálint A, Burghardt B, D'Amato M. Involvement of endogenous CCK and CCK1 receptors in colonic motor function. Br J Pharmacol 2004; 141:1275-84. [PMID: 15100163 PMCID: PMC1574909 DOI: 10.1038/sj.bjp.0705769] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cholecystokinin (CCK) is a brain-gut peptide; it functions both as a neuropeptide and as a gut hormone. Although the pancreas and the gallbladder were long thought to be the principal peripheral targets of CCK, CCK receptors are found throughout the gut. It is likely that CCK has a physiological role not only in the stimulation of pancreatic and biliary secretions but also in the regulation of gastrointestinal motility. The motor effects of CCK include postprandial inhibition of gastric emptying and inhibition of colonic transit. It is now evident that at least two different receptors, CCK(1) and CCK(2) (formerly CCK-A and CCK-B, respectively), mediate the actions of CCK. Both localization and functional studies suggest that the motor effects of CCK are mediated by CCK(1) receptors in humans. Since CCK is involved in sensory and motor responses to distension in the intestinal tract, it may contribute to the symptoms of constipation, bloating and abdominal pain that are often characteristic of functional gastrointestinal disorders in general and irritable bowel syndrome (IBS), in particular. CCK(1) receptor antagonists are therefore currently under development for the treatment of constipation-predominant IBS. Clinical studies suggest that CCK(1) receptor antagonists are effective facilitators of gastric emptying and inhibitors of gallbladder contraction and can accelerate colonic transit time in healthy volunteers and patients with IBS. These drugs are therefore potentially of great value in the treatment of motility disorders such as constipation and constipation-predominant IBS.
Collapse
Affiliation(s)
- Gábor Varga
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43, Budapest 1083, Hungary.
| | | | | | | |
Collapse
|
21
|
Portincasa P, Di Ciaula A, vanBerge-Henegouwen GP. Smooth muscle function and dysfunction in gallbladder disease. Curr Gastroenterol Rep 2004; 6:151-62. [PMID: 15191695 DOI: 10.1007/s11894-004-0043-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gallbladder epithelium and smooth muscle layer are exposed to concentrated biliary solutes, including cholesterol and potentially toxic hydrophobic bile salts, which are able to influence muscle contraction. Physiologically, gallbladder tone is regulated by spontaneous muscle activity, hormones, and neurotransmitters released into the muscle from intrinsic neurons and extrinsic sympathetic nerves. Methods to explore gallbladder smooth muscle function in vitro include cholecystokinin (CCK) receptor-binding studies and contractility studies. In human and animal models, studies have focused on cellular and molecular events in health and disease, and in vitro findings mirror in vivo events. The interplay between contraction and relaxation of the gallbladder muscularis leads in vivo to appropriate gallbladder emptying and refilling during fasting and postprandially. Defective smooth muscle contractility and/or relaxation are found in cholesterol stone-containing gallbladders, featuring a type of gallbladder leiomyopathy; defects of CCKA receptors and signal transduction may coexist with abnormal responses to oxidative stress and inflammatory mediators. Abnormal smooth musculature contractility, impaired gallbladder motility, and increased stasis are key factors in the pathogenesis of cholesterol gallstones.
Collapse
Affiliation(s)
- Piero Portincasa
- Gastrointestinal Research Unit, University of Medical Center Utrecht, The Netherlands.
| | | | | |
Collapse
|
22
|
Izbéki F, Wittmann T, Csáti S, Lonovics J. The mechanisms of the inhibitory effect of ethanol on gastric emptying involve type A CCK receptors. ACTA ACUST UNITED AC 2004; 117:101-5. [PMID: 14700745 DOI: 10.1016/j.regpep.2003.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mechanisms involved in the mediation of the inhibitory effects of ethanol on gastric emptying were studied in adult male rats. The gastric emptying was determined by measuring the amount of phenol red recovered from the stomach after intragastric administration. Intragastric administration of a 2.5 g kg(-1) body weight dose of ethanol resulted in inhibition of the gastric emptying. Prior intraperitoneal treatment with lorglumide (CR-1409), a selective CCK-A receptor antagonist, abolished the inhibitory effect of ethanol on the gastric emptying. This observation furnishes evidence indicative of the involvement of type A CCK receptors in the mediation of the inhibitory effect of large doses of ethanol on the gastric emptying.
Collapse
Affiliation(s)
- Ferenc Izbéki
- 1st Department of Internal Medicine, University of Szeged, Korányi fasor 8, H-6720 Szeged, Hungary.
| | | | | | | |
Collapse
|