1
|
Bayfield MA, Vinayak J, Kerkhofs K, Mansouri-Noori F. La proteins couple use of sequence-specific and non-specific binding modes to engage RNA substrates. RNA Biol 2021; 18:168-177. [PMID: 30777481 PMCID: PMC7928037 DOI: 10.1080/15476286.2019.1582955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/31/2022] Open
Abstract
La shuttles between the nucleus and cytoplasm where it binds nascent RNA polymerase III (pol III) transcripts and mRNAs, respectively. La protects the 3' end of pol III transcribed RNA precursors, such as pre-tRNAs, through the use of a well-characterized UUU-3'OH binding mode. La proteins are also RNA chaperones, and La-dependent RNA chaperone activity is hypothesized to promote pre-tRNA maturation and translation at cellular and viral internal ribosome entry sites via binding sites distinct from those used for UUU-3'OH recognition. Since the publication of La-UUU-3'OH co-crystal structures, biochemical and genetic experiments have expanded our understanding of how La proteins use UUU-3'OH-independent binding modes to make sequence-independent contacts that can increase affinity for ligands and promote RNA remodeling. Other recent work has also expanded our understanding of how La binds mRNAs through contacts to the poly(A) tail. In this review, we focus on advances in the study of La protein-RNA complex surfaces beyond the description of the La-UUU-3'OH binding mode. We highlight recent advances in the functions of expected canonical nucleic acid interaction surfaces, a heightened appreciation of disordered C-terminal regions, and the nature of sequence-independent RNA determinants in La-RNA target binding. We further discuss how these RNA binding modes may have relevance to the function of the La-related proteins.
Collapse
Affiliation(s)
- Mark A. Bayfield
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Jyotsna Vinayak
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Kyra Kerkhofs
- Department of Biology, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
2
|
TOP mRNPs: Molecular Mechanisms and Principles of Regulation. Biomolecules 2020; 10:biom10070969. [PMID: 32605040 PMCID: PMC7407576 DOI: 10.3390/biom10070969] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
The cellular response to changes in the surrounding environment and to stress requires the coregulation of gene networks aiming to conserve energy and resources. This is often achieved by downregulating protein synthesis. The 5’ Terminal OligoPyrimidine (5’ TOP) motif-containing mRNAs, which encode proteins that are essential for protein synthesis, are the primary targets of translational control under stress. The TOP motif is a cis-regulatory RNA element that begins directly after the m7G cap structure and contains the hallmark invariant 5’-cytidine followed by an uninterrupted tract of 4–15 pyrimidines. Regulation of translation via the TOP motif coordinates global protein synthesis with simultaneous co-expression of the protein components required for ribosome biogenesis. In this review, we discuss architecture of TOP mRNA-containing ribonucleoprotein complexes, the principles of their assembly, and the modes of regulation of TOP mRNA translation.
Collapse
|
3
|
Chalorak P, Dharmasaroja P, Meemon K. Downregulation of eEF1A/EFT3-4 Enhances Dopaminergic Neurodegeneration After 6-OHDA Exposure in C. elegans Model. Front Neurosci 2020; 14:303. [PMID: 32425742 PMCID: PMC7212436 DOI: 10.3389/fnins.2020.00303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the aggregation of α-synuclein protein and selective death of dopaminergic (DA) neurons in the substantia nigra of the midbrain. Although the molecular pathogenesis of PD is not completely understood, a recent study has reported that eukaryotic translation elongation factor 1 alpha (eEF1A) declined in the PD-affected brain. Therefore, the roles of eEF1A1 and eEF1A2 in the prevention of DA neuronal cell death in PD are aimed to be investigated. Herein, by using Caenorhabditis elegans as a PD model, we investigated the role of eft-3/eft-4, the worm homolog of eEF1A1/eEF1A2, on 6-hydroxydopamine (6-OHDA)-induced DA neuron degeneration. Our results demonstrated that the expressions of eft-3 and eft-4 were decreased in the 6-OHDA-induced worms. RNA interference (RNAi) of eft-3 and eft-4 resulted in dramatic exacerbation of DA neurodegeneration induced by 6-OHDA, as well as aggravated the food-sensing behavior, ethanol avoidance, and decreased lifespan when compared with only 6-OHDA-induced worms. Moreover, downregulation of eft-3/4 in 6-OHDA-induced worms suppressed the expression of the anti-apoptotic genes, including PI3K/age-1, PDK-1/pdk-1, mTOR/let-363, and AKT-1,2/akt-1,2, promoting the expression of apoptotic genes such as BH3/egl-1 and Caspase-9/ced-3. Collectively, these findings indicate that eEF1A plays an important role in the 6-OHDA-induced neurodegeneration through the phosphatidylinositol 3-kinase (PI3K)/serine/threonine protein kinase (Akt)/mammalian target of rapamycin (mTOR) pathway and that eEF1A isoforms may be a novel and effective pro-survival factor in protective DA neurons against toxin-induced neuronal death.
Collapse
Affiliation(s)
- Pawanrat Chalorak
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Translation of Human β-Actin mRNA is Regulated by mTOR Pathway. Genes (Basel) 2019; 10:genes10020096. [PMID: 30700035 PMCID: PMC6410274 DOI: 10.3390/genes10020096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 01/09/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) kinase is a well-known master regulator of growth-dependent gene expression in higher eukaryotes. Translation regulation is an important function of the mTORC1 pathway that controls the synthesis of many ribosomal proteins and translation factors. Housekeeping genes such as β-actin (ACTB) are widely used as negative control genes in studies of growth-dependent translation. Here we demonstrate that translation of both endogenous and reporter ACTB mRNA is inhibited in the presence of mTOR kinase inhibitor (Torin1) and under amino acid starvation. Notably, 5’UTR and promoter of ACTB are sufficient for the mTOR-dependent translational response, and the degree of mTOR-sensitivity of ACTB mRNA translation is cell type-dependent.
