1
|
Intrator N, Jayakumar A, Ward BB. Aquatic nitrous oxide reductase gene ( nosZ) phylogeny and environmental distribution. Front Microbiol 2024; 15:1407573. [PMID: 38835481 PMCID: PMC11148229 DOI: 10.3389/fmicb.2024.1407573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas and a major cause of ozone depletion. One-third of atmospheric N2O originates in aquatic environments. Reduction of N2O to dinitrogen gas (N2) requires the nitrous oxide reductase enzyme, which is encoded by the gene nosZ. Organisms that contain nosZ are the only known biological sinks of N2O and are found in diverse genera and a wide range of environments. The two clades of nosZ (Clade I and II) contain great diversity, making it challenging to study the population structure and distribution of nosZ containing organisms in the environment. A database of over 11,000 nosZ sequences was compiled from NCBI (representing diverse aquatic environments) and unpublished sequences and metagenomes (primarily from oxygen minimum zones, OMZs, where N2O levels are often elevated). Sequences were clustered into archetypes based on DNA and amino acid sequence identity and their clade, phylogeny, and environmental source were determined. Further analysis of the source and environmental distribution of the sequences showed strong habitat separation between clades and phylogeny. Although there are more Clade I nosZ genes in the compilation, Clade II is more diverse phylogenetically and has a wider distribution across environmental sources. On the other hand, Clade I nosZ genes are predominately found within marine sediment and are primarily from the phylum Pseudonomonadota. The majority of the sequences analyzed from marine OMZs represented distinct phylotypes between different OMZs showing that the nosZ gene displays regional and environmental separation. This study expands the known diversity of nosZ genes and provides a clearer picture of how the clades and phylogeny of nosZ organisms are distributed across diverse environments.
Collapse
Affiliation(s)
- Naomi Intrator
- Department of Geosciences, Princeton University, Princeton, NJ, United States
| | - Amal Jayakumar
- Department of Geosciences, Princeton University, Princeton, NJ, United States
| | - Bess B Ward
- Department of Geosciences, Princeton University, Princeton, NJ, United States
| |
Collapse
|
2
|
Yang Z, Yang Z, Zhan Y, Hu C, Zhang Z, He M, Huang J, Wang J, Yin H, Liu Z. Optimizing SCND with carbon-rich hydrolysates from typical organic wastes: Material composition, augmentation performance, microbiome response, and life cycle impact. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117966. [PMID: 37116417 DOI: 10.1016/j.jenvman.2023.117966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/22/2023] [Accepted: 04/16/2023] [Indexed: 05/12/2023]
Abstract
The rapid growth of production and consumption has led to severe environmental pollution, creating a major challenge to achieving the United Nations' sustainable development goals (SDGs). To address it, recycling of organic wastes into value-added products is a possible solution. In this work, four typical organic wastes including sewage sludge (SS), chicken manure (CM), food waste (FW), and corn straw (CS) were employed to produce hydrolysates augmenting shortcut nitrification-denitrification (SCND) for nitrogen depletion in wastewater. The hydrolysates were carbon-rich, with total COD (TCOD), soluble COD (SCOD), and volatile fatty acids (VFA) concentrations ranging from 32.5 to 102.7, 5.7 to 48.4, and 2.0-16.5 mg/L, respectively. The most effective nitrogen depletion was obtained in units supplemented with CM and FW hydrolysates, which had reduced average NH3-N concentrations and near-zero TN removal failure rates under legal requirements. The microbial community analysis demonstrated that various functional bacteria from phylum to genus level were detected in all scenarios, which was corroborated by abundant genetic functions involved in nitrogen metabolism. Further, life cycle assessment revealed negative environmental impact on all categories, with an exception of eutrophication potential (EP) with negative values (∼-0.04 kg Phosphate eq.), allowing positive net environmental benefit (NEB). Operational cost analysis revealed that CM and FW are more effective but costlier than SS and CS. Together, these results indicate that, after hydrolysis, organic wastes can be efficient stimulant augmenting SCND performance for nitrogen depletion in wastewater, benefiting the overall environmental impact.
Collapse
Affiliation(s)
- Zhendong Yang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Zhaoyue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Yazhi Zhan
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Cheng Hu
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Zhenyu Zhang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Miao He
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Jin Huang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Jing Wang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
3
|
Garrido-Amador P, Stortenbeker N, Wessels HJCT, Speth DR, Garcia-Heredia I, Kartal B. Enrichment and characterization of a nitric oxide-reducing microbial community in a continuous bioreactor. Nat Microbiol 2023; 8:1574-1586. [PMID: 37429908 PMCID: PMC10390337 DOI: 10.1038/s41564-023-01425-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/14/2023] [Indexed: 07/12/2023]
Abstract
Nitric oxide (NO) is a highly reactive and climate-active molecule and a key intermediate in the microbial nitrogen cycle. Despite its role in the evolution of denitrification and aerobic respiration, high redox potential and capacity to sustain microbial growth, our understanding of NO-reducing microorganisms remains limited due to the absence of NO-reducing microbial cultures obtained directly from the environment using NO as a substrate. Here, using a continuous bioreactor and a constant supply of NO as the sole electron acceptor, we enriched and characterized a microbial community dominated by two previously unknown microorganisms that grow at nanomolar NO concentrations and survive high amounts (>6 µM) of this toxic gas, reducing it to N2 with little to non-detectable production of the greenhouse gas nitrous oxide. These results provide insight into the physiology of NO-reducing microorganisms, which have pivotal roles in the control of climate-active gases, waste removal, and evolution of nitrate and oxygen respiration.
Collapse
Affiliation(s)
| | | | - Hans J C T Wessels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daan R Speth
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Boran Kartal
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- School of Science, Constructor University, Bremen, Germany.
| |
Collapse
|
4
|
Hu L, Wang X, Chen C, Chen J, Wang Z, Chen J, Hrynshpan D, Savitskaya T. NosZ gene cloning, reduction performance and structure of Pseudomonas citronellolis WXP-4 nitrous oxide reductase. RSC Adv 2022; 12:2549-2557. [PMID: 35425296 PMCID: PMC8979117 DOI: 10.1039/d1ra09008a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/08/2022] [Indexed: 11/24/2022] Open
Abstract
Nitrous oxide reductase (N2OR) is the only known enzyme that can reduce the powerful greenhouse gas nitrous oxide (N2O) to harmless nitrogen at the final step of bacterial denitrification. To alleviate the N2O emission, emerging approaches aim at microbiome biotechnology. In this study, the genome sequence of facultative anaerobic bacteria Pseudomonas citronellolis WXP-4, which efficiently degrades N2O, was obtained by de novo sequencing for the first time, and then, four key reductase structure coding genes related to complete denitrification were identified. The single structural encoding gene nosZ with a length of 1914 bp from strain WXP-4 was cloned in Escherichia coli BL21(DE3), and the N2OR protein (76 kDa) was relatively highly efficiently expressed under the optimal inducing conditions of 1.0 mM IPTG, 5 h, and 30 °C. Denitrification experiment results confirmed that recombinant E. coli had strong denitrification ability and reduced 10 mg L−1 of N2O to N2 within 15 h under the optimal conditions of pH 7.0 and 40 °C, its corresponding N2O reduction rate was almost 2.3 times that of Alcaligenes denitrificans strain TB, but only 80% of that of wild strain WXP-4, meaning that nos gene cluster auxiliary gene deletion decreased the activity of N2OR. The 3D structure of N2OR predicted on the basis of sequence homology found that electron transfer center CuA had only five amino acid ligands, and the S2 of the catalytically active center CuZ only bound one CuI atom. The unique 3D structure was different from previous reports and may be closely related to the strong N2O reduction ability of strain WXP-4 and recombinant E. coli. The findings show a potential application of recombinant E. coli in alleviating the greenhouse effect and provide a new perspective for researching the relationship between structure and function of N2OR. Nitrous oxide reductase (N2OR) is the only known enzyme that can reduce the powerful greenhouse gas nitrous oxide (N2O) to harmless nitrogen at the final step of bacterial denitrification. The recombinant E. coli and wild strain WXP-4 demonstrate strong N2O reduction ability.![]()
Collapse
Affiliation(s)
- Liyong Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaoping Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Cong Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Dzmitry Hrynshpan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Tatsiana Savitskaya
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| |
Collapse
|
5
|
The Two-Component System RstA/RstB Regulates Expression of Multiple Efflux Pumps and Influences Anaerobic Nitrate Respiration in Pseudomonas fluorescens. mSystems 2021; 6:e0091121. [PMID: 34726491 PMCID: PMC8562477 DOI: 10.1128/msystems.00911-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Multidrug resistance (MDR) efflux pumps are involved in bacterial intrinsic resistance to multiple antimicrobials. Expression of MDR efflux pumps can be either constitutive or transiently induced by various environmental signals, which are typically perceived by bacterial two-component systems (TCSs) and relayed to the bacterial nucleoid, where gene expression is modulated for niche adaptation. Here, we demonstrate that RstA/RstB, a TCS previously shown to control acid-induced and biofilm-related genes in Escherichiacoli, confers resistance to multiple antibiotics in Pseudomonas fluorescens by directly regulating the MDR efflux pumps EmhABC and MexCD-OprJ. Moreover, we show that phosphorylation of the conserved Asp52 residue in RstA greatly enhances RstA-DNA interaction, and regulation of the multidrug resistance by RstA/RstB is dependent on the phosphorylation of the RstA Asp52 residue by RstB. Proteome analysis reveals RstA/RstB also positively regulates the efflux pump MexEF-OprN and enzymes involved in anaerobic nitrate respiration and pyoverdine biosynthesis. Our results suggest that, by coupling the expression of multiple efflux pumps and anaerobic nitrate respiration, RstA/RstB could play a role in defense against nitrosative stress caused by anaerobic nitrate respiration. IMPORTANCE Microenvironmental hypoxia typically increases bacterial multidrug resistance by elevating expression of multidrug efflux pumps, but the precise mechanism is currently not well understood. Here, we showed that the two-component system RstA/RstB not only positively regulated expression of several efflux pumps involved in multidrug resistance, but also promoted expression of enzymes involved in anaerobic nitrate respiration and pyoverdine biosynthesis. These results suggested that, by upregulating expression of efflux pumps and pyoverdine biosynthesis-related enzymes, RstA/RstB could play a role in promoting bacterial tolerance to hypoxia by providing protection against nitrosative stress.
