1
|
Liu G, Li Y, Si J, Lu R, Hui M. Genetic Model Identification and Major QTL Mapping for Petiole Thickness in Non-Heading Chinese Cabbage. Int J Mol Sci 2024; 25:802. [PMID: 38255876 PMCID: PMC10815893 DOI: 10.3390/ijms25020802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Petioles of non-heading Chinese cabbage are not only an important edible part but also a conduit for nutrient transport, holding significant agricultural and research value. In this study, we conducted a comprehensive genetic analysis of petiole-related traits using a segregating population. Modern quantitative genetic approaches were applied to investigate the genetic regulation of petiole thickness. The results indicated that petiole thickness is a quantitative trait, and the identified genetic model was consistent with two pairs of additive-dominant main genes and additive-dominant polygenes (2MG-AD). BSA-seq analysis identified a major effect of QTL controlling petiole thickness on chromosome A09: 42.08-45.09 Mb, spanning 3.01 Mb, designated as QTL-BrLH9. Utilizing InDel markers, the interval was narrowed down to 51 kb, encompassing 14 genes with annotations for 10 of them. Within the interval, four mutated genes were detected. Combined with gene annotation, protein sequence analysis, and homology alignment, it was found that BraA09g063520.3C's homologous gene SMXL6 in Arabidopsis (Arabidopsis thaliana (L.) Heynh) is an inhibitor of the coding and synthesis of the strigolactone pathway. Strigolactone (SLs) plays an important role in plant growth and development. The cloning results showed that multiple frameshift mutations and non-synonymous mutations occurred on the exon. The qPCR results showed that the expression of the gene was significantly different between the two parents at the adult stage, so it was speculated that it would lead to changes in petiole thickness. BraA09g063520.3C was predicted as the final candidate gene.
Collapse
Affiliation(s)
| | | | | | | | - Maixia Hui
- Vegetables Engineering and Technology Research Center of Shaanxi Province, College of Horticulture, Northwest A & F University, Yangling, Xianyang 712100, China; (G.L.); (Y.L.); (J.S.); (R.L.)
| |
Collapse
|
2
|
Physiological and Transcriptional Responses of Apocynum venetum to Salt Stress at the Seed Germination Stage. Int J Mol Sci 2023; 24:ijms24043623. [PMID: 36835035 PMCID: PMC9966927 DOI: 10.3390/ijms24043623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Apocynum venetum is a semi-shrubby perennial herb that not only prevents saline-alkaline land degradation but also produces leaves for medicinal uses. Although physiological changes during the seed germination of A. venetum in response to salt stress have been studied, the adaptive mechanism to salt conditions is still limited. Here, the physiological and transcriptional changes during seed germination under different NaCl treatments (0-300 mmol/L) were examined. The results showed that the seed germination rate was promoted at low NaCl concentrations (0-50 mmol/L) and inhibited with increased concentrations (100-300 mmol/L); the activity of antioxidant enzymes exhibited a significant increase from 0 (CK) to 150 mmol/L NaCl and a significant decrease from 150 to 300 mmol/L; and the content of osmolytes exhibited a significant increase with increased concentrations, while the protein content peaked at 100 mmol/L NaCl and then significantly decreased. A total of 1967 differentially expressed genes (DEGs) were generated during seed germination at 300 mmol/L NaCl versus (vs.) CK, with 1487 characterized genes (1293 up-regulated, UR; 194 down-regulated, DR) classified into 11 categories, including salt stress (29), stress response (146), primary metabolism (287), cell morphogenesis (156), transcription factor (TFs, 62), bio-signaling (173), transport (144), photosynthesis and energy (125), secondary metabolism (58), polynucleotide metabolism (21), and translation (286). The relative expression levels (RELs) of selected genes directly involved in salt stress and seed germination were observed to be consistent with the changes in antioxidant enzyme activities and osmolyte contents. These findings will provide useful references to improve seed germination and reveal the adaptive mechanism of A. venetum to saline-alkaline soils.