Collapse
|
5
|
Maraia RJ, Mattijssen S, Cruz-Gallardo I, Conte MR. The La and related RNA-binding proteins (LARPs): structures, functions, and evolving perspectives. WILEY INTERDISCIPLINARY REVIEWS. RNA 2017; 8:10.1002/wrna.1430. [PMID: 28782243 PMCID: PMC5647580 DOI: 10.1002/wrna.1430] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/02/2023]
Abstract
La was first identified as a polypeptide component of ribonucleic protein complexes targeted by antibodies in autoimmune patients and is now known to be a eukaryote cell-ubiquitous protein. Structure and function studies have shown that La binds to a common terminal motif, UUU-3'-OH, of nascent RNA polymerase III (RNAP III) transcripts and protects them from exonucleolytic decay. For precursor-tRNAs, the most diverse and abundant of these transcripts, La also functions as an RNA chaperone that helps to prevent their misfolding. Related to this, we review evidence that suggests that La and its link to RNAP III were significant in the great expansions of the tRNAomes that occurred in eukaryotes. Four families of La-related proteins (LARPs) emerged during eukaryotic evolution with specialized functions. We provide an overview of the high-resolution structural biology of La and LARPs. LARP7 family members most closely resemble La but function with a single RNAP III nuclear transcript, 7SK, or telomerase RNA. A cytoplasmic isoform of La protein as well as LARPs 6, 4, and 1 function in mRNA metabolism and translation in distinct but similar ways, sometimes with the poly(A)-binding protein, and in some cases by direct binding to poly(A)-RNA. New structures of LARP domains, some complexed with RNA, provide novel insights into the functional versatility of these proteins. We also consider LARPs in relation to ancestral La protein and potential retention of links to specific RNA-related pathways. One such link may be tRNA surveillance and codon usage by LARP-associated mRNAs. WIREs RNA 2017, 8:e1430. doi: 10.1002/wrna.1430 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Richard J. Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
- Commissioned Corps, U.S. Public Health Service, Rockville, MD USA
| | - Sandy Mattijssen
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Isabel Cruz-Gallardo
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| |
Collapse
|
6
|
Blewett NH, Iben JR, Gaidamakov S, Maraia RJ. La Deletion from Mouse Brain Alters Pre-tRNA Metabolism and Accumulation of Pre-5.8S rRNA, with Neuron Death and Reactive Astrocytosis. Mol Cell Biol 2017; 37:e00588-16. [PMID: 28223366 PMCID: PMC5477551 DOI: 10.1128/mcb.00588-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/01/2016] [Accepted: 02/06/2017] [Indexed: 12/20/2022] Open
Abstract
Human La antigen (Sjögren's syndrome antigen B [SSB]) is an abundant multifunctional RNA-binding protein. In the nucleoplasm, La binds to and protects from 3' exonucleases, the ends of precursor tRNAs, and other transcripts synthesized by RNA polymerase III and facilitates their maturation, while a nucleolar isoform has been implicated in rRNA biogenesis by multiple independent lines of evidence. We showed previously that conditional La knockout (La cKO) from mouse cortex neurons results in defective tRNA processing, although the pathway(s) involved in neuronal loss thereafter was unknown. Here, we demonstrate that La is stably associated with a spliced pre-tRNA intermediate. Microscopic evidence of aberrant nuclear accumulation of 5.8S rRNA in La cKO is supported by a 10-fold increase in a pre-5.8S rRNA intermediate. To identify pathways involved in subsequent neurodegeneration and loss of brain mass in the cKO cortex, we employed mRNA sequencing (mRNA-Seq), immunohistochemistry, and other approaches. This revealed robust enrichment of immune and astrocyte reactivity in La cKO cortex. Immunohistochemistry, including temporal analyses, demonstrated neurodegeneration, followed by astrocyte invasion associated with immune response and decreasing cKO cortex size over time. Thus, deletion of La from postmitotic neurons results in defective pre-tRNA and pre-rRNA processing and progressive neurodegeneration with loss of cortical brain mass.
Collapse
Affiliation(s)
- Nathan H Blewett
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, Maryland, USA
| | - James R Iben
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, Maryland, USA
| | - Sergei Gaidamakov
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, Maryland, USA
| | - Richard J Maraia
- Commissioned Corps, U.S. Public Health Service, Rockville, Maryland, USA
| |
Collapse
|
7
|
Rebollo‐Mesa I, Nova‐Lamperti E, Mobillo P, Runglall M, Christakoudi S, Norris S, Smallcombe N, Kamra Y, Hilton R, Bhandari S, Baker R, Berglund D, Carr S, Game D, Griffin S, Kalra PA, Lewis R, Mark PB, Marks S, Macphee I, McKane W, Mohaupt MG, Pararajasingam R, Kon SP, Serón D, Sinha MD, Tucker B, Viklický O, Lechler RI, Lord GM, Hernandez‐Fuentes MP. Biomarkers of Tolerance in Kidney Transplantation: Are We Predicting Tolerance or Response to Immunosuppressive Treatment? Am J Transplant 2016; 16:3443-3457. [PMID: 27328267 PMCID: PMC5132071 DOI: 10.1111/ajt.13932] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/12/2016] [Accepted: 06/08/2016] [Indexed: 01/25/2023]
Abstract
We and others have previously described signatures of tolerance in kidney transplantation showing the differential expression of B cell-related genes and the relative expansions of B cell subsets. However, in all of these studies, the index group-namely, the tolerant recipients-were not receiving immunosuppression (IS) treatment, unlike the rest of the comparator groups. We aimed to assess the confounding effect of these regimens and develop a novel IS-independent signature of tolerance. Analyzing gene expression in three independent kidney transplant patient cohorts (232 recipients and 14 tolerant patients), we have established that the expression of the previously reported signature was biased by IS regimens, which also influenced transitional B cells. We have defined and validated a new gene expression signature that is independent of drug effects and also differentiates tolerant patients from healthy controls (cross-validated area under the receiver operating characteristic curve [AUC] = 0.81). In a prospective cohort, we have demonstrated that the new signature remained stable before and after steroid withdrawal. In addition, we report on a validated and highly accurate gene expression signature that can be reliably used to identify patients suitable for IS reduction (approximately 12% of stable patients), irrespective of the IS drugs they are receiving. Only a similar approach will make the conduct of pilot clinical trials for IS minimization safe and hence allow critical improvements in kidney posttransplant management.
Collapse
Affiliation(s)
- I. Rebollo‐Mesa
- Medical Research Council Centre for TransplantationKing's College LondonLondonUnited Kingdom,BiostatisticsInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUnited Kingdom,UCB CelltechUCB Pharma S.A.SloughUnited Kingdom
| | - E. Nova‐Lamperti
- Medical Research Council Centre for TransplantationKing's College LondonLondonUnited Kingdom
| | - P. Mobillo
- Medical Research Council Centre for TransplantationKing's College LondonLondonUnited Kingdom
| | - M. Runglall
- National Institute for Health Research Biomedical Research CentreGuy's and St. Thomas’ National Health Service Foundation TrustKing's College LondonLondonUnited Kingdom
| | - S. Christakoudi
- Medical Research Council Centre for TransplantationKing's College LondonLondonUnited Kingdom,BiostatisticsInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUnited Kingdom
| | - S. Norris
- Medical Research Council Centre for TransplantationKing's College LondonLondonUnited Kingdom,University College LondonLondonUnited Kingdom
| | - N. Smallcombe
- Medical Research Council Centre for TransplantationKing's College LondonLondonUnited Kingdom
| | - Y. Kamra
- Medical Research Council Centre for TransplantationKing's College LondonLondonUnited Kingdom,Peter Gorer Department of ImmunobiologyKing's College LondonLondonUnited Kingdom
| | - R. Hilton
- Guy's and St. Thomas’ NHS Foundation TrustLondonUnited Kingdom
| | - Indices of Tolerance EU Consortium
- King's College LondonLondonUnited Kingdom,Oxford UniversityOxfordUnited Kingdom,Imperial College LondonLondonUnited Kingdom,Institute for Medical Immunology, Université Libre de BruxellesBruxellesBelgium,Miltenyi BiotecBergisch GladbachGermany,University of NantesNantesFrance,Charité, Universitaatsmedizin BerlinBerlinGermany