Collapse
|
6
|
Guo J, Zhou Y, Guo H, Min W. Saline and alkaline stresses alter soil properties and composition and structure of gene-based nitrifier and denitrifier communities in a calcareous desert soil. BMC Microbiol 2021; 21:246. [PMID: 34521348 PMCID: PMC8442331 DOI: 10.1186/s12866-021-02313-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saline and alkaline stresses damages the health of soil systems. Meanwhile, little is known about how saline or alkaline stress affects soil nitrifier and denitrifier communities. Therefore, we compared the responses of gene-based nitrifier and denitrifier communities to chloride (CS), sulfate (SS), and alkaline (AS) stresses with those in a no-stress control (CK) in pots with a calcareous desert soil. RESULTS Compared with CK, saline and alkaline stress decreased potential nitrification rate (PNR) and NO3-N; increased pH, salinity, water content, and NH4-N; and decreased copy numbers of amoA-AOA and amoA-AOB genes but increased those of denitrifier nirS and nosZ genes. Copies of nirK increased in SS and AS but decreased in CS. There were more copies of amoA-AOB than of amoA-AOA and of nirS than of nirK or nosZ. Compared with CK, SS and AS decreased operational taxonomic units (OTUs) of amoA-AOB but increased those of nirS and nosZ, whereas CS decreased nirK OTUs but increased those of nosZ. The numbers of OTUs and amoA-AOB genes were greater than those of amoA-AOA. There were positive linear relations between PNR and amoA-AOA and amoA-AOB copies. Compared with CK, the Chao 1 index of amoA-AOA and amoA-AOB decreased in AS, that of nirK increased in CS and SS, but that of nirS and nosZ increased in all treatments. The Shannon index of amoA-AOB decreased but that of nirS increased in CS and SS, whereas the index of nirK decreased in all treatments. Saline and alkaline stress greatly affected the structure of nitrifier and denitrifier communities and decreased potential biomarkers of nirS-type; however, AS increased those of nirK- and nosZ-type, and SS decreased those of nosZ-type. Soil water content, pH, and salinity were important in shaping amoA-AOA and denitrifier communities, whereas soil water and pH were important to amoA-AOB communities. CONCLUSION These results indicate that the nitrifier and denitrifier communities respond to saline and alkaline stresses conditions. Communities of amoA-AOA and amoA-AOB contribute to nitrification in alluvial gray desert soil, and those of nirS are more important in denitrification than those of nirK or nosZ.
Collapse
Affiliation(s)
- Jiaxin Guo
- Department of Resources and Environmental Science, Agriculture College, Shihezi University, Box #425, Shihezi, Xinjiang, 832003, People's Republic of China
| | - Yongxue Zhou
- Department of Resources and Environmental Science, Agriculture College, Shihezi University, Box #425, Shihezi, Xinjiang, 832003, People's Republic of China
| | - Huijuan Guo
- Department of Resources and Environmental Science, Agriculture College, Shihezi University, Box #425, Shihezi, Xinjiang, 832003, People's Republic of China
| | - Wei Min
- Department of Resources and Environmental Science, Agriculture College, Shihezi University, Box #425, Shihezi, Xinjiang, 832003, People's Republic of China.
| |
Collapse
|
7
|
Suri N, Zhang Y, Gieg LM, Ryan MC. Denitrification Biokinetics: Towards Optimization for Industrial Applications. Front Microbiol 2021; 12:610389. [PMID: 34025593 PMCID: PMC8131540 DOI: 10.3389/fmicb.2021.610389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/18/2021] [Indexed: 11/28/2022] Open
Abstract
Denitrification is a microbial process that converts nitrate (NO3–) to N2 and can play an important role in industrial applications such as souring control and microbially enhanced oil recovery (MEOR). The effectiveness of using NO3– in souring control depends on the partial reduction of NO3– to nitrite (NO2–) and/or N2O while in MEOR complete reduction of NO3– to N2 is desired. Thauera has been reported as a dominant taxon in such applications, but the impact of NO3– and NO2– concentrations, and pH on the kinetics of denitrification by this bacterium is not known. With the goal of better understanding the effects of such parameters on applications such as souring and MEOR, three strains of Thauera (K172, NS1 and TK001) were used to study denitrification kinetics when using acetate as an electron donor. At low initial NO3– concentrations (∼1 mmol L–1) and at pH 7.5, complete NO3– reduction by all strains was indicated by non-detectable NO3– concentrations and near-complete recovery (> 97%) of the initial NO3-N as N2 after 14 days of incubation. The relative rate of denitrification by NS1 was low, 0.071 mmol L–1 d–1, compared to that of K172 (0.431 mmol L–1 d–1) and TK001 (0.429 mmol L–1 d–1). Transient accumulation of up to 0.74 mmol L–1 NO2– was observed in cultures of NS1 only. Increased initial NO3– concentrations resulted in the accumulation of elevated concentrations of NO2– and N2O, particularly in incubations with K172 and NS1. Strain TK001 had the most extensive NO3– reduction under high initial NO3– concentrations, but still had only ∼78% of the initial NO3-N recovered as N2 after 90 days of incubation. As denitrification proceeded, increased pH substantially reduced denitrification rates when values exceeded ∼ 9. The rate and extent of NO3– reduction were also affected by NO2– accumulation, particularly in incubations with K172, where up to more than a 2-fold rate decrease was observed. The decrease in rate was associated with decreased transcript abundances of denitrification genes (nirS and nosZ) required to produce enzymes for reduction of NO2– and N2O. Conversely, high pH also contributed to the delayed expression of these gene transcripts rather than their abundances in strains NS1 and TK001. Increased NO2– concentrations, N2O levels and high pH appeared to cause higher stress on NS1 than on K172 and TK001 for N2 production. Collectively, these results indicate that increased pH can alter the kinetics of denitrification by Thauera strains used in this study, suggesting that liming could be a way to achieve partial denitrification to promote NO2– and N2O production (e.g., for souring control) while pH buffering would be desirable for achieving complete denitrification to N2 (e.g., for gas-mediated MEOR).
Collapse
Affiliation(s)
- Navreet Suri
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Yuan Zhang
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Lisa M Gieg
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - M Cathryn Ryan
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Nitrate Respiration in Thermus thermophilus NAR1: from Horizontal Gene Transfer to Internal Evolution. Genes (Basel) 2020; 11:genes11111308. [PMID: 33158244 PMCID: PMC7694296 DOI: 10.3390/genes11111308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Genes coding for enzymes of the denitrification pathway appear randomly distributed among isolates of the ancestral genus Thermus, but only in few strains of the species Thermus thermophilus has the pathway been studied to a certain detail. Here, we review the enzymes involved in this pathway present in T. thermophilus NAR1, a strain extensively employed as a model for nitrate respiration, in the light of its full sequence recently assembled through a combination of PacBio and Illumina technologies in order to counteract the systematic errors introduced by the former technique. The genome of this strain is divided in four replicons, a chromosome of 2,021,843 bp, two megaplasmids of 370,865 and 77,135 bp and a small plasmid of 9799 pb. Nitrate respiration is encoded in the largest megaplasmid, pTTHNP4, within a region that includes operons for O2 and nitrate sensory systems, a nitrate reductase, nitrate and nitrite transporters and a nitrate specific NADH dehydrogenase, in addition to multiple insertion sequences (IS), suggesting its mobility-prone nature. Despite nitrite is the final product of nitrate respiration in this strain, the megaplasmid encodes two putative nitrite reductases of the cd1 and Cu-containing types, apparently inactivated by IS. No nitric oxide reductase genes have been found within this region, although the NorR sensory gene, needed for its expression, is found near the inactive nitrite respiration system. These data clearly support that partial denitrification in this strain is the consequence of recent deletions and IS insertions in genes involved in nitrite respiration. Based on these data, the capability of this strain to transfer or acquire denitrification clusters by horizontal gene transfer is discussed.
Collapse
|
9
|
Marchant HK, Tegetmeyer HE, Ahmerkamp S, Holtappels M, Lavik G, Graf J, Schreiber F, Mussmann M, Strous M, Kuypers MMM. Metabolic specialization of denitrifiers in permeable sediments controls N 2 O emissions. Environ Microbiol 2018; 20:4486-4502. [PMID: 30117262 DOI: 10.1111/1462-2920.14385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 08/10/2018] [Accepted: 08/12/2018] [Indexed: 11/28/2022]
Abstract
Coastal oceans receive large amounts of anthropogenic fixed nitrogen (N), most of which is denitrified in the sediment before reaching the open ocean. Sandy sediments, which are common in coastal regions, seem to play an important role in catalysing this N-loss. Permeable sediments are characterized by advective porewater transport, which supplies high fluxes of organic matter into the sediment, but also leads to fluctuations in oxygen and nitrate concentrations. Little is known about how the denitrifying communities in these sediments are adapted to such fluctuations. Our combined results indicate that denitrification in eutrophied sandy sediments from the world's largest tidal flat system, the Wadden Sea, is carried out by different groups of microorganisms. This segregation leads to the formation of N2 O which is advectively transported to the overlying waters and thereby emitted to the atmosphere. At the same time, the production of N2 O within the sediment supports a subset of Flavobacteriia which appear to be specialized on N2 O reduction. If the mechanisms shown here are active in other coastal zones, then denitrification in eutrophied sandy sediments may substantially contribute to current marine N2 O emissions.
