1
|
Nonoyama S, Maeno S, Gotoh Y, Sugimoto R, Tanaka K, Hayashi T, Masuda S. Increased intracellular H 2S levels enhance iron uptake in Escherichia coli. mBio 2024; 15:e0199124. [PMID: 39324809 PMCID: PMC11481527 DOI: 10.1128/mbio.01991-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
We investigated the impact of intracellular hydrogen sulfide (H2S) hyperaccumulation on the transcriptome of Escherichia coli. The wild-type (WT) strain overexpressing mstA, encoding 3-mercaptopyruvate sulfur transferase, produced significantly higher H2S levels than the control WT strain. The mstA-overexpressing strain exhibited increased resistance to antibiotics, supporting the prior hypothesis that intracellular H2S contributes to oxidative stress responses and antibiotic resistance. RNA-seq analysis revealed that over 1,000 genes were significantly upregulated or downregulated upon mstA overexpression. The upregulated genes encompassed those associated with iron uptake, including siderophore synthesis and iron import transporters. The mstA-overexpressing strain showed increased levels of intracellular iron content, indicating that H2S hyperaccumulation affects iron availability within cells. We found that the H2S-/supersulfide-responsive transcription factor YgaV is required for the upregulated expression of iron uptake genes in the mstA-overexpression conditions. These findings indicate that the expression of iron uptake genes is regulated by intracellular H2S, which is crucial for oxidative stress responses and antibiotic resistance in E. coli. IMPORTANCE H2S is recognized as a second messenger in bacteria, playing a vital role in diverse intracellular and extracellular activities, including oxidative stress responses and antibiotic resistance. Both H2S and iron serve as essential signaling molecules for gut bacteria. However, the intricate intracellular coordination between them, governing bacterial physiology, remains poorly understood. This study unveils a close relationship between intracellular H2S accumulation and iron uptake activity, a relationship critical for antibiotic resistance. We present additional evidence expanding the role of intracellular H2S synthesis in bacterial physiology.
Collapse
Affiliation(s)
- Shouta Nonoyama
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shintaro Maeno
- Department of Biological Chemistry, College of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryota Sugimoto
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
2
|
Jiang H, Milanov M, Jüngert G, Angebauer L, Flender C, Smudde E, Gather F, Vogel T, Jessen HJ, Koch HG. Control of a chemical chaperone by a universally conserved ATPase. iScience 2024; 27:110215. [PMID: 38993675 PMCID: PMC11237923 DOI: 10.1016/j.isci.2024.110215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
The universally conserved YchF/Ola1 ATPases regulate stress response pathways in prokaryotes and eukaryotes. Deletion of YchF/Ola1 leads to increased resistance against environmental stressors, such as reactive oxygen species, while their upregulation is associated with tumorigenesis in humans. The current study shows that in E. coli, the absence of YchF stimulates the synthesis of the alternative sigma factor RpoS by a transcription-independent mechanism. Elevated levels of RpoS then enhance the transcription of major stress-responsive genes. In addition, the deletion of ychF increases the levels of polyphosphate kinase, which in turn boosts the production of the evolutionary conserved and ancient chemical chaperone polyphosphate. This potentially provides a unifying concept for the increased stress resistance in bacteria and eukaryotes upon YchF/Ola1 deletion. Intriguingly, the simultaneous deletion of ychF and the polyphosphate-degrading enzyme exopolyphosphatase causes synthetic lethality in E. coli, demonstrating that polyphosphate production needs to be fine-tuned to prevent toxicity.