Collapse
|
3
|
Krahmer J, Hindle M, Perby LK, Mogensen HK, Nielsen TH, Halliday KJ, VanOoijen G, LeBihan T, Millar AJ. The circadian clock gene circuit controls protein and phosphoprotein rhythms in Arabidopsis thaliana. Mol Cell Proteomics 2021; 21:100172. [PMID: 34740825 PMCID: PMC8733343 DOI: 10.1016/j.mcpro.2021.100172] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022] Open
Abstract
Twenty-four-hour, circadian rhythms control many eukaryotic mRNA levels, whereas the levels of their more stable proteins are not expected to reflect the RNA rhythms, emphasizing the need to test the circadian regulation of protein abundance and modification. Here we present circadian proteomic and phosphoproteomic time series from Arabidopsis thaliana plants under constant light conditions, estimating that just 0.4% of quantified proteins but a much larger proportion of quantified phospho-sites were rhythmic. Approximately half of the rhythmic phospho-sites were most phosphorylated at subjective dawn, a pattern we term the “phospho-dawn.” Members of the SnRK/CDPK family of protein kinases are candidate regulators. A CCA1-overexpressing line that disables the clock gene circuit lacked most circadian protein phosphorylation. However, the few phospho-sites that fluctuated despite CCA1-overexpression still tended to peak in abundance close to subjective dawn, suggesting that the canonical clock mechanism is necessary for most but perhaps not all protein phosphorylation rhythms. To test the potential functional relevance of our datasets, we conducted phosphomimetic experiments using the bifunctional enzyme fructose-6-phosphate-2-kinase/phosphatase (F2KP), as an example. The rhythmic phosphorylation of diverse protein targets is controlled by the clock gene circuit, implicating posttranslational mechanisms in the transmission of circadian timing information in plants. Circadian (phospho)proteomics time courses of plants with or without functional clock. Most protein abundance/phosphorylation rhythms require a transcriptional oscillator. The majority of rhythmic phosphosites peak around subjective dawn (“phospho-dawn”). A phosphorylated serine of the metabolic enzyme F2KP has functional relevance.
Collapse
Affiliation(s)
- Johanna Krahmer
- SynthSys and School of Biological Sciences, CH Waddington Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom; Institute for Molecular Plant Science, School of Biological Sciences, Daniel Rutherford Building, Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.
| | - Matthew Hindle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, Edinburgh, EH25 9RG, United Kingdom
| | - Laura K Perby
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Molecular Plant Biology, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Helle K Mogensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Molecular Plant Biology, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Tom H Nielsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Molecular Plant Biology, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Karen J Halliday
- Institute for Molecular Plant Science, School of Biological Sciences, Daniel Rutherford Building, Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Gerben VanOoijen
- Institute for Molecular Plant Science, School of Biological Sciences, Daniel Rutherford Building, Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Thierry LeBihan
- SynthSys and School of Biological Sciences, CH Waddington Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, CH Waddington Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.
| |
Collapse
|
4
|
Villadsen D, Rung JH, Nielsen TH. Osmotic stress changes carbohydrate partitioning and fructose-2,6-bisphosphate metabolism in barley leaves. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:1033-1043. [PMID: 32689199 DOI: 10.1071/fp05102] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 07/11/2005] [Indexed: 06/11/2023]
Abstract
Carbohydrate metabolism was investigated in barley leaves subjected to drought or osmotic stress induced by sorbitol incubation. Both drought and osmotic stress resulted in accumulation of hexoses, depletion of sucrose and starch, and 5-10-fold increase in the level of the regulatory metabolite fructose-2,6-bisphosphate (Fru-2,6-P2). These changes were paralleled by an increased activity ratio of fructose-6-phosphate,2-kinase / fructose-2,6-bisphosphatase (F2KP). The drought-induced changes in carbohydrate content and Fru-2,6-P2 metabolism were reversed upon re-watering. This reveals a reversible mechanism for modification of the F2KP enzyme activity. This suggests that F2KP might be involved in altering carbohydrate metabolism during osmotic stress. However, labelling with [14C]-CO2 showed that sucrose synthesis was not inhibited, despite the increased Fru-2,6-P2 levels, and demonstrated that increased flux into the hexose pools probably derived from sucrose hydrolysis. Similar effects of osmotic stress were observed in leaf sections incubated in the dark, showing that the changes did not result from altered rates of photosynthesis. Metabolism of [14C]-sucrose in the dark also revealed increased flux into hexoses and reduced flux into starch in response to osmotic stress. The activities of a range of enzymes catalysing reactions of carbohydrate metabolism in general showed only a marginal decrease during osmotic stress. Therefore, the observed changes in metabolic flux do not rely on a change in the activity of the analysed enzymes. Fructose-2,6-bisphosphate metabolism responds strongly to drought stress and this response involves modification of the F2KP activity. However, the data also suggests that the sugar accumulation observed during osmotic stress is mainly regulated by another, as yet unidentified mechanism.