Collapse
Affiliation(s)
| | - Halina E Tegetmeyer
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | | | | | - Gaute Lavik
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Jon Graf
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Frank Schreiber
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,ETH Zurich, Swiss Federal Institute of Technology, Department of Environmental Systems Science, Zurich, Switzerland.,Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Microbiology, Dübendorf, Switzerland.,Division of Biodeterioration and Reference Organisms, Department of Materials and Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Marc Mussmann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Marc Strous
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | |
Collapse
|
10
|
An Y, Qin X. Effects of sulfamethoxazole on the denitrifying process in anoxic activated sludge and the responses of denitrifying microorganisms. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:1228-1236. [PMID: 30339547 DOI: 10.2166/wst.2018.394] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The presence of antibiotics in municipal wastewater is bound to affect the anoxic denitrifying process in anoxic activated sludge (AAS). This study investigated the effects of sulfamethoxazole (SMZ) on the denitrifying process in AAS and the responses of denitrifying microorganisms. The results showed that SMZ could decrease the speed of nitrate removal significantly when the concentration of SMZ was lower than 10 mg/L, and the removal of nitrate would be completely inhibited when SMZ concentration was higher than 100 mg/L. Weak alkaline condition would enhance the inhibition effect of SMZ on removal of nitrate in the anoxic bioreactor. The results of high-throughput sequencing and qPCR (quantitative polymerase chain reaction) showed that 100 mg/L of SMZ did not decrease the total abundance of denitrifying microorganisms. However, the relative expression levels of key denitrifying genes NirS and NosZ in AAS treated by 100 mg/L of SMZ versus the raw AAS without SMZ was only 0.030 and 0.036. Therefore, the inhibitory mechanism of SMZ on the denitrifying process in AAS was denoted by an effective inhibition to the expressions of denitrifying genes, rather than a decrease in the total abundance of denitrifying microorganisms.
Collapse
Affiliation(s)
- Yonglei An
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, China; and College of New Energy and Environment, Jilin University, Changchun 130021, China E-mail: ; Hebei and China Geological Survey Key Laboratory of Groundwater Remediation, Shijiazhuang 050061, China
| | - Xueming Qin
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, China; and College of New Energy and Environment, Jilin University, Changchun 130021, China E-mail:
| |
Collapse
|
11
|
Alvarez L, Quintáns NG, Blesa A, Baquedano I, Mencía M, Bricio C, Berenguer J. Hierarchical Control of Nitrite Respiration by Transcription Factors Encoded within Mobile Gene Clusters of Thermus thermophilus. Genes (Basel) 2017; 8:genes8120361. [PMID: 29194386 PMCID: PMC5748679 DOI: 10.3390/genes8120361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/23/2017] [Accepted: 11/29/2017] [Indexed: 11/16/2022] Open
Abstract
Denitrification in Thermus thermophilus is encoded by the nitrate respiration conjugative element (NCE) and nitrite and nitric oxide respiration (nic) gene clusters. A tight coordination of each cluster’s expression is required to maximize anaerobic growth, and to avoid toxicity by intermediates, especially nitric oxides (NO). Here, we study the control of the nitrite reductases (Nir) and NO reductases (Nor) upon horizontal acquisition of the NCE and nic clusters by a formerly aerobic host. Expression of the nic promoters PnirS, PnirJ, and PnorC, depends on the oxygen sensor DnrS and on the DnrT protein, both NCE-encoded. NsrR, a nic-encoded transcription factor with an iron–sulfur cluster, is also involved in Nir and Nor control. Deletion of nsrR decreased PnorC and PnirJ transcription, and activated PnirS under denitrification conditions, exhibiting a dual regulatory role never described before for members of the NsrR family. On the basis of these results, a regulatory hierarchy is proposed, in which under anoxia, there is a pre-activation of the nic promoters by DnrS and DnrT, and then NsrR leads to Nor induction and Nir repression, likely as a second stage of regulation that would require NO detection, thus avoiding accumulation of toxic levels of NO. The whole system appears to work in remarkable coordination to function only when the relevant nitrogen species are present inside the cell.
Collapse
Affiliation(s)
- Laura Alvarez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
- Current Address: Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden.
| | - Nieves G Quintáns
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| | - Alba Blesa
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| | - Ignacio Baquedano
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| | - Mario Mencía
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| | - Carlos Bricio
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| | - José Berenguer
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| |
Collapse
|
12
|
Potential for aerobic NO 2- reduction and corresponding key enzyme genes involved in Alcaligenes faecalis strain NR. Arch Microbiol 2017; 200:147-158. [PMID: 28879417 DOI: 10.1007/s00203-017-1428-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/27/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
The potential for aerobic NO2- removal by Alcaligenes faecalis strain NR was investigated. 35 mg/L of NO2--N was removed by strain NR under aerobic conditions in the presence of NH4+. 15N-labeling experiment demonstrated that N2O and N2 were possible products during the aerobic nitrite removal process by strain NR. The key enzyme genes of nirK, norB and nosZ, which regulate the aerobic nitrite denitrification process, were successfully amplified from strain NR. The gene sequence analysis indicates that copper-containing nitrite reductase (NIRK) and periplasmic nitrous oxide reductase (NOSZ) were both hydrophilic protein and the transmembrane structures were absent, while nitric oxide reductase large subunit (NORB) was a hydrophobic and transmembrane protein. According to the three-dimensional structure and binding site analysis, the bulky and hydrophobic methionine residue proximity to the nitrite binding sites of NIRK was speculated to be related to the oxygen tolerance of NIRK from strain NR.
Collapse
|
13
|
Torres MJ, Bueno E, Jiménez-Leiva A, Cabrera JJ, Bedmar EJ, Mesa S, Delgado MJ. FixK 2 Is the Main Transcriptional Activator of Bradyrhizobium diazoefficiens nosRZDYFLX Genes in Response to Low Oxygen. Front Microbiol 2017; 8:1621. [PMID: 28912756 PMCID: PMC5582078 DOI: 10.3389/fmicb.2017.01621] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022] Open
Abstract
The powerful greenhouse gas, nitrous oxide (N2O) has a strong potential to drive climate change. Soils are the major source of N2O and microbial nitrification and denitrification the main processes involved. The soybean endosymbiont Bradyrhizobium diazoefficiens is considered a model to study rhizobial denitrification, which depends on the napEDABC, nirK, norCBQD, and nosRZDYFLX genes. In this bacterium, the role of the regulatory cascade FixLJ-FixK2-NnrR in the expression of napEDABC, nirK, and norCBQD genes involved in N2O synthesis has been previously unraveled. However, much remains to be discovered regarding the regulation of the respiratory N2O reductase (N2OR), the key enzyme that mitigates N2O emissions. In this work, we have demonstrated that nosRZDYFLX genes constitute an operon which is transcribed from a major promoter located upstream of the nosR gene. Low oxygen was shown to be the main inducer of expression of nosRZDYFLX genes and N2OR activity, FixK2 being the regulatory protein involved in such control. Further, by using an in vitro transcription assay with purified FixK2 protein and B. diazoefficiens RNA polymerase we were able to show that the nosRZDYFLX genes are direct targets of FixK2.
Collapse
Affiliation(s)
- María J Torres
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Emilio Bueno
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| |
Collapse
|
14
|
Periplasmic Nicotine Dehydrogenase NdhAB Utilizes Pseudoazurin as Its Physiological Electron Acceptor in Agrobacterium tumefaciens S33. Appl Environ Microbiol 2017. [PMID: 28625985 DOI: 10.1128/aem.01050-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens S33 can grow with nicotine as the sole source of carbon, nitrogen, and energy via a novel hybrid of the pyridine pathway and the pyrrolidine pathway. Characterization of the enzymes involved in the hybrid pathway is important for understanding its biochemical mechanism. Here, we report that the molybdenum-containing nicotine dehydrogenase (NdhAB), which catalyzes the initial step of nicotine degradation, is located in the periplasm of strain S33, while the 6-hydroxynicotine oxidase and 6-hydroxypseudooxynicoine oxidase are in the cytoplasm. This is consistent with the fact that NdhA has a Tat signal peptide. Interestingly, an open reading frame (ORF) adjacent to the ndhAB gene was verified to encode a copper-containing electron carrier, pseudoazurin (Paz), which has a signal peptide typical of bacterial Paz proteins. Both were transported into the periplasm after being produced in the cytoplasm. We purified NdhAB from the periplasmic fraction of strain S33 and found that with Paz as the physiological electron acceptor, NdhAB catalyzed the hydroxylation of nicotine at a specific rate of 110.52 ± 8.09 μmol · min-1 · mg of protein-1, where the oxygen atom in the hydroxyl group of the product 6-hydroxynicotine was derived from H2O. The apparent Km values for nicotine and Paz were 1.64 ± 0.07 μM and 3.61 ± 0.23 μM, respectively. NAD(P)+, O2, and ferredoxin could not serve as electron acceptors. Disruption of the paz gene disabled the strain for nicotine degradation, indicating that Paz is required for nicotine catabolism in the strain. These findings help our understanding of electron transfer during nicotine degradation in bacteria.IMPORTANCE Nicotine is a toxic and addictive N-heterocyclic aromatic alkaloid produced in tobacco. Its catabolism in organisms and degradation in tobacco wastes have become major concerns for human health and the environment. Bacteria usually decompose nicotine using the classical strategy of hydroxylating the pyridine ring with the help of activated oxygen by nicotine dehydrogenase, which binds one molybdopterin, two [2Fe2S] clusters, and usually one flavin adenine dinucleotide (FAD) as well. However, the physiological electron acceptor for the reaction is still unknown. In this study, we found that the two-component nicotine dehydrogenase from Agrobacterium tumefaciens S33, naturally lacking an FAD-binding domain, is located in the periplasmic space and uses a copper-containing electron carrier, pseudoazurin, as its physiological electron acceptor. We report here the role of pseudoazurin in a reaction catalyzed by a molybdopterin-containing hydroxylase occurring in the periplasmic space. These results provide new biochemical knowledge on microbial degradation of N-heterocyclic aromatic compounds.