Collapse
Affiliation(s)
- Hong Jiang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Martin Milanov
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Gabriela Jüngert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Larissa Angebauer
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Clara Flender
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Eva Smudde
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Fabian Gather
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Tanja Vogel
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Henning J. Jessen
- Institute for Organic Chemistry, Faculty of Chemistry and Pharmacy, University Freiburg 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Vasilyev N, Liu MMJ, Epshtein V, Shamovsky I, Nudler E. General transcription factor from Escherichia coli with a distinct mechanism of action. Nat Struct Mol Biol 2024; 31:141-149. [PMID: 38177674 PMCID: PMC10803263 DOI: 10.1038/s41594-023-01154-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/16/2023] [Indexed: 01/06/2024]
Abstract
Gene expression in Escherichia coli is controlled by well-established mechanisms that activate or repress transcription. Here, we identify CedA as an unconventional transcription factor specifically associated with the RNA polymerase (RNAP) σ70 holoenzyme. Structural and biochemical analysis of CedA bound to RNAP reveal that it bridges distant domains of β and σ70 subunits to stabilize an open-promoter complex. CedA does so without contacting DNA. We further show that cedA is strongly induced in response to amino acid starvation, oxidative stress and aminoglycosides. CedA provides a basal level of tolerance to these clinically relevant antibiotics, as well as to rifampicin and peroxide. Finally, we show that CedA modulates transcription of hundreds of bacterial genes, which explains its pleotropic effect on cell physiology and pathogenesis.
Collapse
Affiliation(s)
- Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Mengjie M J Liu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Vitaly Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Ilya Shamovsky
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Guillén S, Nadal L, Halaihel N, Mañas P, Cebrián G. Genotypic and phenotypic characterization of a Salmonella Typhimurium strain resistant to pulsed electric fields. Food Microbiol 2023; 113:104285. [PMID: 37098417 DOI: 10.1016/j.fm.2023.104285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/27/2023]
Abstract
Pulsed Electric Fields (PEF) technology is regarded as one of the most interesting alternatives to current food preservation methods, due to its capability to inactivate vegetative microorganisms while leaving the product's organoleptic and nutritional properties mostly unchanged. However, many aspects regarding the mechanisms of bacterial inactivation by PEF are still not fully understood. The aim of this study was to obtain further insight into the mechanisms responsible for the increased resistance to PEF of a Salmonella Typhimurium SL1344 variant (SL1344-RS, Sagarzazu et al., 2013), and to quantify the impact that the acquisition of PEF resistance has on other aspects of S. enterica physiology, such as growth fitness, biofilm formation ability, virulence and antibiotic resistance. WGS, RNAseq and qRT-PCR assays indicated that the increased PEF resistance of the SL1344-RS variant is due to a higher RpoS activity caused by a mutation in the hnr gene. This increased RpoS activity also results in higher resistance to multiple stresses (acidic, osmotic, oxidative, ethanol and UV-C, but not to heat and HHP), decreased growth rate in M9-Gluconate (but not in TSB-YE or LB-DPY), increased ability to adhere to Caco-2 cells (but no significant change in invasiveness) and enhanced antibiotic resistance (to six out of eight agents). This study significantly contributes to the understanding of the mechanisms of the development of stress resistance in Salmonellae and underscores the crucial role played by RpoS in this process. Further studies are needed to determine whether this PEF-resistant variant would represent a higher, equal or lower associated hazard than the parental strain.
Collapse
Affiliation(s)
- S Guillén
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón- IA2, Universidad de Zaragoza-CITA, 50013, Zaragoza, Spain
| | - L Nadal
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón- IA2, Universidad de Zaragoza-CITA, 50013, Zaragoza, Spain
| | - N Halaihel
- Departamento I+D+i, Alquizvetek S.L, Zaragoza, 50013, Zaragoza, Spain
| | - P Mañas
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón- IA2, Universidad de Zaragoza-CITA, 50013, Zaragoza, Spain
| | - G Cebrián
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón- IA2, Universidad de Zaragoza-CITA, 50013, Zaragoza, Spain.