| | - S. Bhandari
- Hull and East Yorkshire Hospitals NHS TrustHullUnited Kingdom
| | - R. Baker
- St. James's University HospitalLeedsUnited Kingdom
| | | | - S. Carr
- Leicester General HospitalLeicesterUnited Kingdom
| | - D. Game
- Guy's and St. Thomas’ NHS Foundation TrustLondonUnited Kingdom
| | - S. Griffin
- Cardiff and Vale University Health BoardCardiffUnited Kingdom
| | | | - R. Lewis
- Queen Alexandra HospitalPortsmouthUnited Kingdom
| | - P. B. Mark
- University of GlasgowGlasgowUnited Kingdom
| | - S. Marks
- Great Ormond Street Hospital for Children NHS Foundation TrustLondonUnited Kingdom
| | - I. Macphee
- St. George's HospitalLondonUnited Kingdom
| | - W. McKane
- Northern General HospitalSheffieldUnited Kingdom
| | - M. G. Mohaupt
- INSELSPITALUniversitätsspital BernKlinik für Nephrologie/Hypertonie Abteilung für HypertonieBernSwitzerland
| | | | - S. P. Kon
- King's College Hospital NHS Foundation TrustLondonUnited Kingdom
| | - D. Serón
- Hospital Universitari Vall d'Hebr_onBarcelonaSpain
| | - M. D. Sinha
- Evelina London Children's HospitalLondonUnited Kingdom
| | - B. Tucker
- King's College Hospital NHS Foundation TrustLondonUnited Kingdom
| | - O. Viklický
- Transplantační laboratoř IKEMPragueCzech Republic
| | - R. I. Lechler
- Medical Research Council Centre for TransplantationKing's College LondonLondonUnited Kingdom,King's Health PartnersLondonUnited Kingdom
| | - G. M. Lord
- Medical Research Council Centre for TransplantationKing's College LondonLondonUnited Kingdom,National Institute for Health Research Biomedical Research CentreGuy's and St. Thomas’ National Health Service Foundation TrustKing's College LondonLondonUnited Kingdom,Guy's and St. Thomas’ NHS Foundation TrustLondonUnited Kingdom
| | - M. P. Hernandez‐Fuentes
- Medical Research Council Centre for TransplantationKing's College LondonLondonUnited Kingdom,National Institute for Health Research Biomedical Research CentreGuy's and St. Thomas’ National Health Service Foundation TrustKing's College LondonLondonUnited Kingdom
| |
Collapse
|
8
|
Kota V, Sommer G, Durette C, Thibault P, van Niekerk EA, Twiss JL, Heise T. SUMO-Modification of the La Protein Facilitates Binding to mRNA In Vitro and in Cells. PLoS One 2016; 11:e0156365. [PMID: 27224031 PMCID: PMC4880191 DOI: 10.1371/journal.pone.0156365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/12/2016] [Indexed: 02/05/2023] Open
Abstract
The RNA-binding protein La is involved in several aspects of RNA metabolism including the translational regulation of mRNAs and processing of pre-tRNAs. Besides its well-described phosphorylation by Casein kinase 2, the La protein is also posttranslationally modified by the Small Ubiquitin-like MOdifier (SUMO), but the functional outcome of this modification has not been defined. The objective of this study was to test whether sumoylation changes the RNA-binding activity of La. Therefore, we established an in vitro sumoylation assay for recombinant human La and analyzed its RNA-binding activity by electrophoretic mobility shift assays. We identified two novel SUMO-acceptor sites within the La protein located between the RNA recognition motif 1 and 2 and we demonstrate for the first time that sumoylation facilitates the RNA-binding of La to small RNA oligonucleotides representing the oligopyrimidine tract (TOP) elements from the 5' untranslated regions (UTR) of mRNAs encoding ribosomal protein L22 and L37 and to a longer RNA element from the 5' UTR of cyclin D1 (CCND1) mRNA in vitro. Furthermore, we show by RNA immunoprecipitation experiments that a La mutant deficient in sumoylation has impaired RNA-binding activity in cells. These data suggest that modulating the RNA-binding activity of La by sumoylation has important consequences on its functionality.
Collapse
Affiliation(s)
- Venkatesh Kota
- Medical University of South Carolina, Department of Biochemistry & Molecular Biology, Charleston, South Carolina, United States of America
| | - Gunhild Sommer
- Medical University of South Carolina, Department of Biochemistry & Molecular Biology, Charleston, South Carolina, United States of America
| | - Chantal Durette
- Institute of Research in Immunology and Cancer University de Montreal, Station Centre-ville, Montreal, Canada
| | - Pierre Thibault
- Institute of Research in Immunology and Cancer University de Montreal, Station Centre-ville, Montreal, Canada
| | - Erna A. van Niekerk
- Department of Neurosciences-0626, University of California, San Diego, La Jolla, California, United States of America
| | - Jeffery L. Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Tilman Heise
- Medical University of South Carolina, Department of Biochemistry & Molecular Biology, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
9
|
De Lorenzo G, Drikic M, Papa G, Eichwald C, Burrone OR, Arnoldi F. An Inhibitory Motif on the 5'UTR of Several Rotavirus Genome Segments Affects Protein Expression and Reverse Genetics Strategies. PLoS One 2016; 11:e0166719. [PMID: 27846320 PMCID: PMC5112996 DOI: 10.1371/journal.pone.0166719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/02/2016] [Indexed: 12/18/2022] Open
Abstract
Rotavirus genome consists of eleven segments of dsRNA, each encoding one single protein. Viral mRNAs contain an open reading frame (ORF) flanked by relatively short untranslated regions (UTRs), whose role in the viral cycle remains elusive. Here we investigated the role of 5'UTRs in T7 polymerase-driven cDNAs expression in uninfected cells. The 5'UTRs of eight genome segments (gs3, gs5-6, gs7-11) of the simian SA11 strain showed a strong inhibitory effect on the expression of viral proteins. Decreased protein expression was due to both compromised transcription and translation and was independent of the ORF and the 3'UTR sequences. Analysis of several mutants of the 21-nucleotide long 5'UTR of gs 11 defined an inhibitory motif (IM) represented by its primary sequence rather than its secondary structure. IM was mapped to the 5' terminal 6-nucleotide long pyrimidine-rich tract 5'-GGY(U/A)UY-3'. The 5' terminal position within the mRNA was shown to be essentially required, as inhibitory activity was lost when IM was moved to an internal position. We identified two mutations (insertion of a G upstream the 5'UTR and the U to A mutation of the fifth nucleotide of IM) that render IM non-functional and increase the transcription and translation rate to levels that could considerably improve the efficiency of virus helper-free reverse genetics strategies.
Collapse
Affiliation(s)
- Giuditta De Lorenzo
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Marija Drikic
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Guido Papa
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Oscar R. Burrone
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- * E-mail: (FA); (OB)
| | - Francesca Arnoldi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- * E-mail: (FA); (OB)
| |
Collapse
|
10
|
Stavraka C, Blagden S. The La-Related Proteins, a Family with Connections to Cancer. Biomolecules 2015; 5:2701-22. [PMID: 26501340 PMCID: PMC4693254 DOI: 10.3390/biom5042701] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/21/2015] [Accepted: 10/07/2015] [Indexed: 01/09/2023] Open
Abstract
The evolutionarily-conserved La-related protein (LARP) family currently comprises Genuine La, LARP1, LARP1b, LARP4, LARP4b, LARP6 and LARP7. Emerging evidence suggests each LARP has a distinct role in transcription and/or mRNA translation that is attributable to subtle sequence variations within their La modules and specific C-terminal domains. As emerging research uncovers the function of each LARP, it is evident that La, LARP1, LARP6, LARP7 and possibly LARP4a and 4b are dysregulated in cancer. Of these, LARP1 is the first to be demonstrated to drive oncogenesis. Here, we review the role of each LARP and the evidence linking it to malignancy. We discuss a future strategy of targeting members of this protein family as cancer therapy.
Collapse
Affiliation(s)
- Chara Stavraka
- Ovarian Cancer Research Centre, Institute for Reproductive and Developmental Biology, Imperial College, Du Cane Road, London W12 0HS, UK.
| | - Sarah Blagden
- Ovarian Cancer Research Centre, Institute for Reproductive and Developmental Biology, Imperial College, Du Cane Road, London W12 0HS, UK.