Collapse
|
15
|
Gui M, Chen Q, Ni J. Effect of sulfamethoxazole on aerobic denitrification by strain Pseudomonas stutzeri PCN-1. BIORESOURCE TECHNOLOGY 2017; 235:325-331. [PMID: 28376383 DOI: 10.1016/j.biortech.2017.03.131] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/19/2017] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
Sulfamethoxazole (SMX), as a common sulfonamide antibiotic, was reported to affect conventional anaerobic denitrification. This study presented effects of SMX on aerobic denitrification by an aerobic denitrifier strain Pseudomonas stutzeri PCN-1. Results demonstrated serious inhibition of N2O reduction as SMX reached 4μg/L, leading to higher N2O emission ratio (251-fold). Increase of SMX (∼8μg/L) would induce highest nitrite accumulation (95.3mg/L) without reduction, and severe inhibition of nitrate reduction resulted in lower nitrate removal rate (0.15mg/L/h) as SMX reached 20μg/L. Furthermore, corresponding inhibition of SMX on denitrifying genes expression (nosZ>nirS>cnorB>napA) was found with a time-lapse expression between nosZ and cnorB. Meanwhile, the decline in electron transport activity and active microbial biomass of strain PCN-1 was revealed. The insight into mechanism of SMX influence on aerobic denitrifier is of particular significance to upgrade nitrogen removal process in antibiotics-containing wastewater treatment plant.
Collapse
Affiliation(s)
- Mengyao Gui
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Qian Chen
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Jinren Ni
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
16
|
Riya S, Takeuchi Y, Zhou S, Terada A, Hosomi M. Nitrous oxide production and mRNA expression analysis of nitrifying and denitrifying bacterial genes under floodwater disappearance and fertilizer application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15852-15859. [PMID: 28537019 DOI: 10.1007/s11356-017-9231-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
A pulse of nitrous oxide (N2O) emission has been observed following the disappearance of floodwater by drainage. However, its mechanism is not well understood. We conducted a column study to clarify the mechanism for N2O production during floodwater disappearance by using a microsensor and determining the bacterial gene expression. An increase in N2O flux was observed following floodwater disappearance after the addition of NH4+, with a corresponding increase in the concentrations of NO3- and dissolved N2O in the oxic and anoxic soil layers, respectively. The transcription level of the bacterial amoA mRNA did not change, while that of nirK mRNA increased sharply after an hour of floodwater disappearance. An additional anoxic soil slurry experiment demonstrated that the addition of NO3- induced the expression of nirK gene and caused a concomitant increase in N2O production. These findings suggest that NO3- production in the oxic layers is important as it provides a substrate and induces the synthesis of denitrification enzymes in the anoxic layer during N2O production.
Collapse
Affiliation(s)
- Shohei Riya
- Department of Chemical Engineering, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Yuki Takeuchi
- Department of Chemical Engineering, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Sheng Zhou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China
| | - Akihiko Terada
- Department of Chemical Engineering, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Masaaki Hosomi
- Department of Chemical Engineering, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
17
|
Zhang Y, Xu W, Xiang Y, Xie B, Liu H, Wu L, Liang D. Kinetics and gene diversity of denitrifying biocathode in biological electrochemical systems. RSC Adv 2017. [DOI: 10.1039/c7ra04070a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biocathodic nitrogen degradation kinetics match Monod model and Pseudomonas play an important role on denitrification biocathodes with different nitrogen substrates.
Collapse
Affiliation(s)
- Yongjia Zhang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices
- School of Space & Environment
- Beihang University
- Beijing 100191
- PR China
| | - Weiwei Xu
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices
- School of Space & Environment
- Beihang University
- Beijing 100191
- PR China
| | - Yan Xiang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices
- School of Space & Environment
- Beihang University
- Beijing 100191
- PR China
| | - Beizhen Xie
- Institution of Environmental Biology and Life Support Technology
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
- PR China
| | - Hong Liu
- Institution of Environmental Biology and Life Support Technology
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
- PR China
| | - Lina Wu
- School of Environment and Energy Engineering
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- PR China
| | - Dawei Liang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices
- School of Space & Environment
- Beihang University
- Beijing 100191
- PR China
| |
Collapse
|
18
|
Li M, Su Y, Chen Y, Wan R, Zheng X, Liu K. The effects of fulvic acid on microbial denitrification: promotion of NADH generation, electron transfer, and consumption. Appl Microbiol Biotechnol 2016; 100:5607-18. [PMID: 26894403 DOI: 10.1007/s00253-016-7383-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 12/16/2022]
Abstract
The heterotrophic denitrification requires the participation of electrons which are derived from direct electron donor (usually nicotinamide adenine dinucleotide (NADH)), and the electrons are transferred via electron transport system in denitrifiers and then consumed by denitrifying enzymes. Despite the reported electron transfer ability of humic substances (HS), the influences of fulvic acid (FA), an ubiquitous major component of HS, on promoting NADH generation, electron transfer, and consumption in denitrification process have never been reported. The presence of FA, compared with the control, was found not only significantly improved the total nitrogen (TN) removal efficiency (99.9 % versus 74.8 %) but remarkably reduced the nitrite accumulation (0.2 against 43.8 mg/L) and N2O emission (0.003 against 0.240 mg nitrogen/mg TN removed). The mechanisms study showed that FA increased the metabolism of carbon source via glycolysis and tricarboxylic acid (TCA) cycle pathways to produce more available NADH. FA also facilitated the electron transfer activities from NADH to denitrifying enzymes via complex I and complex III in electron transport system, which improved the reduction of nitrate and accelerated the transformations of nitrite and N2O, and lower nitrite and N2O accumulations were therefore observed. In addition, the consumption of electrons in denitrification was enhanced due to FA stimulating the synthesis and the catalytic activity of key denitrifying enzymes, especially nitrite reductase and N2O reductase. It will provide an important new insight into the potential effect of FA on microbial denitrification metabolism process and even nitrogen cycle in nature niches.
Collapse
Affiliation(s)
- Mu Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinglong Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Rui Wan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Kun Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
19
|
Li D, Li B, Wang Q, Hou N, Li C, Cheng X. Toxicity of TiO₂ nanoparticle to denitrifying strain CFY1 and the impact on microbial community structures in activated sludge. CHEMOSPHERE 2016; 144:1334-1341. [PMID: 26479452 DOI: 10.1016/j.chemosphere.2015.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/23/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
The antibacterial activity of titanium dioxide nanoparticles (TiO2 NPs) is well described, but little is known of their impact on specific microbial functions such as denitrification, nor on microbial community structure. In this study, a denitrifier (named as Pseudomonas stutzeri CFY1), which was isolated from the activated sludge and could remove up to 111.68 mg/L of NO3(-)-N under aerobic conditions, was utilized to evaluate the influences of TiO2 NPs on its nitrogen removal ability and associated gene expression under aerobic conditions. The variations of the bacterial diversity of activated sludge were also observed. The results showed that antibacterial activity increased with increasing concentrations of TiO2 NPs. Increased production of reactive oxygen species was responsible for TiO2 NPs toxicity. An up-regulation of denitrification genes was observed with increasing concentrations of TiO2 NPs under aerobic conditions. Accordingly, denitrification by P. stutzeri was accelerated when the concentration of TiO2 NPs was increased to 50 mg/L. However, the denitrification of CFY1 was inhibited at low concentrations of TiO2 NPs (5-25 mg/L), indicating that assimilatory and dissimilatory denitrification were synchronized in P. stutzeri CFY1; the latter process plays a major role in denitrification. Further study of the community using 454 pyrosequencing showed that after 7 days of exposure to 50 mg/L TiO2 NPs, the microbial composition of the activated sludge was significantly different and had a lower diversity compared to the controls.
Collapse
Affiliation(s)
- Dapeng Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bin Li
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qiaoruo Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ning Hou
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiaosong Cheng
- College of First Clinical Medicine, Harbin Medical University, Harbin 150001, China
| |
Collapse
|
20
|
Muriel C, Jalvo B, Redondo-Nieto M, Rivilla R, Martín M. Chemotactic Motility of Pseudomonas fluorescens F113 under Aerobic and Denitrification Conditions. PLoS One 2015; 10:e0132242. [PMID: 26161531 PMCID: PMC4498747 DOI: 10.1371/journal.pone.0132242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/11/2015] [Indexed: 01/01/2023] Open
Abstract
The sequence of the genome of Pseudomonas fluorescens F113 has shown the presence of multiple traits relevant for rhizosphere colonization and plant growth promotion. Among these traits are denitrification and chemotactic motility. Besides aerobic growth, F113 is able to grow anaerobically using nitrate and nitrite as final electron acceptors. F113 is able to perform swimming motility under aerobic conditions and under anaerobic conditions when nitrate is used as the electron acceptor. However, nitrite can not support swimming motility. Regulation of swimming motility is similar under aerobic and anaerobic conditions, since mutants that are hypermotile under aerobic conditions, such as gacS, sadB, kinB, algU and wspR, are also hypermotile under anaerobic conditions. However, chemotactic behavior is different under aerobic and denitrification conditions. Unlike most pseudomonads, the F113 genome encode three complete chemotaxis systems, Che1, Che2 and Che3. Mutations in each of the cheA genes of the three Che systems has shown that the three systems are functional and independent. Mutation of the cheA1 gene completely abolished swimming motility both under aerobic and denitrification conditions. Mutation of the cheA2 gene, showed only a decrease in swimming motility under both conditions, indicating that this system is not essential for chemotactic motility but is necessary for optimal motility. Mutation of the cheA3 gene abolished motility under denitrification conditions but only produced a decrease in motility under aerobic conditions. The three Che systems proved to be implicated in competitive rhizosphere colonization, being the cheA1 mutant the most affected.