Collapse
Affiliation(s)
- Dorthe Villadsen
- Plant Biochemistry Laboratory, Department of Plant Biology, Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark
| | - Jesper Henrik Rung
- Plant Biochemistry Laboratory, Department of Plant Biology, Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark
| | - Tom Hamborg Nielsen
- Plant Biochemistry Laboratory, Department of Plant Biology, Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
5
|
Chevalier N, Bertrand L, Rider MH, Opperdoes FR, Rigden DJ, Michels PAM. 6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase in Trypanosomatidae. Molecular characterization, database searches, modelling studies and evolutionary analysis. FEBS J 2005; 272:3542-60. [PMID: 16008555 DOI: 10.1111/j.1742-4658.2005.04774.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fructose 2,6-bisphosphate is a potent allosteric activator of trypanosomatid pyruvate kinase and thus represents an important regulator of energy metabolism in these protozoan parasites. A 6-phosphofructo-2-kinase, responsible for the synthesis of this regulator, was highly purified from the bloodstream form of Trypanosoma brucei and kinetically characterized. By searching trypanosomatid genome databases, four genes encoding proteins homologous to the mammalian bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) were found for both T. brucei and the related parasite Leishmania major and four pairs in Trypanosoma cruzi. These genes were predicted to each encode a protein in which, at most, only a single domain would be active. Two of the T. brucei proteins showed most conservation in the PFK-2 domain, although one of them was predicted to be inactive due to substitution of residues responsible for ligating the catalytically essential divalent metal cation; the two other proteins were most conserved in the FBPase-2 domain. The two PFK-2-like proteins were expressed in Escherichia coli. Indeed, the first displayed PFK-2 activity with similar kinetic properties to that of the enzyme purified from T. brucei, whereas no activity was found for the second. Interestingly, several of the predicted trypanosomatid PFK-2/FBPase-2 proteins have long N-terminal extensions. The N-terminal domains of the two polypeptides with most similarity to mammalian PFK-2s contain a series of tandem repeat ankyrin motifs. In other proteins such motifs are known to mediate protein-protein interactions. Phylogenetic analysis suggests that the four different PFK-2/FBPase-2 isoenzymes found in Trypanosoma and Leishmania evolved from a single ancestral bifunctional enzyme within the trypanosomatid lineage. A possible explanation for the evolution of multiple monofunctional enzymes and for the presence of the ankyrin-motif repeats in the PFK-2 isoenzymes is presented.