- Department of Oncology, University of Oxford, Churchill Hospital, Old Road, Oxford OX3 7LE, UK.
| |
Collapse
|
11
|
Meyuhas O, Kahan T. The race to decipher the top secrets of TOP mRNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:801-11. [PMID: 25234618 DOI: 10.1016/j.bbagrm.2014.08.015] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/18/2014] [Accepted: 08/27/2014] [Indexed: 12/20/2022]
Abstract
Cells encountering hostile growth conditions, like those residing in the middle of a newly developing solid tumor, conserve resources and energy by downregulating protein synthesis. One mechanism in this response is the translational repression of multiple mRNAs that encode components of the translational apparatus. This coordinated translational control is carried through a common cis-regulatory element, the 5' Terminal OligoPyrimidine motif (5'TOP), after which these mRNAs are referred to as TOP mRNAs. Subsequent to the initial structural and functional characterization of members of this family, the research of TOP mRNAs has progressed in three major directions: a) delineating the landscape of the family; b) establishing the pathways that transduce stress cues into selective translational repression; and c) attempting to decipher the most proximal trans-acting factor(s) and defining its mode of action--a repressor or activator. The present chapter critically reviews the development in these three avenues of research with a special emphasis on the two "top secrets" of the TOP mRNA family: the scope of its members and the identity of the proximal cellular regulator(s). This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Oded Meyuhas
- Department of Biochemistry and Molecular Biology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Tamar Kahan
- Bioinformatics Unit, The Hebrew University, Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
12
|
Datu AK, Bag J. Enhanced translation of mRNAs encoding proteins involved in mRNA translation during recovery from heat shock. PLoS One 2013; 8:e64171. [PMID: 23696868 PMCID: PMC3655933 DOI: 10.1371/journal.pone.0064171] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 04/12/2013] [Indexed: 01/03/2023] Open
Abstract
The mRNAs encoding poly (A) binding protein (PABP1), eukaryotic elongation factor 1A (eEF1A) and ribosomal protein S6 (RPS6) belong to the family of terminal oligo pyrimidine tract (TOP) containing mRNAs. Translation of the TOP mRNAs is regulated by growth signals and usually codes for proteins involved in mRNA translation. Previous studies from our laboratory showed that translation of PABP1 mRNA was preferentially enhanced during recovery of HeLa cells from heat shock. Presence of the 5′ TOP cis element was required for the observed increase of PABP1 mRNA translation. In the studies reported here we showed that translation of two additional TOP mRNAs such as, eEF1A and RPS6 was similarly enhanced during recovery. In addition, we showed by in vivo cross-linking experiments that the cellular nucleic acid binding protein ZNF9 binds to all three TOP mRNAs examined in these studies as well as to the β-actin mRNA that lacks a TOP cis element. Binding of ZNF9 to mRNAs was observed in both heat-shocked and non heat- shocked cells. However, depletion of ZNF9 by siRNA prevented the preferred stimulation of PABP1, eEF1A and RPS6 expression during recovery from heat shock. There was no detectable effect of ZNF9 depletion on the basal level of expression of either β-actin or PABP1, eEF1A and RPS6 in HeLa cells following recovery from heat shock. Conclusion Although the presence of ZNF9 was required for the translational stimulation of PABP1, eEF1A and RPS6 mRNAs, the mechanistic details of this process are still unclear. Since ZNF9 was shown to bind both TOP and non-TOP mRNAs, it is uncertain whether ZNF9 exerts its stimulatory effect on TOP mRNA translation following recovery from heat shock through the TOP cis-element. Perhaps additional factors or post-translational modification(s) of ZNF9 following heat shock are necessary for the preferred increase of TOP mRNA translation.
Collapse
Affiliation(s)
- Andrea-Kaye Datu
- University of Guelph, Department of Molecular & Cellular Biology, Guelph, Ontario, Canada
| | - Jnanankur Bag
- University of Guelph, Department of Molecular & Cellular Biology, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
13
|
Abstract
Under conditions of limited nutrients, eukaryotic cells reprogram protein expression in a way that slows growth but enhances survival. Recent data implicate stress granules, discrete cytoplasmic foci into which untranslated mRNPs are assembled during stress, in this process. In the October 1, 2011, issue of Genes & Development, Damgaard and Lykke-Andersen (p. 2057-2068) provide mechanistic insights into the regulation of a specific subset of mRNAs bearing 5'-terminal oligopyrimidine tracts (5'TOPs) by the structurally related stress granule proteins TIA-1 and TIAR.
Collapse
Affiliation(s)
- Pavel Ivanov
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
14
|
Abstract
The miR-10 microRNA precursor family encodes a group of short non-coding RNAs involved in gene regulation. The miR-10 family is highly conserved and has sparked the interest of many research groups because of the genomic localization in the vicinity of, coexpression with and regulation of the Hox gene developmental regulators. Here, we review the current knowledge of the evolution, physiological function and involvement in cancer of this family of microRNAs.
Collapse
Affiliation(s)
- Disa Tehler
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
15
|
Inoue Y, Sato H, Fujita K, Tsukiyama-Kohara K, Yoneda M, Kai C. Selective translation of the measles virus nucleocapsid mRNA by la protein. Front Microbiol 2011; 2:173. [PMID: 22007186 PMCID: PMC3188812 DOI: 10.3389/fmicb.2011.00173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/02/2011] [Indexed: 02/05/2023] Open
Abstract
Measles, caused by measles virus (MeV) infection, is the leading cause of death in children because of secondary infections attributable to MeV-induced immune suppression. Recently, we have shown that wild-type MeVs induce the suppression of protein synthesis in host cells (referred to as “shutoff”) and that viral mRNAs are preferentially translated under shutoff conditions in infected cells. To determine the mechanism behind the preferential translation of viral mRNA, we focused on the 5′ untranslated region (UTR) of nucleocapsid (N) mRNA. The La/SSB autoantigen (La) was found to specifically bind to an N-5′UTR probe. Recombinant La enhanced the translation of luciferase mRNA containing the N-5′UTR (N-fLuc), and RNA interference of La suppressed N-fLuc translation. Furthermore, recombinant MeV lacking the La-binding motif in the N-5′UTR displayed delayed viral protein synthesis and growth kinetics at an early phase of infection. These results suggest that La induced predominant translation of N mRNA via binding to its 5′UTR under shutoff conditions. This is the first report on a cellular factor that specifically regulates paramyxovirus mRNA translation.
Collapse
Affiliation(s)
- Yoshihisa Inoue
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Bayfield MA, Yang R, Maraia RJ. Conserved and divergent features of the structure and function of La and La-related proteins (LARPs). BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:365-78. [PMID: 20138158 PMCID: PMC2860065 DOI: 10.1016/j.bbagrm.2010.01.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/08/2010] [Accepted: 01/27/2010] [Indexed: 12/19/2022]
Abstract
Genuine La proteins contain two RNA binding motifs, a La motif (LAM) followed by a RNA recognition motif (RRM), arranged in a unique way to bind RNA. These proteins interact with an extensive variety of cellular RNAs and exhibit activities in two broad categories: i) to promote the metabolism of nascent pol III transcripts, including precursor-tRNAs, by binding to their common, UUU-3'OH containing ends, and ii) to modulate the translation of certain mRNAs involving an unknown binding mechanism. Characterization of several La-RNA crystal structures as well as biochemical studies reveal insight into their unique two-motif domain architecture and how the LAM recognizes UUU-3'OH while the RRM binds other parts of a pre-tRNA. Recent studies of members of distinct families of conserved La-related proteins (LARPs) indicate that some of these harbor activity related to genuine La proteins, suggesting that their UUU-3'OH binding mode has been appropriated for the assembly and regulation of a specific snRNP (e.g., 7SK snRNP assembly by hLARP7/PIP7S). Analyses of other LARP family members suggest more diverged RNA binding modes and specialization for cytoplasmic mRNA-related functions. Thus it appears that while genuine La proteins exhibit broad general involvement in both snRNA-related and mRNA-related functions, different LARP families may have evolved specialized activities in either snRNA or mRNA-related functions. In this review, we summarize recent progress that has led to greater understanding of the structure and function of La proteins and their roles in tRNA processing and RNP assembly dynamics, as well as progress on the different LARPs.