Collapse
Affiliation(s)
- Candela Muriel
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Blanca Jalvo
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Rafael Rivilla
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
21
|
Mehboob F, Oosterkamp MJ, Koehorst JJ, Farrakh S, Veuskens T, Plugge CM, Boeren S, de Vos WM, Schraa G, Stams AJM, Schaap PJ. Genome and proteome analysis of Pseudomonas chloritidismutans AW-1 T that grows on n-decane with chlorate or oxygen as electron acceptor. Environ Microbiol 2015; 18:3247-3257. [PMID: 25900248 DOI: 10.1111/1462-2920.12880] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/25/2015] [Accepted: 03/05/2015] [Indexed: 01/15/2023]
Abstract
Growth of Pseudomonas chloritidismutans AW-1T on C7 to C12 n-alkanes with oxygen or chlorate as electron acceptor was studied by genome and proteome analysis. Whole genome shotgun sequencing resulted in a 5 Mbp assembled sequence with a G + C content of 62.5%. The automatic annotation identified 4767 protein-encoding genes and a putative function could be assigned to almost 80% of the predicted proteins. The distinct phylogenetic position of P. chloritidismutans AW-1T within the Pseudomonas stutzeri cluster became clear by comparison of average nucleotide identity values of sequenced genomes. Analysis of the proteome of P. chloritidismutans AW-1T showed the versatility of this bacterium to adapt to aerobic and anaerobic growth conditions with acetate or n-decane as substrates. All enzymes involved in the alkane oxidation pathway were identified. An alkane monooxygenase was detected in n-decane-grown cells, but not in acetate-grown cells. The enzyme was found when grown in the presence of oxygen or chlorate, indicating that under both conditions an oxygenase-mediated pathway is employed for alkane degradation. Proteomic and biochemical data also showed that both chlorate reductase and chlorite dismutase are constitutively present, but most abundant under chlorate-reducing conditions.
Collapse
Affiliation(s)
- Farrakh Mehboob
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Margreet J Oosterkamp
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Sumaira Farrakh
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Teun Veuskens
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, Wageningen, 6703 HA, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Gosse Schraa
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands.,Centre of Biological Engineering, University of Minho, Braga, 4710-057, Portugal
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands.
| |
Collapse
|
22
|
Zheng J, Doskey PV. Modeling nitrous oxide production and reduction in soil through explicit representation of denitrification enzyme kinetics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:2132-2139. [PMID: 25588118 DOI: 10.1021/es504513v] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An enzyme-explicit denitrification model with representations for pre- and de novo synthesized enzymes was developed to improve predictions of nitrous oxide (N2O) accumulations in soil and emissions from the surface. The metabolic model of denitrification is based on dual-substrate utilization and Monod growth kinetics. Enzyme synthesis/activation was incorporated into each sequential reduction step of denitrification to regulate dynamics of the denitrifier population and the active enzyme pool, which controlled the rate function. Parameterizations were developed from observations of the dynamics of N2O production and reduction in soil incubation experiments. The model successfully reproduced the dynamics of N2O and N2 accumulation in the incubations and revealed an important regulatory effect of denitrification enzyme kinetics on the accumulation of denitrification products. Pre-synthesized denitrification enzymes contributed 20, 13, 43, and 62% of N2O that accumulated in 48 h incubations of soil collected from depths of 0-5, 5-10, 10-15, and 15-25 cm, respectively. An enzyme activity function (E) was defined to estimate the relative concentration of active enzymes and variation in response to environmental conditions. The value of E allows for activities of pre-synthesized denitrification enzymes to be differentiated from de novo synthesized enzymes. Incorporating explicit representations of denitrification enzyme kinetics into biogeochemical models is a promising approach for accurately simulating dynamics of the production and reduction of N2O in soils.
Collapse
Affiliation(s)
- Jianqiu Zheng
- Atmospheric Sciences Program, ‡Department of Civil and Environmental Engineering, and §School of Forest Resources and Environmental Science, Michigan Technological University , Houghton, Michigan 49931-1295, United States
| | | |
Collapse
|
23
|
Sun Y, Li A, Zhang X, Ma F. Regulation of dissolved oxygen from accumulated nitrite during the heterotrophic nitrification and aerobic denitrification of Pseudomonas stutzeri T13. Appl Microbiol Biotechnol 2014; 99:3243-8. [DOI: 10.1007/s00253-014-6221-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 11/30/2022]
|
24
|
Zheng X, Su Y, Chen Y, Wan R, Li M, Wei Y, Huang H. Carboxyl-modified single-walled carbon nanotubes negatively affect bacterial growth and denitrification activity. Sci Rep 2014; 4:5653. [PMID: 25008009 PMCID: PMC4090615 DOI: 10.1038/srep05653] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/24/2014] [Indexed: 01/09/2023] Open
Abstract
Single-walled carbon nanotubes (SWNTs) have been used in a wide range of fields, and the surface modification via carboxyl functionalization can further improve their physicochemical properties. However, whether carboxyl-modified SWNT poses potential risks to microbial denitrification after its release into the environment remains unknown. Here we present the possible effects of carboxyl-modified SWNT on the growth and denitrification activity of Paracoccus denitrificans (a model denitrifying bacterium). It was found that carboxyl-modified SWNT were present both outside and inside the bacteria, and thus induced bacterial growth inhibition at the concentrations of 10 and 50 mg/L. After 24 h of exposure, the final nitrate concentration in the presence of 50 mg/L carboxyl-modified SWNT was 21-fold higher than that in its absence, indicating that nitrate reduction was substantially suppressed by carboxyl-modified SWNT. The transcriptional profiling revealed that carboxyl-modified SWNT led to the transcriptional activation of the genes encoding ribonucleotide reductase in response to DNA damage and also decreased the gene expressions involved in glucose metabolism and energy production, which was an important reason for bacterial growth inhibition. Moreover, carboxyl-modified SWNT caused the significant down-regulation and lower activity of nitrate reductase, which was consistent with the decreased efficiency of nitrate reduction.
Collapse
Affiliation(s)
- Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinglong Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Rui Wan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Mu Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yuanyuan Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
25
|
Zheng M, He D, Ma T, Chen Q, Liu S, Ahmad M, Gui M, Ni J. Reducing NO and N₂O emission during aerobic denitrification by newly isolated Pseudomonas stutzeri PCN-1. BIORESOURCE TECHNOLOGY 2014; 162:80-88. [PMID: 24747385 DOI: 10.1016/j.biortech.2014.03.125] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/21/2014] [Accepted: 03/23/2014] [Indexed: 06/03/2023]
Abstract
As two obligatory intermediates of denitrification, both NO and N2O had harmful environmental and biological impacts. An aerobic denitrifying bacterial strain PCN-1 was newly isolated and identified as Pseudomonas stutzeri, which was capable of high efficient nitrogen removal under aerobic condition with maximal NO and N2O accumulation as low as 0.003% and 0.33% of removed NO3(-)-N, respectively. Further experiment taking nitrite as denitrifying substrate indicated similar low NO and N2O emission of 0.006% and 0.29% of reduced NO2(-)-N, respectively. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that the coordinate expression of denitrification gene nirS (for cytochrome cd1 nitrite reductase), cnorB (for NO reductase) and nosZ (for N2O reductase) was the fundamental reason of low NO and N2O accumulation. Activated sludge system bioaugmented by strain PCN-1 demonstrated a significant reduction of NO and N2O emission from wastewater during aerobic denitrification, implied great potential of PCN-1 in practical applications.
Collapse
Affiliation(s)
- Maosheng Zheng
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Da He
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Tao Ma
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Qian Chen
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Sitong Liu
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Muhammad Ahmad
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Mengyao Gui
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Jinren Ni
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
26
|
Abstract
Laboratory-adapted strains of Thermus spp. have been shown to require oxygen for growth, including the model strains T. thermophilus HB27 and HB8. In contrast, many isolates of this species that have not been intensively grown under laboratory conditions keep the capability to grow anaerobically with one or more electron acceptors. The use of nitrogen oxides, especially nitrate, as electron acceptors is one of the most widespread capabilities among these facultative strains. In this process, nitrate is reduced to nitrite by a reductase (Nar) that also functions as electron transporter toward nitrite and nitric oxide reductases when nitrate is scarce, effectively replacing respiratory complex III. In many T. thermophilus denitrificant strains, most electrons for Nar are provided by a new class of NADH dehydrogenase (Nrc). The ability to reduce nitrite to NO and subsequently to N2O by the corresponding Nir and Nor reductases is also strain specific. The genes encoding the capabilities for nitrate (nar) and nitrite (nir and nor) respiration are easily transferred between T. thermophilus strains by natural competence or by a conjugation-like process and may be easily lost upon continuous growth under aerobic conditions. The reason for this instability is apparently related to the fact that these metabolic capabilities are encoded in gene cluster islands, which are delimited by insertion sequences and integrated within highly variable regions of easily transferable extrachromosomal elements. Together with the chromosomal genes, these plasmid-associated genetic islands constitute the extended pangenome of T. thermophilus that provides this species with an enhanced capability to adapt to changing environments.