Collapse
Affiliation(s)
- Nathalie Chevalier
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
6
|
Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J 2004; 381:561-79. [PMID: 15170386 PMCID: PMC1133864 DOI: 10.1042/bj20040752] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 06/01/2004] [Indexed: 12/21/2022]
Abstract
Fru-2,6-P2 (fructose 2,6-bisphosphate) is a signal molecule that controls glycolysis. Since its discovery more than 20 years ago, inroads have been made towards the understanding of the structure-function relationships in PFK-2 (6-phosphofructo-2-kinase)/FBPase-2 (fructose-2,6-bisphosphatase), the homodimeric bifunctional enzyme that catalyses the synthesis and degradation of Fru-2,6-P2. The FBPase-2 domain of the enzyme subunit bears sequence, mechanistic and structural similarity to the histidine phosphatase family of enzymes. The PFK-2 domain was originally thought to resemble bacterial PFK-1 (6-phosphofructo-1-kinase), but this proved not to be correct. Molecular modelling of the PFK-2 domain revealed that, instead, it has the same fold as adenylate kinase. This was confirmed by X-ray crystallography. A PFK-2/FBPase-2 sequence in the genome of one prokaryote, the proteobacterium Desulfovibrio desulfuricans, could be the result of horizontal gene transfer from a eukaryote distantly related to all other organisms, possibly a protist. This, together with the presence of PFK-2/FBPase-2 genes in trypanosomatids (albeit with possibly only one of the domains active), indicates that fusion of genes initially coding for separate PFK-2 and FBPase-2 domains might have occurred early in evolution. In the enzyme homodimer, the PFK-2 domains come together in a head-to-head like fashion, whereas the FBPase-2 domains can function as monomers. There are four PFK-2/FBPase-2 isoenzymes in mammals, each coded by a different gene that expresses several isoforms of each isoenzyme. In these genes, regulatory sequences have been identified which account for their long-term control by hormones and tissue-specific transcription factors. One of these, HNF-6 (hepatocyte nuclear factor-6), was discovered in this way. As to short-term control, the liver isoenzyme is phosphorylated at the N-terminus, adjacent to the PFK-2 domain, by PKA (cAMP-dependent protein kinase), leading to PFK-2 inactivation and FBPase-2 activation. In contrast, the heart isoenzyme is phosphorylated at the C-terminus by several protein kinases in different signalling pathways, resulting in PFK-2 activation.
Collapse
Affiliation(s)
- Mark H Rider
- Hormone and Metabolic Research Unit, Université Catholique de Louvain and Christian de Duve Institute of Cellular Pathology, 75, Avenue Hippocrate, B-1200 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
7
|
Rung JH, Draborg HH, Jørgensen K, Nielsen TH. Carbon partitioning in leaves and tubers of transgenic potato plants with reduced activity of fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase. PHYSIOLOGIA PLANTARUM 2004; 121:204-214. [PMID: 15153187 DOI: 10.1111/j.0031-9317.2004.00318.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The role of fructose-2,6-bisphosphate (Fru-2,6-P(2)) in regulation of carbon metabolism was investigated in transgenic potato plants (Solanum tuberosum L. cv Dianella) transformed with a vector containing a cDNA-sequence encoding fructose-6-phosphate,2-kinase (F6P,2-K, EC 2.7.1.105)/fructose-2,6-bisphosphatase (F26BPase, EC 3.1.3.46) in sense or antisense direction behind a CaMV 35S promoter. The activity of F6P,2-K in leaves was reduced to 5% of wild-type (WT) activity, and the level of Fru-2,6-P(2) was reduced both in leaves (10% of the WT level) and in tubers (40% of the WT level). Analysis of photosynthetic (14)CO(2) metabolism, showed that in plant lines with reduced Fru-2,6-P(2) level the carbon partitioning in the leaves was changed in favour of sucrose biosynthesis, and the soluble sugars-to-starch labelling ratio was doubled. The levels of soluble sugars and hexose phosphates also increased in leaves of the transgenic plants. Most notably, the levels of hexoses were four- to six-fold increased in the transgenic plants. In tubers with reduced levels of Fru-2,6-P(2) only minor effects on carbohydrate levels were observed. Furthermore, carbon assimilation in tuber discs supplied with [U-(14)C]-sucrose showed only a moderate increase in labelling of hexoses and a decreased labelling of starch. Similar results were obtained using [U-(14)C]-glucose. No differences in growth of the transgenic lines and the WT were observed. Our data provide evidences that Fru-2,6-P(2) is an important factor in the regulation of photosynthetic carbon metabolism in potato leaves, whereas the direct influence of Fru-2,6-P(2) on tuber metabolism was limited.