| |
Collapse
|
5
|
Ma X, Wu M, Wang C, Li H, Fan A, Wang Y, Han C, Xue F. The pathogenesis of prevalent aerobic bacteria in aerobic vaginitis and adverse pregnancy outcomes: a narrative review. Reprod Health 2022; 19:21. [PMID: 35090514 PMCID: PMC8796570 DOI: 10.1186/s12978-021-01292-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Background Aerobic vaginitis is a common cause of vaginal discharge in reproductive-age women, increasing the risk of negative pregnancy outcomes such as premature delivery, abortion, premature rupture of membranes and stillbirth. However, the aetiology and pathogenesis of aerobic vaginitis causing negative pregnancy outcomes are still unclear, and there is no unified and standardized treatment method for aerobic vaginitis in the pregnancy period. Methods We conducted a literature search of published studies in the English language focusing on aerobic vaginitis and its association with adverse pregnancy outcomes utilizing PubMed and Web of Science from January 1973 through June 2021. The common pathogenic bacteria of aerobic vaginitis during pregnancy, such as group B Streptococcus, Escherichia coli, Staphylococcus aureus, Enterococcus faecalis and Klebsiella pneumoniae, as well as the related adverse pregnancy outcomes and existing treatments were reviewed. Results A total of 4534 articles were identified, and 97 studies that had inclusion criteria were subjected to careful review. The pathogenic bacteria of aerobic vaginitis can produce different toxins or affect the local immunity of patients and then lead to the occurrence of infection. Fresh wet mount microscopy is the preferred diagnostic method for aerobic vaginitis. Clindamycin is a common antibiotic used for aerobic vaginitis in pregnant women. The use of products combining probiotics has achieved excellent treatment success. Conclusions Future research in this field can provide insights regarding the mechanism of aerobic vaginitis-induced adverse pregnancy outcomes in humans and ways to prevent their occurrence. Aerobic vaginitis is an infection of the vagina that increases the risk of negative pregnancy outcomes. The aetiology and pathogenesis of aerobic vaginitis causing negative pregnancy outcomes are still unclear. This paper reviews the common pathogenic bacteria of aerobic vaginitis during pregnancy, and the related adverse pregnancy outcomes. We also review the existing treatment. Currently, it is believed that the microflora in aerobic vaginitis is composed of commensal aerobic microorganisms of intestinal origin, and the most frequently encountered bacteria are group B Streptococcus, Escherichia coli, Staphylococcus aureus, Enterococcus faecalis and Klebsiella pneumoniae. The pathogenic bacteria of aerobic vaginitis can produce different toxins or affect the local immunity of patients and then lead to the occurrence of infection. Fresh wet mount microscopy is the preferred diagnostic method for aerobic vaginitis. Clindamycin is a common antibiotic used for aerobic vaginitis in pregnant women. The use of products combining probiotics has achieved excellent treatment success. This study provides a reference for future research and early diagnosis and treatment during pregnancy. Future research in this field can provide insights regarding the mechanisms of aerobic vaginitis-induced adverse pregnancy outcomes in humans and ways to prevent their occurrence.
Collapse
Affiliation(s)
- Xiaotong Ma
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Ming Wu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Chen Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Huiyang Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Aiping Fan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Cha Han
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China.
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China.
| |
Collapse
|
6
|
Kelpšas V, von Wachenfeldt C. Enhancing protein perdeuteration by experimental evolution of Escherichia coli K-12 for rapid growth in deuterium-based media. Protein Sci 2021; 30:2457-2473. [PMID: 34655136 PMCID: PMC8605374 DOI: 10.1002/pro.4206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/07/2022]
Abstract
Deuterium is a natural low abundance stable hydrogen isotope that in high concentrations negatively affects growth of cells. Here, we have studied growth of Escherichia coli MG1655, a wild-type laboratory strain of E. coli K-12, in deuterated glycerol minimal medium. The growth rate and final biomass in deuterated medium is substantially reduced compared to cells grown in ordinary medium. By using a multi-generation adaptive laboratory evolution-based approach, we have isolated strains that show increased fitness in deuterium-based growth media. Whole-genome sequencing identified the genomic changes in the obtained strains and show that there are multiple routes to genetic adaptation to growth in deuterium-based media. By screening a collection of single-gene knockouts of nonessential genes, no specific gene was found to be essential for growth in deuterated minimal medium. Deuteration of proteins is of importance for NMR spectroscopy, neutron protein crystallography, neutron reflectometry, and small angle neutron scattering. The laboratory evolved strains, with substantially improved growth rate, were adapted for recombinant protein production by T7 RNA polymerase overexpression systems and shown to be suitable for efficient production of perdeuterated soluble and membrane proteins for structural biology applications.