Collapse
Affiliation(s)
- Mark A Bayfield
- Department of Biology, York University, Toronto, ON, Canada.
| | | | | |
Collapse
|
17
|
Rapamycin selectively inhibits expression of an inducible keratin (K6a) in human keratinocytes and improves symptoms in pachyonychia congenita patients. J Dermatol Sci 2009; 56:82-8. [DOI: 10.1016/j.jdermsci.2009.07.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/09/2009] [Accepted: 07/15/2009] [Indexed: 01/15/2023]
|
18
|
Abstract
The microRNA (miRNA) miR-10 family has attracted attention because of its conservation and the position of the miR-10 genes within the Hox clusters of developmental regulators. In several species, miR-10 is coexpressed with a set of Hox genes and has been found to regulate the translation of Hox transcripts. In addition, members of the miR-10 family are de-regulated in several cancer forms. Aside from acting in translational repression, miR-10 was recently found to bind a group of transcripts containing a terminal oligo-pyrimidine (TOP) motif and to induce their translation, thereby adding a new function to the miRNA repertoire.
Collapse
|
19
|
Caldarola S, De Stefano MC, Amaldi F, Loreni F. Synthesis and function of ribosomal proteins--fading models and new perspectives. FEBS J 2009; 276:3199-210. [PMID: 19438715 DOI: 10.1111/j.1742-4658.2009.07036.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The synthesis of ribosomal proteins (RPs) has long been known to be a process strongly linked to the growth status of the cell. In vertebrates, this coordination is dependent on RP mRNA translational efficiency, which changes according to physiological circumstances. Despite many years of investigation, the trans-acting factors and the signaling pathways involved in this regulation are still elusive. At the same time, however, new techniques and classic approaches have opened up new perspectives as regards RP regulation and function. In fact, the proteasome seems to play a crucial and unpredicted role in regulating the availability of RPs for subunit assembly. In addition, the study of human ribosomal pathologies and animal models for these diseases has revealed that perturbation in the synthesis and/or function of an RP activates a p53-dependent stress response. Surprisingly, the effect of the ribosomal stress is more dramatic in specific physiological processes: hemopoiesis in humans, and pigmentation in mice. Moreover, alteration of each RP impacts differently on the development of an organism.
Collapse
Affiliation(s)
- Sara Caldarola
- Department of Biology, University 'Tor Vergata', Roma, Italy
| | | | | | | |
Collapse
|
20
|
Abstract
When duplicated sister chromatids are not properly compacted in mitosis, chromosomes are mis-segregated, inducing genetically unstable tetraploidy known to facilitate aneuploid malignancies. Here, we show that tetraploid cells produced by impaired chromosomal condensation are eliminated by a novel type of cell death different from caspase-dependent apoptosis. The cell death was associated with downregulation of eukaryotic translation elongation factor-1 alpha 1 (eEF1A1/EF-1alpha) expression in conjunction with accumulation of its mRNA in processing bodies (P bodies). Importantly, expression of exogenous eEF1A1 was shown to inhibit the caspase-independent cell death, and a similar cell death was observed after inducing the expression of short hairpin RNA specific for eEF1A1. Furthermore, the number of spontaneously arising binucleated cells was indicated to increase several fold during 1- to 2-week cultivation after initiation of exogenous eEF1A expression. Taken together, the novel cell death machinery should help to eliminate abnormal tetraploid cells and inhibit tumorigenesis.
Collapse
|
21
|
Iadevaia V, Caldarola S, Tino E, Amaldi F, Loreni F. All translation elongation factors and the e, f, and h subunits of translation initiation factor 3 are encoded by 5'-terminal oligopyrimidine (TOP) mRNAs. RNA (NEW YORK, N.Y.) 2008; 14:1730-6. [PMID: 18658124 PMCID: PMC2525946 DOI: 10.1261/rna.1037108] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Terminal oligopyrimidine (TOP) mRNAs (encoded by the TOP genes) are identified by a sequence of 6-12 pyrimidines at the 5' end and by a growth-associated translational regulation. All vertebrate genes for the 80 ribosomal proteins and some other genes involved, directly or indirectly, in translation, are TOP genes. Among the numerous translation factors, only eEF1A and eEF2 are known to be encoded by TOP genes, most of the others having not been analyzed. Here, we report a systematic analysis of the human genes for translation factors. Our results show that: (1) all five elongation factors are encoded by TOP genes; and (2) among the initiation and termination factors analyzed, only eIF3e, eIF3f, and eIF3h exhibit the characteristics of TOP genes. Interestingly, these three polypeptides have been recently shown to constitute a specific subgroup among eIF3 subunits. In fact, eIF3e, eIF3f, and eIF3h are the part of the functional core of eIF3 that is not conserved in Saccharomyces cerevisiae. It has been hypothesized that they are regulatory subunits, and the fact that they are encoded by TOP genes may be relevant for their function.
Collapse
Affiliation(s)
- Valentina Iadevaia
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | | | | | | |
Collapse
|
22
|
Ørom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 2008; 30:460-71. [PMID: 18498749 DOI: 10.1016/j.molcel.2008.05.001] [Citation(s) in RCA: 989] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 03/18/2008] [Accepted: 05/06/2008] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small RNAs that function as posttranscriptional regulators of gene expression. miRNAs affect a variety of signaling pathways, and impaired miRNA regulation may contribute to the development of cancer and other diseases. Here we show that miRNA miR-10a interacts with the 5' untranslated region of mRNAs encoding ribosomal proteins to enhance their translation. miR-10a alleviates translational repression of the ribosomal protein mRNAs during amino acid starvation and is required for their translational induction following anisomycin treatment or overexpression of RAS. We show that miR-10a binds immediately downstream of the regulatory 5'TOP motif and that the 5'TOP regulatory complex and miR-10a are functionally interconnected. The results show that miR-10a may positively control global protein synthesis via the stimulation of ribosomal protein mRNA translation and ribosome biogenesis and hereby affect the ability of cells to undergo transformation.