Collapse
Affiliation(s)
- Jesper H. Rung
- Plant Biochemistry Laboratory, Department of Plant Biology, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
8
|
Kulma A, Villadsen D, Campbell DG, Meek SEM, Harthill JE, Nielsen TH, MacKintosh C. Phosphorylation and 14-3-3 binding of Arabidopsis 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:654-67. [PMID: 14871307 DOI: 10.1111/j.1365-313x.2003.01992.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Fructose 2,6-bisphosphate (fru-2,6-P2) is a signalling metabolite that regulates photosynthetic carbon partitioning in plants. The content of fru-2,6-P2 in Arabidopsis leaves varied in response to photosynthetic activity with an abrupt decrease at the start of the photoperiod, gradual increase through the day, and modest decrease at the start of the dark period. In Arabidopsis suspension cells, fru-2,6-P2 content increased in response to an unknown signal upon transfer to fresh culture medium. This increase was blocked by either 2-deoxyglucose or the protein phosphatase inhibitor, calyculin A, and the effects of calyculin A were counteracted by the general protein kinase inhibitor K252a. The changes in fru-2,6-P2 at the start of dark period in leaves and in the cell experiments generally paralleled changes in nitrate reductase (NR) activity. NR is inhibited by protein phosphorylation and binding to 14-3-3 proteins, raising the question of whether fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase protein from Arabidopsis thaliana (AtF2KP), which both generates and hydrolyses fru-2,6-P2, is also regulated by phosphorylation and 14-3-3s. Consistent with this hypothesis, AtF2KP and NR from Arabidopsis cell extracts bound to a 14-3-3 column, and were eluted specifically by a synthetic 14-3-3-binding phosphopeptide (ARAApSAPA). 14-3-3s co-precipitated with recombinant glutathione S-transferase (GST)-AtF2KP that had been incubated with Arabidopsis cell extracts in the presence of Mg-ATP. 14-3-3s bound directly to GST-AtF2KP that had been phosphorylated on Ser220 (SLSASGpSFR) and Ser303 (RLVKSLpSASSF) by recombinant Arabidopsis calcium-dependent protein kinase isoform 3 (CPK3), or on Ser303 by rat liver mammalian AMP-activated protein kinase (AMPK; homologue of plant SNF-1 related protein kinases (SnRKs)) or an Arabidopsis cell extract. We have failed to find any direct effect of 14-3-3s on the F2KP activity in vitro to date. Nevertheless, our findings indicate the possibility that 14-3-3 binding to SnRK1-phosphorylated sites on NR and F2KP may regulate both nitrate assimilation and sucrose/starch partitioning in leaves.
Collapse
Affiliation(s)
- Anna Kulma
- MRC Protein Phosphorylation Unit, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
9
|
Markham JE, Kruger NJ. Kinetic properties of bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from spinach leaves. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1267-77. [PMID: 11856361 DOI: 10.1046/j.1432-1033.2002.02771.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A cDNA encoding 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was isolated from a Spinacia oleracea leaf library and used to express a recombinant enzyme in Escherichia coli and Spodoptera frugiperda cells. The insoluble protein expressed in E. coli was purified and used to raise antibodies. Western blot analysis of a protein extract from spinach leaf showed a single band of 90.8 kDa. Soluble protein was purified to homogeneity from S. frugiperda cells infected with recombinant baculovirus harboring the isolated cDNA. The soluble protein had a molecular mass of 320 kDa, estimated by gel filtration chromatography, and a subunit size of 90.8 kDa. The purified protein had activity of both 6-phosphofructo-2-kinase specific activity 10.4-15.9 nmol min(-1) x mg protein (-1) and fructose-2,6-bisphosphatase (specific activity 1.65-1.75 nmol x mol(-1) mg protein(-1). The 6-phosphofructo-2-kinase activity was activated by inorganic phosphate, and inhibited by 3-carbon phosphorylated metabolites and pyrophosphate. In the presence of phosphate, 3-phosphoglycerate was a mixed inhibitor with respect to both fructose 6-phosphate and ATP. Fructose-2,6-bisphosphatase activity was sensitive to product inhibition; inhibition by inorganic phosphate was uncompetitive, whereas inhibition by fructose 6-phosphate was mixed. These kinetic properties support the view that the level of fructose 2,6-bisphosphate in leaves is determined by the relative concentrations of hexose phosphates, three-carbon phosphate esters and inorganic phosphate in the cytosol through reciprocal modulation of 6-phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities of the bifunctional enzyme.