Collapse
Affiliation(s)
- Vinardas Kelpšas
- The Microbiology Group, Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
7
|
Effects of the Quinone Oxidoreductase WrbA on Escherichia coli Biofilm Formation and Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10060919. [PMID: 34204135 PMCID: PMC8229589 DOI: 10.3390/antiox10060919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
The effects of natural compounds on biofilm formation have been extensively studied, with the goal of identifying biofilm formation antagonists at sub-lethal concentrations. Salicylic and cinnamic acids are some examples of these compounds that interact with the quinone oxidoreductase WrbA, a potential biofilm modulator and an antibiofilm compound biomarker. However, WrbA’s role in biofilm development is still poorly understood. To investigate the key roles of WrbA in biofilm maturation and oxidative stress, Escherichia coli wild-type and ∆wrbA mutant strains were used. Furthermore, we reported the functional validation of WrbA as a molecular target of salicylic and cinnamic acids. The lack of WrbA did not impair planktonic growth, but rather affected the biofilm formation through a mechanism that depends on reactive oxygen species (ROS). The loss of WrbA function resulted in an ROS-sensitive phenotype that showed reductions in biofilm-dwelling cells, biofilm thickness, matrix polysaccharide content, and H2O2 tolerance. Endogenous oxidative events in the mutant strain generated a stressful condition to which the bacterium responded by increasing the catalase activity to compensate for the lack of WrbA. Cinnamic and salicylic acids inhibited the quinone oxidoreductase activity of purified recombinant WrbA. The effects of these antibiofilm molecules on WrbA function was proven for the first time.
Collapse
|
8
|
High c-di-GMP promotes expression of fpr-1 and katE involved in oxidative stress resistance in Pseudomonas putida KT2440. Appl Microbiol Biotechnol 2019; 103:9077-9089. [PMID: 31673742 DOI: 10.1007/s00253-019-10178-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/21/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
Abstract
Oxidative stress is an unavoidable consequence of interactions with various reactive oxygen species (ROS)-inducing agents that would damage cells or even cause cell death. Bacteria have developed defensive systems, including induction of stress-sensing proteins and detoxification enzymes, to handle oxidative stress. Cyclic diguanylate (c-di-GMP) is a ubiquitous intracellular bacterial second messenger that coordinates diverse aspects of bacterial growth and behavior. In this study, we revealed a mechanism by which c-di-GMP regulated bacterial oxidative stress resistance in Pseudomonas putida KT2440. High c-di-GMP level was found to enhance bacterial resistance towards hydrogen peroxide. Transcription assay showed that expression of two oxidative stress resistance genes, fpr-1 and katE, was promoted under high c-di-GMP level. Deletion of fpr-1 and katE both decreased bacterial tolerance to hydrogen peroxide and weakened the effect of c-di-GMP on oxidative stress resistance. The promoted expression of fpr-1 under high c-di-GMP level was caused by increased cellular ROS via a transcriptional regulator FinR. We further demonstrated that the influence of high c-di-GMP on cellular ROS depend on the existence of FleQ, a transcriptional regulatory c-di-GMP effector. Besides, the regulation of katE by c-di-GMP was also FleQ dependent in an indirect way. Our results proved a connection between c-di-GMP and oxidative stress resistance and revealed a mechanism by which c-di-GMP regulated expression of fpr-1 and katE in P. putida KT2440.