Collapse
|
27
|
Yang Y, Huang S, Zhang Y, Xu F. Nitrogen Removal by Chelatococcus daeguensis TAD1 and Its Denitrification Gene Identification. Appl Biochem Biotechnol 2013; 172:829-39. [DOI: 10.1007/s12010-013-0590-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
|
28
|
Fluorescence in situ hybridization (FISH) detection of nitrite reductase transcripts (nirS mRNA) in Pseudomonas stutzeri biofilms relative to a microscale oxygen gradient. Syst Appl Microbiol 2012; 35:513-7. [DOI: 10.1016/j.syapm.2011.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/17/2011] [Accepted: 12/19/2011] [Indexed: 11/19/2022]
|
29
|
Zhu L, Ding W, Feng LJ, Dai X, Xu XY. Characteristics of an aerobic denitrifier that utilizes ammonium and nitrate simultaneously under the oligotrophic niche. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:3185-3191. [PMID: 22392687 DOI: 10.1007/s11356-012-0822-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/20/2012] [Indexed: 05/31/2023]
Abstract
INTRODUCTION An aerobic denitrifier was isolated from the Hua-Jia-Chi pond in China and identified as Pseudomonas mendocina 3-7 (Genbank No. HQ285879). This isolated strain could express periplasmic nitrate reductase which is essential for aerobic denitrification occurred when the dissolved oxygen (DO) level maintains at 3-10 mg L(-1). METHODS To determine whether the ability of isolated strain is exhibited in the bioremediation of polluted drinking source water, the heterotrophic nitrification and aerobic denitrification characteristics of P. mendocina 3-7 under different cultural conditions such as oxygen level, nitrate and organic concentrations were studied from the nitrogenous balance in the paper. RESULTS AND CONCLUSIONS By measuring the nitrogen balance in all experiments under different culture conditions, the removal of total organic carbon and ammonium was positively correlated with total nitrogen removal, especially under high substrate level. With substrate concentration decreasing, ammonium and nitrate removal occurred separately, and ammonium was completely utilized first under low substrate concentration. Compared to that under high substrate level, the specific growth rate of P. mendocina 3-7 was not low under the low substrate level and the pollutant removal efficiencies remained high, which implies the stronger nitrogen removal and acclimatization capacities of the strain in oligotrophic niches.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Environmental Engineering, Zhejiang University, No.866 Yuhangtang Road, Hangzhou 310058, People's Republic of China.
| | | | | | | | | |
Collapse
|
30
|
Wan C, Yang X, Lee DJ, Du M, Wan F, Chen C. Aerobic denitrification by novel isolated strain using NO-₂-N as nitrogen source. BIORESOURCE TECHNOLOGY 2011; 102:7244-7248. [PMID: 21620694 DOI: 10.1016/j.biortech.2011.04.101] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/28/2011] [Accepted: 04/30/2011] [Indexed: 05/30/2023]
Abstract
Biological denitrification reaction can be achieved under aerobic environment. Few aerobic denitrifiers using nitrite as sole nitrogen source were identified. Using nitrite as the sole nitrogen source, this work assessed the denitrification activity of yy7, an aerobic heterotrophic denitrifier identified as Pseudomonas sp. (94% similarity) by 16S rRNA sequencing analysis. The logistic equation describes the cell growth curve, yielding a generation time of 2.9h at an initial 18 mg l(-1)NO(-)₂-N. Reduction of NO(-)₂-N was primarily achieved during its logarithmic growth phase, and was accompanied by an increase in suspension pH and near complete consumption of dissolved oxygen. Three genes relating to nirK, norB, and nosZ were noted to involve in isolate strain. Isolate yy7 can survive and remove up to 40 mg l(-1)NO(-)₂-N and, hence, can be applied as an effective aerobic denitrifier during simultaneous nitrification and denitrification via nitrite processes.
Collapse
Affiliation(s)
- Chunli Wan
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
31
|
Shannon KEM, Saleh-Lakha S, Burton DL, Zebarth BJ, Goyer C, Trevors JT. Effect of nitrate and glucose addition on denitrification and nitric oxide reductase (cnorB) gene abundance and mRNA levels in Pseudomonas mandelii inoculated into anoxic soil. Antonie van Leeuwenhoek 2011; 100:183-95. [DOI: 10.1007/s10482-011-9577-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 03/12/2011] [Indexed: 11/24/2022]
|
32
|
Novel denitrifying bacterium Ochrobactrum anthropi YD50.2 tolerates high levels of reactive nitrogen oxides. Appl Environ Microbiol 2009; 75:5186-94. [PMID: 19542343 DOI: 10.1128/aem.00604-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most studies of bacterial denitrification have used nitrate (NO3-) as the first electron acceptor, whereas relatively less is understood about nitrite (NO2-) denitrification. We isolated novel bacteria that proliferated in the presence of high levels of NO2- (72 mM). Strain YD50.2, among several isolates, was taxonomically positioned within the alpha subclass of Proteobacteria and identified as Ochrobactrum anthropi YD50.2. This strain denitrified NO2-, as well as NO3-. The gene clusters for denitrification (nar, nir, nor, and nos) were cloned from O. anthropi YD50.2, in which the nir and nor operons were linked. We confirmed that nirK in the nir-nor operon produced a functional NO2- reductase containing copper that was involved in bacterial NO2- reduction. The strain denitrified up to 40 mM NO2- to dinitrogen under anaerobic conditions in which other denitrifiers or NO3- reducers such as Pseudomonas aeruginosa and Ralstonia eutropha and nitrate-respiring Escherichia coli neither proliferated nor reduced NO2-. Under nondenitrifying aerobic conditions, O. anthropi YD50.2 and its type strain ATCC 49188(T) proliferated even in the presence of higher levels of NO2- (100 mM), and both were considerably more resistant to acidic NO2- than were the other strains noted above. These results indicated that O. anthropi YD50.2 is a novel denitrifier that has evolved reactive nitrogen oxide tolerance mechanisms.
Collapse
|
33
|
Abstract
A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N(2)O-to-N(2) production ratio suggested delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic animals is quantitatively important in nitrate-rich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability in tropical regions and the numeric dominance of filter- and deposit-feeders in eutrophic ecosystems.
Collapse
|
34
|
Liu X, Gao C, Zhang A, Jin P, Wang L, Feng L. Thenosgene cluster from gram-positive bacteriumGeobacillus thermodenitrificansNG80-2 and functional characterization of the recombinant NosZ. FEMS Microbiol Lett 2008; 289:46-52. [DOI: 10.1111/j.1574-6968.2008.01362.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
35
|
Nitric oxide reductase gene expression and nitrous oxide production in nitrate-grown Pseudomonas mandelii. Appl Environ Microbiol 2008; 74:6876-9. [PMID: 18820058 DOI: 10.1128/aem.01533-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pure cultures of Pseudomonas mandelii were incubated with or without nitrate, which acts as a substrate and an electron acceptor for denitrification. Nitric oxide reductase (cnorB) gene expression was measured using a quantitative reverse transcription-PCR, and nitrous oxide emissions were measured by gas chromatography. P. mandelii cells in either the presence or absence of nitrate demonstrated an increase in cnorB gene expression during the first 3 h of growth. The level of expression of cnorB in nitrate-amended cells remained high (average, 2.06 x 10(8) transcripts/microg of RNA), while in untreated cells it decreased to an average of 3.63 x 10(6) transcripts/microg of RNA from 4 to 6 h. Nitrous oxide accumulation in the headspace was detected at 2 h, and cumulative emissions continued to increase over a 24-h period to 101 mumol in nitrate-amended cells. P. mandelii cnorB gene expression was not detected under aerobic conditions. These results demonstrate that P. mandelii cnorB gene expression was induced 203-fold at 4 h when nitrate was present in the medium. Accumulations of N(2)O indicated that the cNorB enzyme was synthesized and active.
Collapse
|
36
|
Morley N, Baggs EM, Dörsch P, Bakken L. Production of NO, N2O and N2 by extracted soil bacteria, regulation by NO2(-) and O2 concentrations. FEMS Microbiol Ecol 2008; 65:102-12. [PMID: 18462397 DOI: 10.1111/j.1574-6941.2008.00495.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The oxygen control of denitrification and its emission of NO/N2O/N2 was investigated by incubation of Nycodenz-extracted soil bacteria in an incubation robot which monitors O2, NO, N2O and N2 concentrations (in He+O2 atmosphere). Two consecutive incubations were undertaken to determine (1) the regulation of denitrification by O2 and NO2(-) during respiratory O2 depletion and (2) the effects of re-exposure to O2 of cultures with fully expressed denitrification proteome. Early denitrification was only detected (as NO and N2O) at <or=80 microM O2 in treatments with NO2(-), and the rates were three orders of magnitude lower than the rates observed after oxygen depletion (with N2 as the primary product). When re-exposed to O2, the cultures continued to denitrify (8-55% of the rates during the foregoing anoxic phase), but its main product was N2O. The N2O reductase activity recovered as oxygen was being depleted. The results suggest that expression of the denitrifying proteome may result in significant subsequent aerobic denitrification, and this has profound implications for the understanding and modelling of denitrification and N2O emission. Short anoxic spells caused by transient flooding during rainfall, could lead to subsequent unbalanced aerobic denitrification, in which N2O is a major end product.
Collapse
Affiliation(s)
- Nicholas Morley
- School of Biological Sciences, Plant and Soil Science, University of Aberdeen, Aberdeen, UK.
| | | | | | | |
Collapse
|
37
|
Bergaust L, Shapleigh J, Frostegård A, Bakken L. Transcription and activities of NOx reductases in Agrobacterium tumefaciens: the influence of nitrate, nitrite and oxygen availability. Environ Microbiol 2008; 10:3070-81. [PMID: 18312398 DOI: 10.1111/j.1462-2920.2007.01557.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The ability of Agrobacetrium tumefaciens to perform balanced transitions from aerobic to anaerobic respiration was studied by monitoring oxygen depletion, transcription of nirK and norB, and the concentrations of nitrite, nitric oxide (NO) and nitrous oxide in stirred batch cultures with different initial oxygen, nitrate or nitrite concentrations. Nitrate concentrations (0.2-2 mM) did not affect oxygen depletion, nor the oxygen concentration at which denitrification was initiated (1-2 microM). Nitrite (0.2-2 mM), on the other hand, retarded the oxygen depletion as it reached approximately 20 microM, and caused initiation of active denitrification as oxygen concentrations reached 10-17 microM. Unbalanced transitions occurred in treatments with high cell densities (i.e. with rapid transition from oxic to anoxic conditions), seen as NO accumulation to muM concentrations and impeded nitrous oxide production. This phenomenon was most severe in nitrite treatments, and reduced the cells' ability to respire oxygen during subsequent oxic conditions. Transcripts of norB were only detectable during the period with active denitrification. In contrast, nirK transcripts were detected at low levels both before and after this period. The results demonstrate that the transition from aerobic to anaerobic metabolism is a regulatory challenge, with implications for survival and emission of trace gases from denitrifying bacteria.