Collapse
Affiliation(s)
- Jonathan E Markham
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | |
Collapse
|
10
|
Villadsen D, Nielsen TH. N-terminal truncation affects the kinetics and structure of fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase from Arabidopsis thaliana. Biochem J 2001; 359:591-7. [PMID: 11672433 PMCID: PMC1222180 DOI: 10.1042/0264-6021:3590591] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The enzyme fructose-6-phosphate 2-kinase (F6P,2K; 6-phosphofructo-2-kinase)/fructose-2,6-bisphosphatase (F26BPase) catalyses the formation and degradation of the regulatory metabolite fructose 2,6-bisphosphate. A cDNA encoding the bifunctional plant enzyme isolated from Arabidopsis thaliana (AtF2KP) was expressed in yeast, and the substrate affinities and allosteric properties of the affinity-purified enzyme were characterized. In addition to the known regulators 3-phosphoglycerate, dihydroxyacetone phosphate, fructose 6-phosphate and P(i), several metabolites were identified as important new effectors. PP(i), phosphoenolpyruvate and 2-phosphoglycerate strongly inhibited F6P,2K activity, whereas fructose 1,6-bisphosphate and 6-phosphogluconate inhibited F26BPase activity. Furthermore, pyruvate was an activator of F6P,2K and an inhibitor of F26BPase. Both kinase and phosphatase activities were rapidly inactivated by mild heat treatment (42 degrees C, 10 min), but the presence of phosphate protected both enzyme activities from inactivation. In addition to the catalytic regions, the Arabidopsis enzyme comprises a 345-amino-acid N-terminus of unknown function. The role of this region was examined by the expression of a series of N-terminally truncated enzymes. The full-length and truncated enzymes were analysed by gel-filtration chromatography. The full-length enzyme was eluted as a homotetramer, whereas the truncated enzymes were eluted as monomers. Deletion of the N-terminus decreased the kinase/phosphatase activity ratio by 4-fold, and decreased the affinity for the substrate fructose 6-phosphate. The data show that the N-terminus is important both for subunit assembly and for defining the kinetic properties of the enzyme.
Collapse
Affiliation(s)
- D Villadsen
- Plant Biochemistry Laboratory, Department of Plant Biology, Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark
| | | |
Collapse
|
11
|
Furumoto T, Teramoto M, Inada N, Ito M, Nishida I, Watanabe A. Phosphorylation of a bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphate 2-phosphatase, is regulated physiologically and developmentally in rosette leaves of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2001; 42:1044-1048. [PMID: 11673618 DOI: 10.1093/pcp/pce161] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The phosphorylation status of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphate 2-phosphatase (EC 2.7.1.105/ EC 3.1.3.46) in rosette leaves of Arabidopsis was examined. Immunoblotting with specific antisera detected 96-kDa and 92-kDa bands in the crude protein extracts from rosette leaves of Arabidopsis. Incubation of protein samples with alkaline phosphatase before SDS-PAGE reduced the 96-kDa band with concomitant increase of the 92-kDa band, suggesting that the former is a phosphorylated form of the latter. In accordance with this result, 96-kDa and 92-kDa bands were immuno-precipitated from the crude protein extracts from [(32)P]orthophosphate-labeled rosettes of Arabidopsis; and, the former was heavily labeled, the latter faintly labeled. Analysis of phospho-amino acid residues derived from the [(32)P]-labeled 96-kDa band revealed that the phosphorylation occurred on serine and threonine residues, excluding the possibility that the phosphorylated band represent a phospho-histidine intermediate that is known to form in the phosphatase reaction. The relative level of the 96-kDa band over the 92-kDa band in whole rosette extracts changed diurnally and was highest at the beginning of nighttime. Furthermore, the 96-kDa band was highly enriched in the extracts of very young rosette leaves, suggesting that the phosphorylation status of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphate 2-phosphatase is regulated physiologically and developmentally in Arabidopsis.
