1
|
Wu P, Chen D, Wang K, Wang S, Liu Y, Jiang A, Xiao W, Jiang Y, Zhu L, Xu X, Qiu X, Li X, Tang G. Whole-genome sequence association study identifies cyclin dependent kinase 8 as a key gene for the number of mummified piglets. Anim Biosci 2023; 36:29-42. [PMID: 36108685 PMCID: PMC9834657 DOI: 10.5713/ab.22.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/14/2022] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE Pigs, an ideal biomedical model for human diseases, suffer from about 50% early embryonic and fetal death, a major cause of fertility loss worldwide. However, identifying the causal variant remains a huge challenge. This study aimed to detect single nucleotide polymorphisms (SNPs) and candidate genes for the number of mummified (NM) piglets using the imputed whole-genome sequence (WGS) and validate the potential candidate genes. METHODS The imputed WGS was introduced from genotyping-by-sequencing (GBS) using a multi-breed reference population. We performed genome-wide association studies (GWAS) for NM piglets at birth from a Landrace pig populatiGWAS peak located on SSC11: 0.10 to 7.11 Mbp (Top SNP, SSC11:1,889,658 bp; p = 9.98E-13) was identified in cyclin dependent kinase on. A total of 300 Landrace pigs were genotyped by GBS. The whole-genome variants were imputed, and 4,252,858 SNPs were obtained. Various molecular experiments were conducted to determine how the genes affected NM in pigs. RESULTS A strong GWAS peak located on SSC11: 0.10 to 7.11 Mbp (Top SNP, SSC11:1,889,658 bp; p = 9.98E-13) was identified in cyclin dependent kinase 8 (CDK8) gene, which plays a crucial role in embryonic retardation and lethality. Based on the molecular experiments, we found that Y-box binding protein 1 (YBX1) was a crucial transcription factor for CDK8, which mediated the effect of CDK8 in the proliferation of porcine ovarian granulosa cells via transforming growth factor beta/small mother against decapentaplegic signaling pathway, and, as a consequence, affected embryo quality, indicating that this pathway may be contributing to mummified fetal in pigs. CONCLUSION A powerful imputation-based association study was performed to identify genes associated with NM in pigs. CDK8 was suggested as a functional gene for the proliferation of porcine ovarian granulosa cells, but further studies are required to determine causative mutations and the effect of loci on NM in pigs.
Collapse
Affiliation(s)
- Pingxian Wu
- Chongqing Academy of Animal Sciences, Rongchang 402460, Chongqing,
China
| | - Dejuan Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan,
China,Aks Vocational and Technical College, Aksu, 843000, Xinjiang,
China
| | - Kai Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan,
China
| | - Shujie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan,
China
| | - Yihui Liu
- Sichuan Animal Husbandry Station, Chengdu, 610041, Sichuan,
China
| | - Anan Jiang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan,
China
| | - Weihang Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan,
China
| | - Yanzhi Jiang
- College of Life Science, Sichuan Agricultural University, Yaan 625014, Sichuan,
China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan,
China
| | - Xu Xu
- Sichuan Animal Husbandry Station, Chengdu, 610041, Sichuan,
China
| | - Xiaotian Qiu
- National Animal Husbandry Service, Beijing, 100125, Beijing,
China
| | - Xuewei Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan,
China
| | - Guoqing Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan,
China,Corresponding Author: Guoqing Tang, E-mail:
| |
Collapse
|
2
|
Control of cyclin C levels during development of Dictyostelium. PLoS One 2010; 5:e10543. [PMID: 20479885 PMCID: PMC2866538 DOI: 10.1371/journal.pone.0010543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 04/16/2010] [Indexed: 11/19/2022] Open
Abstract
Background Cdk8 and its partner cyclin C form part of the mediator complex which links the basal transcription machinery to regulatory proteins. The pair are required for correct regulation of a subset of genes and have been implicated in control of development in a number of organisms including the social amoeba Dictyostelium discoideum. When feeding, Dictyostelium amoebae are unicellular but upon starvation they aggregate to form a multicellular structure which develops into a fruiting body containing spores. Cells in which the gene encoding Cdk8 has been deleted fail to enter aggregates due to a failure of early gene expression. Principal Findings We have monitored the expression levels of cyclin C protein during development and find levels decrease after the multicellular mound is formed. This decrease is triggered by extracellular cAMP that, in turn, is working in part through an increase in intracellular cAMP. The loss of cyclin C is coincident with a reduction in the association of Cdk8 with a high molecular weight complex in the nucleus. Overexpression of cyclin C and Cdk8 lead to an increased rate of early development, consistent with the levels being rate limiting. Conclusions Overall these results show that both cyclin C and Cdk8 are regulated during development in response to extracellular signals and the levels of these proteins are important in controlling the timing of developmental processes. These findings have important implications for the role of these proteins in controlling development, suggesting that they are targets for developmental signals to regulate gene expression.
Collapse
|
3
|
Lin HHS, Khosla M, Huang HJ, Hsu DW, Michaelis C, Weeks G, Pears C. A homologue of Cdk8 is required for spore cell differentiation in Dictyostelium. Dev Biol 2004; 271:49-58. [PMID: 15196949 DOI: 10.1016/j.ydbio.2004.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Revised: 01/30/2004] [Accepted: 03/04/2004] [Indexed: 11/25/2022]
Abstract
The Cdk8 proteins are kinases which phosphorylate the carboxy terminal domain (CTD) of RNA polymerase II (Pol II) as well as some transcription factors and, therefore, are involved in the regulation of transcription. Here, we report that a Cdk8 homologue from Dictyostelium discoideum is localized in the nucleus where it forms part of a high molecular weight complex that has CTD kinase activity. Insertional mutagenesis was used to abrogate gene function, and analysis of the null strain revealed that the DdCdk8 protein plays an important role in spore formation during late development. As previously reported [Dev. Growth Differ. 44 (2002) 213] Ddcdk8- cells also exhibit impaired aggregation, although we report that the severity of the defect depends upon experimental conditions. When aggregation occurs, Ddcdk8- cells form abnormal terminally differentiated structures within which the Ddcdk8- cells differentiate into stalk cells but fail to form spores, indicating a role for DdCdk8 in cell differentiation. When Ddcdk8 is expressed from its own promoter, the protein is able to rescue both the late developmental defect and the impaired aggregation. However, when expressed from an heterologous promoter, only the impaired aggregation is rescued. This result demonstrates that the defect during late development is not a consequence of impaired aggregation and indicates a direct role for DdCdk8 in spore formation.
Collapse
|