Potrykus K, Wegrzyn G, Hernandez VJ. Direct stimulation of the lambdapaQ promoter by the transcription effector guanosine-3',5'-(bis)pyrophosphate in a defined in vitro system.
J Biol Chem 2004;
279:19860-6. [PMID:
15014078 DOI:
10.1074/jbc.m313378200]
[Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial response to nutritional deprivation, called the stringent response, results in the introduction of the specific nucleotide guanosine-3',5'-(bis) pyrophosphate (ppGpp). This nucleotide interacts with RNA polymerase and alters its action so that transcription from certain promoters is inhibited, whereas transcription from others seems to be activated. The exact mechanism of transcriptional stimulation by ppGpp in vivo remains unknown. A passive control model has been proposed according to which transcription inhibition during the stringent response at several very active promoters, like those for rRNA and tRNA genes, makes more free RNA polymerase (RNAP) molecules available for transcription at promoters with weak binding affinities for RNAP, thus leading to their passive activation. Among promoters whose transcription is activated by ppGpp in vivo is the histidine operon promoter (hisGp). However, in vitro it is only possible to demonstrate this effect in a coupled transcription-translation system. Here we demonstrate, using another in vivo ppGpp-stimulated promoter, the phage lambdapaQ promoter, that activation by ppGpp in a defined in vitro system is direct. A systematic study of ppGpp effects on the stimulation of paQ revealed that, as in the case of promoters inhibited by this nucleotide, ppGpp decreases the half-life of paQ open complexes. Our results also indicate that the equilibrium binding affinity of RNA polymerase to paQ seems not to be affected in the presence of ppGpp. Our data indicate that the mechanism underlying ppGpp stimulation of paQ is due to an increased rate of productive open complex formation.
Collapse