Collapse
Affiliation(s)
- T Furumoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Rigden DJ, Bagyan I, Lamani E, Setlow P, Jedrzejas MJ. A cofactor-dependent phosphoglycerate mutase homolog from Bacillus stearothermophilus is actually a broad specificity phosphatase. Protein Sci 2001; 10:1835-46. [PMID: 11514674 PMCID: PMC2253200 DOI: 10.1110/ps.15701] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The distribution of phosphoglycerate mutase (PGM) activity in bacteria is complex, with some organisms possessing both a cofactor-dependent and a cofactor-independent PGM and others having only one of these enzymes. Although Bacillus species contain only a cofactor-independent PGM, genes homologous to those encoding cofactor-dependent PGMs have been detected in this group of bacteria, but in at least one case the encoded protein lacks significant PGM activity. Here we apply sequence analysis, molecular modeling, and enzymatic assays to the cofactor-dependent PGM homologs from B. stearothermophilus and B. subtilis, and show that these enzymes are phosphatases with broad substrate specificity. Homologs from other gram-positive bacteria are also likely to possess phosphatase activity. These studies clearly show that the exploration of genomic sequences through three-dimensional modeling is capable of producing useful predictions regarding function. However, significant methodological improvements will be needed before such analysis can be carried out automatically.
Collapse
Affiliation(s)
- D J Rigden
- National Centre of Genetic Resources and Biotechnology, Cenargen/Embrapa, S.A.I.N. Parque Rural, Final W5, Asa Norte, 70770-900, Brasília, Brazil
| | | | | | | | | |
Collapse
|
13
|
Draborg H, Villadsen D, Nielsen TH. Transgenic Arabidopsis plants with decreased activity of fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase have altered carbon partitioning. PLANT PHYSIOLOGY 2001; 126:750-8. [PMID: 11402203 PMCID: PMC111165 DOI: 10.1104/pp.126.2.750] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2000] [Revised: 11/19/2000] [Accepted: 01/05/2001] [Indexed: 05/18/2023]
Abstract
The role of fructose-2,6-bisphosphate (Fru-2,6-P(2)) as a regulatory metabolite in photosynthetic carbohydrate metabolism was studied in transgenic Arabidopsis plants with reduced activity of Fru-6-phosphate,2-kinase/Fru-2,6-bisphosphatase. A positive correlation was observed between the Fru-6-phosphate,2-kinase activity and the level of Fru-2,6-P(2) in the leaves. The partitioning of carbon was studied by (14)CO(2) labeling of photosynthetic products. Plant lines with Fru-2,6-P(2) levels down to 5% of the levels observed in wild-type (WT) plants had significantly altered partitioning of carbon between sucrose (Suc) versus starch. The ratio of (14)C incorporated into Suc and starch increased 2- to 3-fold in the plants with low levels of Fru-2,6-P(2) compared with WT. Transgenic plant lines with intermediate levels of Fru-2,6-P(2) compared with WT had a Suc-to-starch labeling ratio similar to the WT. Levels of sugars, starch, and phosphorylated intermediates in leaves were followed during the diurnal cycle. Plants with low levels of Fru-2,6-P(2) in leaves had high levels of Suc, glucose, and Fru and low levels of triose phosphates and glucose-1-P during the light period compared with WT. During the dark period these differences were eliminated. Our data provide direct evidence that Fru-2,6-P(2) affects photosynthetic carbon partitioning in Arabidopsis. Opposed to this, Fru-2,6-P(2) does not contribute significantly to regulation of metabolite levels in darkness.
Collapse
Affiliation(s)
- H Draborg
- Plant Biochemistry Laboratory, Department of Plant Biology, The Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | |
Collapse
|