Collapse
Affiliation(s)
- Linda Bergaust
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, As, Norway.
| | | | | | | |
Collapse
|
38
|
Morozkina EV, Zvyagilskaya RA. Nitrate reductases: structure, functions, and effect of stress factors. BIOCHEMISTRY (MOSCOW) 2008; 72:1151-60. [PMID: 18021072 DOI: 10.1134/s0006297907100124] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structural and functional peculiarities of four types of nitrate reductases are considered: assimilatory nitrate reductase of eukaryotes, as well as cytoplasmic assimilatory, membrane-bound respiratory, and periplasmic dissimilatory bacterial nitrate reductases. Arguments are presented showing that eukaryotic organisms are capable of nitrate dissimilation. Data concerning new classes of extremophil nitrate reductases, whose active center does not contain molybdocofactor, are summarized.
Collapse
Affiliation(s)
- E V Morozkina
- Bach Institute of Biochemistry, Russian Academy of Sciences, 119071 Moscow, Russia.
| | | |
Collapse
|
39
|
Abstract
The gut of the earthworm constitutes a mobile anoxic microzone to which the microorganisms of aerated soils are subjected. During gut passage, the in situ factors of the earthworm gut, which include anoxia and high concentrations of organic substrates, appear to greatly stimulate a subset of ingested soil microorganisms, including denitrifying and fermentative bacteria. The selective stimulation of ingested soil microbes by the unique microconditions of the earthworm gut (a) results in the in vivo emission of denitrification-derived dinitrogen (N(2)) and the greenhouse gas nitrous oxide (N(2)O) by the earthworm, and (b) might affect the fitness, culturability, and diversity of certain members of soil microbial biomes. These observations illustrate the impact that soil macrofauna might have on terrestrial nitrogen cycle processes via their transient hosting of ingested prokaryotes.
Collapse
Affiliation(s)
- Harold L Drake
- Department of Ecological Microbiology, University of Bayreuth, 95440 Bayreuth, Germany.
| | | |
Collapse
|
40
|
Heylen K, Vanparys B, Gevers D, Wittebolle L, Boon N, De Vos P. Nitric oxide reductase (norB) gene sequence analysis reveals discrepancies with nitrite reductase (nir) gene phylogeny in cultivated denitrifiers. Environ Microbiol 2007; 9:1072-7. [PMID: 17359277 DOI: 10.1111/j.1462-2920.2006.01194.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gene sequence analysis of cnorB and qnorB, both encoding nitric oxide reductases, was performed on pure cultures of denitrifiers, for which previously nir genes were analysed. Only 30% of the 227 denitrifying strains rendered a norB amplicon. The cnorB gene was dominant in Alphaproteobacteria, and dominantly coexisted with the nirK gene, coding for the copper-containing nitrite reductase. Both norB genes were equally present in Betaproteobacteria but no linked distributional pattern of nir and norB genes could be observed. The overall cnorB phylogeny was not congruent with the widely accepted organism phylogeny based on 16S rRNA gene sequence analysis, with strains from different bacterial classes having identical cnorB sequences. Denitrifiers and non-denitrifiers could be distinguished through qnorB gene phylogeny, without further grouping at a higher taxonomic resolution. Comparison of nir and norB phylogeny revealed that genetic linkage of both genes is not widespread among denitrifiers. Thus, independent evolution of the genes for both nitrogen oxide reductases does also occur.
Collapse
Affiliation(s)
- Kim Heylen
- Laboratory of Microbiology, Department of Biochemistry, Physiology and Microbiology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium.
| | | | | | | | | | | |
Collapse
|
41
|
Zumft WG, Kroneck PMH. Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea. Adv Microb Physiol 2006; 52:107-227. [PMID: 17027372 DOI: 10.1016/s0065-2911(06)52003-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
N2O is a potent greenhouse gas and stratospheric reactant that has been steadily on the rise since the beginning of industrialization. It is an obligatory inorganic metabolite of denitrifying bacteria, and some production of N2O is also found in nitrifying and methanotrophic bacteria. We focus this review on the respiratory aspect of N2O transformation catalysed by the multicopper enzyme nitrous oxide reductase (N2OR) that provides the bacterial cell with an electron sink for anaerobic growth. Two types of Cu centres discovered in N2OR were both novel structures among the Cu proteins: the mixed-valent dinuclear Cu(A) species at the electron entry site of the enzyme, and the tetranuclear Cu(Z) centre as the first catalytically active Cu-sulfur complex known. Several accessory proteins function as Cu chaperone and ABC transporter systems for the biogenesis of the catalytic centre. We describe here the paradigm of Z-type N2OR, whose characteristics have been studied in most detail in the genera Pseudomonas and Paracoccus. Sequenced bacterial genomes now provide an invaluable additional source of information. New strains harbouring nos genes and capability of N2O utilization are being uncovered. This reveals previously unknown relationships and allows pattern recognition and predictions. The core nos genes, nosZDFYL, share a common phylogeny. Most principal taxonomic lineages follow the same biochemical and genetic pattern and share the Z-type enzyme. A modified N2OR is found in Wolinella succinogenes, and circumstantial evidence also indicates for certain Archaea another type of N2OR. The current picture supports the view of evolution of N2O respiration prior to the separation of the domains Bacteria and Archaea. Lateral nos gene transfer from an epsilon-proteobacterium as donor is suggested for Magnetospirillum magnetotacticum and Dechloromonas aromatica. In a few cases, nos gene clusters are plasmid borne. Inorganic N2O metabolism is associated with a diversity of physiological traits and biochemically challenging metabolic modes or habitats, including halorespiration, diazotrophy, symbiosis, pathogenicity, psychrophily, thermophily, extreme halophily and the marine habitat down to the greatest depth. Components for N2O respiration cover topologically the periplasm and the inner and outer membranes. The Sec and Tat translocons share the task of exporting Nos components to their functional sites. Electron donation to N2OR follows pathways with modifications depending on the host organism. A short chronology of the field is also presented.
Collapse
Affiliation(s)
- Walter G Zumft
- Institute of Applied Biosciences, Division of Molecular Microbiology, University of Karlsruhe, D-76128 Karlsruhe, Germany
| | | |
Collapse
|
42
|
Zumft WG. Biogenesis of the bacterial respiratory CuA, Cu-S enzyme nitrous oxide reductase. J Mol Microbiol Biotechnol 2006; 10:154-66. [PMID: 16645312 DOI: 10.1159/000091562] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nitrous oxide reductase (NosZ, EC 1.7.99.6) is the terminal oxidoreductase of a respiratory electron transfer chain that transforms nitrous oxide to dinitrogen. The enzyme carries six Cu atoms. Two are arranged in the mixed-valent binuclear CuA site, and four make up the mu4-sulfide-bridged Cu cluster, CuZ. The biogenesis of a catalytically active NosZ requires auxiliary functions for metal center assembly in the periplasm. Both Tat and Sec pathways share the task to transport the various Nos proteins to their functional sites. Biogenesis of NosZ requires an ABC transporter complex and the periplasmic Cu chaperone NosL. Sustaining whole-cell NosZ function depends on the periplasmic, FAD-containing protein NosX, and the membrane-bound iron-sulfur flavoprotein NosR. Most components with a biogenetic function are now amenable to structural studies.
Collapse
Affiliation(s)
- Walter G Zumft
- Institute of Applied Biosciences, Division of Molecular Microbiology, University of Karlsruhe, Karlsruhe, Germany.
| |
Collapse
|
43
|
|
44
|
Argandoña M, Martínez-Checa F, Llamas I, Arco Y, Quesada E, del Moral A. A membrane-bound nitrate reductase encoded by the narGHJI operon is responsible for anaerobic respiration in Halomonas maura. Extremophiles 2006; 10:411-9. [PMID: 16612553 DOI: 10.1007/s00792-006-0515-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 01/11/2006] [Indexed: 10/24/2022]
Abstract
The halophilic bacterium Halomonas maura is capable of anaerobic respiration on nitrates. By insertional mutagenesis with the minitransposon Tn-5 we obtained the mutant Tc62, which was incapable of anaerobic respiration on nitrates. An analysis of the regions adjacent to the transposon allowed us to characterize the membrane-bound anaerobic-respiratory nitrate reductase narGHJI gene cluster in H. maura. We identified consensus sequences for fumarate and nitrate reductase regulator (FNR)-like protein-binding sites in the promoter regions of the nar genes and consensus sequences corresponding to the NarL binding sites upstream of the nar genes. RT-PCR analysis showed that the narGHJI operon was expressed in response to anaerobic conditions when nitrate was available as electron acceptor. This membrane-bound nitrate reductase is the only enzyme responsible for anaerobic respiration on nitrate in H. maura. In this article we discuss the possible relationship between this enzyme and a dissimilatory nitrate-reduction-to-ammonia process (DNRA) in H. maura and its role in the colonization of the rhizosphere.
Collapse
Affiliation(s)
- Montserrat Argandoña
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja s/n, 18071 Granada, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Philippot L, Hallin S. Finding the missing link between diversity and activity using denitrifying bacteria as a model functional community. Curr Opin Microbiol 2005; 8:234-9. [PMID: 15939345 DOI: 10.1016/j.mib.2005.04.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 04/12/2005] [Indexed: 11/16/2022]
Abstract
The recent development and application of numerous methods mainly based on 16S rDNA analyses have brought insights into the questions of which and how many bacterial populations can be found in a given ecosystem. A new and challenging question for microbial ecologists has emerged from the exploration of this diversity: what is its significance for ecosystem functioning? We propose the denitrifying bacteria as a model microbial community for understanding the relationship between community structure and activity, and have summarized the recent progress in studies of this functional community.