Collapse
|
9
|
A straightforward assay for measuring glycogen levels and RpoS. J Microbiol Methods 2017; 145:93-97. [PMID: 29288674 DOI: 10.1016/j.mimet.2017.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/26/2017] [Accepted: 12/26/2017] [Indexed: 11/21/2022]
Abstract
Cellular glycogen levels reflect the activity of RpoS, an important stress-inducible bacterial sigma factor known to regulate several stress-resistance related genes, such as katE, encoding hydroperoxidase II (HPII), and the glg genes, encoding glycogen synthesis enzymes, in Escherichia coli. In this study, a straightforward assay for measuring glycogen levels and RpoS activity was developed combining the ease and simplicity of qualitative approaches. The assay reagent was a 2% iodine solution (2% iodine/1M NaOH), and the basic principle of this assay is the iodine-glycogen reaction, which produces a reddish brown color that can be measured using a spectrophotometer. A calibration plot using a known amount of glycogen yielded the best linear fit over a range of 10-300μg/assay (R2=0.994). The applicability of the assay for measuring the glycogen level of various samples was assessed using a wild type (WT) E. coli K-12 strain, glycogen- and RpoS-deficient isogenic mutants, and clinical bacterial isolates with or without RpoS activity; the assay generated reproducible results. Additionally, the assay was successfully applied for measuring glycogen levels in human cells. In conclusion, we developed a straightforward and cost-effective assay for measuring glycogen levels, which can be applied for measuring RpoS activity.
Collapse
|
10
|
Jaishankar J, Srivastava P. Molecular Basis of Stationary Phase Survival and Applications. Front Microbiol 2017; 8:2000. [PMID: 29085349 PMCID: PMC5650638 DOI: 10.3389/fmicb.2017.02000] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/28/2017] [Indexed: 12/04/2022] Open
Abstract
Stationary phase is the stage when growth ceases but cells remain metabolically active. Several physical and molecular changes take place during this stage that makes them interesting to explore. The characteristic proteins synthesized in the stationary phase are indispensable as they confer viability to the bacteria. Detailed knowledge of these proteins and the genes synthesizing them is required to understand the survival in such nutrient deprived conditions. The promoters, which drive the expression of these genes, are called stationary phase promoters. These promoters exhibit increased activity in the stationary phase and less or no activity in the exponential phase. The vectors constructed based on these promoters are ideal for large-scale protein production due to the absence of any external inducers. A number of recombinant protein production systems have been developed using these promoters. This review describes the stationary phase survival of bacteria, the promoters involved, their importance, regulation, and applications.
Collapse
Affiliation(s)
- Jananee Jaishankar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
11
|
Iwase T, Matsuo T, Nishioka S, Tajima A, Mizunoe Y. Hydrophobicity of Residue 128 of the Stress-Inducible Sigma Factor RpoS Is Critical for Its Activity. Front Microbiol 2017; 8:656. [PMID: 28491053 PMCID: PMC5405132 DOI: 10.3389/fmicb.2017.00656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/30/2017] [Indexed: 11/29/2022] Open
Abstract
RpoS is a key stress-inducible sigma factor that regulates stress resistance genes in Escherichia coli, such as the katE gene encoding catalase HPII and the glg genes encoding glycogen synthesis proteins. Monitoring RpoS activity can provide information on the stress sensitivity of E. coli isolates in clinical settings because the RpoS in these isolates is often mutated. In the present study, we found a novel, missense point mutation at RpoS residue 128 in a clinical Shiga toxin-producing E. coli (STEC) isolate. This mutation caused RpoS dysfunction and increased stress sensitivity. A mutant rpoS was cloned from a clinical STEC that is vulnerable to cold temperature and oxidative stresses. Mutant RpoS protein expression was detected in the clinical isolate, and this RpoS was non-functional according to HPII activity and glycogen levels, which are positively regulated by RpoS and thus are used as indicators for RpoS function. A reporter assay with β-galactosidase indicated that the dysfunction occurred at the transcriptional level of genes regulated by RpoS. Furthermore, substitution analysis indicated that the hydrophobicity of the amino acid at residue 128 was critical for RpoS activity; the simulation analysis indicated that the amino acids of RNA polymerase (RNAP) that interact with RpoS residue 128 are hydrophobic, suggesting that this hydrophobic interaction is critical for RpoS activity. In addition, substitution of Ile128 to Pro128 abolished RpoS activity, possibly as a result of disruption of the secondsary structure around residue 128, indicating that the structure is also a crucial factor for RpoS activity. These results indicate that only one point mutation at a hydrophobic residue of the complex formed during transcription leads to a critical change in RpoS regulation. Moreover, we found that Ile128 is widely conserved among various bacteria: several bacterial strains have Met128 or Leu128, which are hydrophobic residues, and these strains had similar or higher RpoS activity than that observed with Ile128 in this study. These data indicate that the hydrophobicity of the amino acid at residue 128 is critical for RpoS activity and is consequently important for bacterial survival. Taken together, these findings may contribute to a deeper understanding of protein functional mechanisms and bacterial stress responses.