Collapse
Affiliation(s)
- Ulf Andersson Ørom
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | | | | |
Collapse
|
23
|
He H, Cai L, Skogerbø G, Deng W, Liu T, Zhu X, Wang Y, Jia D, Zhang Z, Tao Y, Zeng H, Aftab MN, Cui Y, Liu G, Chen R. Profiling Caenorhabditis elegans non-coding RNA expression with a combined microarray. Nucleic Acids Res 2006; 34:2976-83. [PMID: 16738136 PMCID: PMC1474057 DOI: 10.1093/nar/gkl371] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Small non-coding RNAs (ncRNAs) are encoded by genes that function at the RNA level, and several hundred ncRNAs have been identified in various organisms. Here we describe an analysis of the small non-coding transcriptome of Caenorhabditis elegans, microRNAs excepted. As a substantial fraction of the ncRNAs is located in introns of protein-coding genes in C.elegans, we also analysed the relationship between ncRNA and host gene expression. To this end, we designed a combined microarray, which included probes against ncRNA as well as host gene mRNA transcripts. The microarray revealed pronounced differences in expression profiles, even among ncRNAs with housekeeping functions (e.g. snRNAs and snoRNAs), indicating distinct developmental regulation and stage-specific functions of a number of novel transcripts. Analysis of ncRNA–host mRNA relations showed that the expression of intronic ncRNA loci with conserved upstream motifs was not correlated to (and much higher than) expression levels of their host genes. Even promoter-less intronic ncRNA loci, though showing a clear correlation to host gene expression, appeared to have a surprising amount of ‘expressional freedom’, depending on host gene function. Taken together, our microarray analysis presents a more complete and detailed picture of a non-coding transcriptome than hitherto has been presented for any other multicellular organism.
Collapse
Affiliation(s)
- Housheng He
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
- Graduate School of the Chinese Academy of SciencesBeijing 100080, China
| | - Lun Cai
- Computational Biology Research Group, Division of Intelligent Software Systems, Institute of Computing Technology, Chinese Academy of SciencesBeijing 100080, China
- Graduate School of the Chinese Academy of SciencesBeijing 100080, China
| | - Geir Skogerbø
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
| | - Wei Deng
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
| | - Tao Liu
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
- Graduate School of the Chinese Academy of SciencesBeijing 100080, China
| | - Xiaopeng Zhu
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
- Graduate School of the Chinese Academy of SciencesBeijing 100080, China
| | - Yudong Wang
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
| | - Dong Jia
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
| | - Zhihua Zhang
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
- Graduate School of the Chinese Academy of SciencesBeijing 100080, China
| | - Yong Tao
- Graduate School of the Chinese Academy of SciencesBeijing 100080, China
- Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Haipan Zeng
- Beijing Genomics Institute, Chinese Academy of SciencesBeijing 101300, China
| | - Muhammad Nauman Aftab
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
- Graduate School of the Chinese Academy of SciencesBeijing 100080, China
| | - Yan Cui
- Department of Molecular Sciences/Center of Genomics and Bioinformatics, University of Tennessee Health Science CenterMemphis, TN 38163, USA
| | - Guozhen Liu
- Beijing Genomics Institute, Chinese Academy of SciencesBeijing 101300, China
| | - Runsheng Chen
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
- Computational Biology Research Group, Division of Intelligent Software Systems, Institute of Computing Technology, Chinese Academy of SciencesBeijing 100080, China
- Chinese National Human Genome CenterBeijing 100176, China
- To whom correspondence should be addressed at Bioinformatics Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. Tel: +86 10 64888543; Fax: +86 10 64889892;
| |
Collapse
|
24
|
Abstract
Upon cell-cycle arrest or nutrient deprivation, the cellular rate of ribosome production is reduced significantly. In mammalian cells, this effect is achieved in part through a co-ordinated inhibition of RP (ribosomal protein) synthesis. More specifically, translation initiation on RP mRNAs is inhibited. Translational regulation of RP synthesis is dependent on cis-elements within the 5′-UTRs (5′-untranslated regions) of the RP mRNAs. In particular, a highly conserved 5′-TOP (5′-terminal oligopyrimidine tract) appears to play a key role in the regulation of RP mRNA translation. This article explores recent developments in our understanding of the mechanism of TOP mRNA regulation, focusing on upstream signalling pathways and trans-acting factors, and highlighting some interesting observations which have come to light following the recent development of cDNA microarray technology coupled with polysome analysis.
Collapse
|
25
|
Loreni F, Iadevaia V, Tino E, Caldarola S, Amaldi F. RACK1 mRNA translation is regulated via a rapamycin-sensitive pathway and coordinated with ribosomal protein synthesis. FEBS Lett 2005; 579:5517-20. [PMID: 16212959 DOI: 10.1016/j.febslet.2005.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 07/28/2005] [Accepted: 09/08/2005] [Indexed: 10/25/2022]
Abstract
RACK1 has been shown to interact with several proteins, this suggesting that it may play a central role in cell growth regulation. Some recent articles have described RACK1 as a component of the small ribosomal subunit. To investigate the relationship between RACK1 and ribosome, we analyzed RACK1 mRNA structure and regulation. Translational regulation was studied in HeLa cells subjected to serum or amino acid deprivation and stimulation. The results show that RACK1 mRNA has a 5' terminal oligopyrimidine sequence and that its translation is dependent on the availability of serum and amino acids in exactly the same way as any other vertebrate ribosomal protein mRNA.
Collapse
|
26
|
Schwartz EI, Intine RV, Maraia RJ. CK2 is responsible for phosphorylation of human La protein serine-366 and can modulate rpL37 5'-terminal oligopyrimidine mRNA metabolism. Mol Cell Biol 2004; 24:9580-91. [PMID: 15485924 PMCID: PMC522270 DOI: 10.1128/mcb.24.21.9580-9591.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 08/04/2004] [Accepted: 08/12/2004] [Indexed: 11/20/2022] Open
Abstract
La protein binds precursors to 5S rRNA, tRNAs, and other transcripts that contain 3' UUU-OH and also promotes their maturation in the nucleus. Separate from this function, human La has been shown to positively modulate the translation of mRNAs that contain complex 5' regulatory motifs that direct internal initiation of translation. Nonphosphorylated La (npLa) inhibits pre-tRNA processing, while phosphorylation of human La serine-366 (S(366)) promotes pre-tRNA processing. npLa was found specifically associated with a class of mRNAs that have unusually short 5' untranslated regions comprised of terminal oligopyrimidine (5'TOP) tracts and that encode ribosomal proteins and translation elongation factors. Although La S(366) represents a CK2 phosphorylation site, there was no evidence that CK2 phosphorylates it in vivo. We used the CK2-specific inhibitor, 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), and antisense-mediated knockdown to demonstrate that CK2 is responsible for La S(366) phosphorylation in vivo. Hypophosphorylation was not associated with significant change in total La levels or proteolytic cleavage. Quantitative reverse transcription-PCR revealed increased association of the 5'TOP-mRNA encoding ribosomal protein L37 (rpL37) with La after TBB treatment. Transfection revealed more rpL37 mRNA associated with nonphosphorylatable La A(366) than with La S(366), concomitant with La A(366)-specific shift of a fraction of L37 mRNA off polysomes. The data indicate that CK2 phosphorylates La S(366) in vivo, that this limits 5'TOP mRNA binding, and that increasing npLa leads to greater association with potentially negative effects on TOP mRNA translation. Consistent with data that indicate that phosphorylation reverses negative effects of npLa on tRNA production, the present data suggest that CK2 phosphorylation of La can affect production of the translational machinery.