Collapse
Affiliation(s)
- Laurent Philippot
- UMR Microbiologie et Géochimie des Sols, INRA-Université de Bourgogne, CMSE, 17, rue Sully, BV 86510, 21065 Dijon Cedex, France.
| | | |
Collapse
|
46
|
Mattila K, Haltia T. How does nitrous oxide reductase interact with its electron donors?-A docking study. Proteins 2005; 59:708-22. [PMID: 15822112 DOI: 10.1002/prot.20437] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electron transfer reactions are crucial for respiration and denitrification. In this article, we analyze the interaction of nitrous oxide reductase with its electron donors cytochrome c550 and pseudoazurin. Our docking protocol comprises generation of candidate complexes followed by a selection step based on the distance of the donor and acceptor groups in each partner protein. Finally, the structures of the candidate complexes were optimized using a force field calculation, together with a second distance filtering step. The prediction power of this protocol was studied using the crystal structure of the cytochrome c2/photosynthetic reaction center of Rhodobacter sphaeroides as a reference. The results suggest that both cytochrome c550 and pseudoazurin bind at the same hydrophobic surface patch residing near the CuA center of nitrous oxide reductase. The central, well-conserved interaction surface of the donors is hydrophobic, but it is surrounded by numerous lysine side-chains, which interact electrostatically with analogously positioned side-chain carboxylates of the acceptor. The prediction output is an ensemble of energetically similar structures that are rotationally related to each other. While such an ensemble may reflect incomplete prediction power of the docking protocol, it may also manifest a biological situation where there are multiple ways of forming a productive electron transfer complex. Analyses of the predicted structures and the conservation pattern of the amino acid residues suggest the existence of specific electron transfer pathways to and from the CuA center of nitrous oxide reductase.
Collapse
Affiliation(s)
- Kimmo Mattila
- Institute of Biomedical Sciences/Biochemistry, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
47
|
Roussel-Delif L, Tarnawski S, Hamelin J, Philippot L, Aragno M, Fromin N. Frequency and diversity of nitrate reductase genes among nitrate-dissimilating Pseudomonas in the rhizosphere of perennial grasses grown in field conditions. MICROBIAL ECOLOGY 2005; 49:63-72. [PMID: 15650915 DOI: 10.1007/s00248-003-0228-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Accepted: 02/19/2004] [Indexed: 05/24/2023]
Abstract
A total of 1246 Pseudomonas strains were isolated from the rhizosphere of two perennial grasses (Lolium perenne and Molinia coerulea) with different nitrogen requirements. The plants were grown in their native soil under ambient and elevated atmospheric CO2 content (pCO2) at the Swiss FACE (Free Air CO2 Enrichment) facility. Root-, rhizosphere-, and non-rhizospheric soil-associated strains were characterized in terms of their ability to reduce nitrate during an in vitro assay and with respect to the genes encoding the membrane-bound (named NAR) and periplasmic (NAP) nitrate reductases so far described in the genus Pseudomonas. The diversity of corresponding genes was assessed by PCR-RFLP on narG and napA genes, which encode the catalytic subunit of nitrate reductases. The frequency of nitrate-dissimilating strains decreased with root proximity for both plants and was enhanced under elevated pCO2 in the rhizosphere of L. perenne. NAR (54% of strains) as well as NAP (49%) forms were present in nitrate-reducing strains, 15.5% of the 439 strains tested harbouring both genes. The relative proportions of narG and napA detected in Pseudomonas strains were different according to root proximity and for both pCO2 treatments: the NAR form was more abundant close to the root surface and for plants grown under elevated pCO2. Putative denitrifiers harbored mainly the membrane-bound (NAR) form of nitrate reductase. Finally, both narG and napA sequences displayed a high level of diversity. Anyway, this diversity was correlated neither with the root proximity nor with the pCO2 treatment.
Collapse
Affiliation(s)
- L Roussel-Delif
- Laboratoire de Microbiologie, Université de Neuchâtel, rue Emile Argand 11, 2007, Neuchâtel, Switzerland
| | | | | | | | | | | |
Collapse
|
48
|
Asanuma N, Iwamoto M, Yoshii T, Hino T. Molecular characterization and transcriptional regulation of nitrate reductase in a ruminal bacterium, Selenomonas ruminantium. J GEN APPL MICROBIOL 2004; 50:55-63. [PMID: 15248143 DOI: 10.2323/jgam.50.55] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nitrate reductase (NaR) of a strain of Selenomonas ruminantium was purified, and the gene encoding NaR (nar) was sequenced. The 6.4 kbp nar gene consisted of narG, H, J, and I in this order. The deduced amino acid sequences of these subunits resembled those of membrane-bound nitrate reductase-A reported for Escherichia coli. It was shown that narG, H, J, and I are transcribed as a single polycistronic message (nar operon). The level of intracellular nar-mRNA was higher when S. ruminantium was grown with nitrate than when grown without nitrate, suggesting that nar transcription is enhanced by nitrate. The level of nar-mRNA, which was in parallel to the amount of NaR per cellular nitrogen, was suggested to be enhanced in response to the deficiency of energy and electron supply. Therefore, NaR synthesis in S. ruminantium appeared to be regulated at the transcriptional level in response to the availability of energy and electrons. S. ruminantium reduced nitrate and fumarate simultaneously with no significant effect of fumarate on nar transcription. Addition of fumarate stimulated nitrate reduction, which was caused by increased cell growth because of increased acquirement of ATP via electron transport phosphorylation coupled with fumarate reduction.
Collapse
Affiliation(s)
- Narito Asanuma
- Department of Life Science, College of Agriculture, Meiji University, Kawasaki 214-8571, Japan.
| | | | | | | |
Collapse
|
49
|
Lledó B, Martínez-Espinosa RM, Marhuenda-Egea FC, Bonete MJ. Respiratory nitrate reductase from haloarchaeon Haloferax mediterranei: biochemical and genetic analysis. Biochim Biophys Acta Gen Subj 2004; 1674:50-9. [PMID: 15342113 DOI: 10.1016/j.bbagen.2004.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 05/19/2004] [Accepted: 05/19/2004] [Indexed: 11/19/2022]
Abstract
The Haloferax mediterranei nar operon has been sequenced and its regulation has been characterized at transcriptional level. The nar operon encodes seven open reading frames(ORFs) (ORF1 narB, narC, ORF4, narG, narH, ORF7 and narJ). ORF1, ORF4 and ORF7 are open reading frames with no assigned function, however the rest of them encoded different proteins. narB codes for a 219-amino-acid-residue iron Rieske protein. narC encodes a protein of 486 amino acid residues identified by databases searches as cytochrome-b (narC). The narG gene encodes a protein with 983 amino acid residues and is identified as a respiratory nitrate reductase catalytic subunit (narG). NarH protein has been identified as an electron transfer respiratory nitrate reductase subunit (narH). The last ORF encodes a chaperonin-like protein (narJ) of 242 amino acid residues. The respiratory nitrate reductase was purified 21-fold from H. mediterranei membranes. Based on SDS-PAGE and gel-filtration chromatography under native conditions, the enzyme complex consists of two subunits of 112 and 61 kDa. The optimum temperature for activity was 70 degrees C at 3.4 M NaCl and the stability did not show a direct dependence on salt concentration. Respiratory nitrate reductase showed maximum activity at pH 7.9 and pH 8.2 when assays were carried out at 40 and 60 degrees C, respectively. The absorption spectrum indicated that Nar contains Fe-S clusters. Reverse transcriptase (RT-PCR) shows that regulation of nar genes occurs at transcriptional level induced by oxygen-limiting conditions and the presence of nitrate.
Collapse
Affiliation(s)
- B Lledó
- División de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | | | | | | |
Collapse
|
50
|
Lee KH, Cho MH, Chung T, Chang HN, Lim SH, Lee J. Characterization of an oxygen-dependent inducible promoter, the Escherichia coli nar promoter, in gram-negative host strains. Biotechnol Bioeng 2003; 82:271-7. [PMID: 12599253 DOI: 10.1002/bit.10567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Escherichia coli nar promoter is maximally induced under anaerobic conditions in the presence of nitrate ion or under anaerobic only conditions, depending on the genotype of the E. coli nar promoter. Previously, we found that the E. coli nar promoter has some desirable characteristics as an inducible promoter in the E. coli host strains. In this study, the E. coli nar promoter with lacZ gene at the downstream was cloned onto a broad-host-range Gram-negative vector, pBBR122. It was then induced in some other Gram-negative host strains, such as Agrobacterium, Pseudomonas, and Rhizobium, to determine whether the E. coli nar promoter could be used as an inducible promoter in these strains. From shake-flask experiments it was found that the wild-type E. coli nar promoter cloned onto pBBR122, pNW61, was suppressed under aerobic conditions in an Agrobacterium host strain, was partially induced under microaerobic only conditions, and was maximally induced under microaerobic conditions in the presence of nitrate ion. Whereas the mutant-type E. coli nar promoter cloned onto pBBR122, pNW618, was suppressed under aerobic conditions and was maximally induced under microaerobic conditions, regardless of the presence of nitrate ion. This kind of induction pattern observed for the E. coli nar promoters in the Agrobacterium host strain was similar to that observed for the E. coli nar promoters in the E. coli host strain. On the other hand, it was found that both of the E. coli nar promoters, pNW61 and pNW618, in a Pseudomonas host strain were partially induced under aerobic conditions and were maximally induced under microaerobic conditions, regardless of the presence of nitrate. Finally, it was found that both of the E. coli nar promoters in a Rhizobium host strain were minimally induced, regardless of the presence of oxygen or nitrate ion. Similar induction patterns for the three strains were also observed from fermentor experiments in which the dissolved oxygen (DO) level was tightly controlled. From an evolutionary point of view, the results from the three Gram-negative host strains indicate that the E. coli nar promoter system, including the promoter and regulatory proteins, was best conserved in the Agrobacterium host strain and the least conserved in the Rhizobium host strain. From an industrial point of view, the results indicate that the E. coli nar promoter system can be used as an oxygen-dependent inducible promoter in both Agrobacterium and Pseudomonas host strains.
Collapse
Affiliation(s)
- Kil Ho Lee
- School of Chemical Engineering and Technology, Yeungnam University, Kyungbuk, Korea
| | | | | | | | | | | |
Collapse
|