Collapse
Affiliation(s)
- Elena I Schwartz
- Laboratory of Molecular Growth Regulation, NICHD, NIH, Bethesda, MD 20892-2753, USA
| | | | | |
Collapse
|
27
|
Caldarola S, Amaldi F, Proud CG, Loreni F. Translational Regulation of Terminal Oligopyrimidine mRNAs Induced by Serum and Amino Acids Involves Distinct Signaling Events. J Biol Chem 2004; 279:13522-31. [PMID: 14726531 DOI: 10.1074/jbc.m310574200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Various mitogenic or growth inhibitory stimuli induce a rapid change in the association of terminal oligopyrimidine (TOP) mRNAs with polysomes. It is generally believed that such translational control hinges on the mammalian target of rapamycin (mTOR)-S6 kinase pathway. Amino acid availability affects the translation of TOP mRNAs, although the signaling pathway involved in this regulation is less well characterized. To investigate both serum- and amino acid-dependent control of TOP mRNA translation and the signaling pathways involved, HeLa cells were subjected to serum and/or amino acid deprivation and stimulation. Our results indicate the following. 1). Serum and amino acid deprivation had additive effects on TOP mRNA translation. 2). The serum content of the medium specifically affected TOP mRNA translation, whereas amino acid availability affected both TOP and non-TOP mRNAs. 3). Serum signaling to TOP mRNAs involved only a rapamycin-sensitive pathway, whereas amino acid signaling depended on both rapamycin-sensitive and rapamycin-insensitive but wortmannin-sensitive events. 4). Eukaryotic initiation factor-2alpha phosphorylation increased during amino acid deprivation, but not following serum deprivation. Interestingly, rapamycin treatment suggests a novel connection between the mTOR pathway and eukaryotic initiation factor-2alpha phosphorylation in mammalian cells, which may not, however, be involved in TOP mRNA translational regulation.
Collapse
Affiliation(s)
- Sara Caldarola
- Department of Biology, University "Tor Vergata," Rome 00133, Italy
| | | | | | | |
Collapse
|
28
|
Inada M, Guthrie C. Identification of Lhp1p-associated RNAs by microarray analysis in Saccharomyces cerevisiae reveals association with coding and noncoding RNAs. Proc Natl Acad Sci U S A 2004; 101:434-9. [PMID: 14704279 PMCID: PMC327165 DOI: 10.1073/pnas.0307425100] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
La is a conserved eukaryotic RNA-binding protein best known for its role in the biogenesis of noncoding RNAs transcribed by RNA polymerase III. To broaden our understanding of the function of the La homologous protein (Lhp1) in Saccharomyces cerevisiae, we have taken a genomics approach. Lhp1 ribonucleoprotein complexes were immunoprecipitated and bound RNAs were examined by hybridization to whole-genome microarrays that include >6,000 ORFs, documented noncoding RNAs, and the intervening intergenic regions. Demonstrating the validity of this approach, associations with previously known Lhp1p-associated RNAs were detected and associations with additional noncoding RNAs, including multiple tRNAs and small nucleolar RNAs, were revealed. Indicating that this approach provides a robust method for discovering RNAs, the data also identify associations between Lhp1p and several intergenic regions, three of which encode the recently annotated putative snoRNAs: RUF1, RUF2, and RUF3. Unexpectedly, we find that Lhp1p is also associated with a subset of coding mRNAs. These mRNAs include many ribosomal protein transcripts as well as the mRNA encoding Hac1p, a transcription factor required during the unfolded protein stress response. In cells lacking LHP1, Hac1p levels are decreased 2- to 3-fold, whereas no changes are detected in the levels of spliced or unspliced HAC1 mRNA or in the stability of Hac1p. Finally, although LHP1 is dispensable for growth under standard conditions, we find that it is required when the unfolded protein response is induced at elevated temperatures. These results suggest that Lhp1p may play a novel role in the translation of one or more cellular mRNAs.
Collapse
Affiliation(s)
- Maki Inada
- Department of Biochemistry and Biophysics, University of California, 600 16th Street, San Francisco, CA 94143-2200, USA
| | | |
Collapse
|
29
|
Cardinali B, Carissimi C, Gravina P, Pierandrei-Amaldi P. La protein is associated with terminal oligopyrimidine mRNAs in actively translating polysomes. J Biol Chem 2003; 278:35145-51. [PMID: 12840030 DOI: 10.1074/jbc.m300722200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
La is an abundant, mostly nuclear, RNA-binding protein that interacts with regions rich in pyrimidines. In the nucleus it has a role in the metabolism of several small RNAs. A number of studies, however, indicate that La protein is also implicated in cytoplasmic functions such as translation. The association of La in vivo with endogenous mRNAs engaged with polysomes would support this role, but this point has never been addressed yet. Terminal oligopyrimidine (TOP) mRNAs, which code for ribosomal proteins and other components of the translational apparatus, bear a TOP stretch at the 5' end, which is necessary for the regulation of their translation. La protein can bind the TOP sequence in vitro and activates TOP mRNA translation in vivo. Here we have quantified La protein in the cytoplasm of Xenopus oocytes and embryo cells and have shown in embryo cells that it is associated with actively translating polysomes. Disruption of polysomes by EDTA treatment displaces La in messenger ribonucleoprotein complexes sedimenting at 40-60 S. The results of polysome treatment with either low concentrations of micrococcal nuclease or with high concentrations of salt indicate, respectively, that La association with polysomes is mediated by mRNA and that it is not an integral component of ribosomes. Moreover, the analysis of messenger ribonucleoprotein complexes dissociated from translating polysomes shows that La protein associates with TOP mRNAs in vivo when they are translated, in line with a positive role of La in the translation of this class of mRNAs previously observed in cultured cells.
Collapse
Affiliation(s)
- Beatrice Cardinali
- Istituto di Biologia Cellulare CNR, Via Ramarini 32, 00016 Monterotondo Scalo, Italy.
| | | | | | | |
Collapse
|
30
|
Zhu J, Spencer ED, Kaspar RL. Differential translation of TOP mRNAs in rapamycin-treated human B lymphocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1628:50-5. [PMID: 12850272 DOI: 10.1016/s0167-4781(03)00117-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
TOP mRNAs (contain a 5' terminal oligopyrimidine tract) are differentially translated in rapamycin-treated human B lymphocytes. Following rapamycin treatment, ribosomal protein (rp) and translation elongation factor TOP mRNAs were translationally repressed, whereas hnRNP A1 TOP mRNA was not. Poly(A)-binding protein (Pabp1) TOP mRNA was translationally repressed under all conditions tested. To investigate the mechanism involved, chimeric mRNAs containing the hnRNP A1 5' untranslated region (UTR) linked to the human growth hormone (hGH) reporter were analyzed. Wild-type hnRNP A1 construct mRNA behaved similarly to endogenous hnRNP A1, whereas a single mutation (guanosine to cytidine) within the TOP element resulted in increased translational regulation. These results suggest that TOP mRNA translation can be modulated and that all TOP mRNAs are not translated with equal efficiency.
Collapse
Affiliation(s)
- Jianfeng Zhu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | | | | |
Collapse
|
31
|
Zhao Y, Meng XM, Wei YJ, Zhao XW, Liu DQ, Cao HQ, Liew CC, Ding JF. Cloning and characterization of a novel cardiac-specific kinase that interacts specifically with cardiac troponin I. J Mol Med (Berl) 2003; 81:297-304. [PMID: 12721663 DOI: 10.1007/s00109-003-0427-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2002] [Accepted: 02/10/2003] [Indexed: 12/12/2022]
Abstract
Cardiac-restricted genes play important roles in cardiovascular system. In an effort to identify such novel genes we identified a novel cardiac-specific kinase gene TNNI3K localized on 1p31.1 based on bioinformatics analyses. Sequence analysis suggested that TNNI3K is a distant family member of integrin-linked kinase. Northern blot and 76-tissue array analyses showed that TNNI3K is highly expressed in heart, but is undetectable in other tissues. Immunohistochemical analysis predominantly localized TNNI3K in the nucleus of cardiac myocytes. In vitro kinase assay showed that TNNI3K is a functional kinase. The yeast two-hybrid system showed that TNNI3K could directly interact with cardiac troponin I, results that were further confirmed by coimmunoprecipitation in vivo. Our data suggest that TNNI3K is a cardiac-specific kinase and play important roles in cardiac system.
Collapse
Affiliation(s)
- Yong Zhao
- Molecular Medicine Center for Cardiovascular Diseases, Cardiovascular Institute and Fu Wai Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Schlatter S, Fussenegger M. Novel CNBP- and La-based translation control systems for mammalian cells. Biotechnol Bioeng 2003; 81:1-12. [PMID: 12432575 DOI: 10.1002/bit.10549] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Throughout the development of Xenopus, production of ribosomal proteins (rp) is regulated at the translational level. Translation control is mediated by a terminal oligopyrimidine element (TOP) present in the 5' untranslated region (UTR) of rp-encoding mRNAs. TOP elements adopt a specific secondary structure that prevents ribosome-binding and translation-initiation of rp-encoding mRNAs. However, binding of CNBP (cellular nucleic acid binding protein) or La proteins to the TOP hairpin structure abolishes the TOP-mediated transcription block and induces rp production. Based on the specific CNBP-TOP/La-TOP interactions we have designed a translation control system (TCS) for conditional as well as adjustable translation of desired transgene mRNAs in mammalian cells. The generic TCS configuration consists of a plasmid encoding CNBP or La under control of the tetracycline-responsive expression system (TET(OFF)) and a target expression vector containing a TOP module between a constitutive P(SV40) promoter and the human model product gene SEAP (human secreted alkaline phosphatase) (P(SV40)-TOP-SEAP-pA). The TCS technology showed excellent SEAP regulation profiles in transgenic Chinese hamster ovary (CHO) cells. Alternatively to CNBP and La, TOP-mediated translation control can also be adjusted by artificial phosphorothioate anti-TOP oligodeoxynucleotides. Confocal laser-scanning microscopy demonstrated cellular uptake of FITC-labeled oligodeoxynucleotides and their localization in perinuclear organelles within 24 hours. Besides their TOP-based translation-controlling capacity, CNBP and La were also shown to increase cap-independent translation from polioviral internal ribosomal entry sites (IRES) and La alone to boost cap-dependent translation initiation. CNBP and La exemplify for the first time the potential of RNA-binding proteins to exert translation control of desired transgenes and to increase heterologous protein production in mammalian cells. We expect both of these assets to advance current gene therapy and biopharmaceutical manufacturing strategies.
Collapse
Affiliation(s)
- Stefan Schlatter
- Institute of Biotechnology, Swiss Federal Institute of Technolog, ETH Zurich, Switzerland
| | | |
Collapse
|
33
|
Kakegawa T, Ito M, Hayakawa A, Matsuda M, Tamura S, Saito H, Kaspar RL, Kobayashi H. Rapamycin induces binding activity to the terminal oligopyrimidine tract of ribosomal protein mRNA in rats. Arch Biochem Biophys 2002; 402:77-83. [PMID: 12051685 DOI: 10.1016/s0003-9861(02)00070-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The immunosuppressant rapamycin selectively suppresses the translation of mRNAs containing a terminal oligopyrimidine (TOP) tract adjacent to the cap structure. trans-Acting factors that bind to the 5'-untranslated region (5'-UTR) of TOP mRNAs may be involved in selective translational repression. Some of these factors are regulated by rapamycin-responsive signaling pathways. To identify candidates for the selective trans-acting factor, we examined whether administration of rapamycin alters the binding activity of proteins that bind to RNA containing the TOP element of mouse ribosomal protein (r-protein) L32 mRNA. Preadministration with Freund's complete adjuvant (FCA) prior to rapamycin treatment resulted in increased translational efficiency of r-protein L32 mRNA in submaxillary lymph node (SLN; 2.3-fold), thymus (1.5-fold), and parotid gland (PG; 1.6-fold). Translation of r-protein L32 or elongation factor 1A mRNAs in SLN and PG from FCA-pretreated rats were sensitive to rapamycin administration and the binding ability of p56 was generally increased in extracts from these tissues. On the other hand, in thymus, rapamycin had no effect on the translational efficiency of TOP mRNAs and no p56 binding was detected in the extracts from FCA-pretreated animals. Coadministration of FK506, another immunosuppressive macrolide, increased the p56 TOP-RNA-binding activity and induced selective translational repression of TOP mRNAs in a dose-dependent manner, even in thymus. These findings indicate that p56 is a plausible candidate for the trans-acting factor responsible for regulating the translation of TOP mRNA by a rapamycin-sensitive pathway and that TOP mRNA translational regulation may be responsible for the tissue specificity of rapamycin.
Collapse
Affiliation(s)
- Tomohito Kakegawa
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Petroulakis E, Wang E. Nerve growth factor specifically stimulates translation of eukaryotic elongation factor 1A-1 (eEF1A-1) mRNA by recruitment to polyribosomes in PC12 cells. J Biol Chem 2002; 277:18718-27. [PMID: 11907030 DOI: 10.1074/jbc.m111782200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During postnatal brain development the level of peptide elongation factor-1A (eEF1A-1) expression declines and that of the highly homologous isoform, eEF1A-2, increases in neurons. eEF1A-1 is implicated in cytoskeletal interactions, tumorigenesis, differentiation, and the absence of eEF1A-2 is implicated in neurodegeneration in the mouse mutant, wasted. The translation of eEF1A-1 mRNA is up-regulated via mitogenic stimulation. However, it is not known if eEF1A-1 mRNA translation is regulated by neurotrophins or if its synthesis is differentially regulated than that of the neuronal isoform, eEF1A-2. Regulated translation of these factors by neurotrophins, particularly by the Trk class of neurotrophin receptors, would implicate them in differentiation, survival, and neuronal plasticity. In this study, we investigated the effect of nerve growth factor (NGF) stimulation on the synthesis of eEF1A-1 and eEF1A-2. We found that NGF stimulation causes a preferential synthesis of eEF1A-1 over eEF1A-2 in PC12 cells. We analyzed the co-sedimentation of eEF1A-1 mRNA with polyribosome fractions in sucrose gradients, and found that NGF stimulation enriched the presence of eEF1A-1 mRNA in polyribosomes, indicating that the translation of eEF1A-1 mRNA is regulated by NGF. Inhibitors of phosphatidylinositol 3-kinase (LY 294002), mammalian target of rapamycin (rapamycin), and the NGF receptor, TrkA (K-252a), but not of mitogen-activated protein kinase (PD 98059), prevented the recruitment of eEF1A-1 mRNA to polyribosomes. The mobilization of eEF1A-1 mRNA to polyribosomes was rapamycin-sensitive in both proliferating and differentiated PC12 cells, indicating the importance of this pathway during differentiation. Our data shows that after growth factor withdrawal, an NGF-signaling pathway stimulates eEF1A-1 mRNA translation in proliferating and differentiated PC12 cells. Therefore, eEF1A-1 mRNA is a specific translational target of TrkA signaling.
Collapse
Affiliation(s)
- Emmanuel Petroulakis
- McGill University, Department of Neurology and Neurosurgery and Sir Mortimer B. Davis Jewish General Hospital, Lady Davis Institute for Medical Research, Bloomfield Centre for Research in Aging, Montréal, Québec H3T 1E2, Canada
| | | |
Collapse
|