Collapse
Affiliation(s)
- Tadayuki Iwase
- Department of Bacteriology, The Jikei University School of MedicineTokyo, Japan
| | - Takashi Matsuo
- Graduate School of Materials Science, Nara Institute of Science and TechnologyNara, Japan
| | - Saiko Nishioka
- Department of Bacteriology, The Jikei University School of MedicineTokyo, Japan
| | - Akiko Tajima
- Department of Bacteriology, The Jikei University School of MedicineTokyo, Japan
| | - Yoshimitsu Mizunoe
- Department of Bacteriology, The Jikei University School of MedicineTokyo, Japan
| |
Collapse
|
12
|
Transcriptional Responses of Escherichia coli to a Small-Molecule Inhibitor of LolCDE, an Essential Component of the Lipoprotein Transport Pathway. J Bacteriol 2016; 198:3162-3175. [PMID: 27645386 PMCID: PMC5105897 DOI: 10.1128/jb.00502-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/20/2016] [Indexed: 11/20/2022] Open
Abstract
In Gram-negative bacteria, a dedicated machinery consisting of LolABCDE components targets lipoproteins to the outer membrane. We used a previously identified small-molecule inhibitor of the LolCDE complex of Escherichia coli to assess the global transcriptional consequences of interference with lipoprotein transport. Exposure of E. coli to the LolCDE inhibitor at concentrations leading to minimal and significant growth inhibition, followed by transcriptome sequencing, identified a small group of genes whose transcript levels were decreased and a larger group whose mRNA levels increased 10- to 100-fold compared to those of untreated cells. The majority of the genes whose mRNA concentrations were reduced were part of the flagellar assembly pathway, which contains an essential lipoprotein component. Most of the genes whose transcript levels were elevated encode proteins involved in selected cell stress pathways. Many of these genes are involved with envelope stress responses induced by the mislocalization of outer membrane lipoproteins. Although several of the genes whose RNAs were induced have previously been shown to be associated with the general perturbation of the cell envelope by antibiotics, a small subset was affected only by LolCDE inhibition. Findings from this work suggest that the efficiency of the Lol system function may be coupled to a specific monitoring system, which could be exploited in the development of reporter constructs suitable for use for screening for additional inhibitors of lipoprotein trafficking. IMPORTANCE Inhibition of the lipoprotein transport pathway leads to E. coli death and subsequent lysis. Early significant changes in the levels of RNA for a subset of genes identified to be associated with some periplasmic and envelope stress responses were observed. Together these findings suggest that disruption of this key pathway can have a severe impact on balanced outer membrane synthesis sufficient to affect viability.
Collapse
|
13
|
Chaithawiwat K, Vangnai A, McEvoy JM, Pruess B, Krajangpan S, Khan E. Role of oxidative stress in inactivation of Escherichia coli BW25113 by nanoscale zero-valent iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 565:857-862. [PMID: 26953142 DOI: 10.1016/j.scitotenv.2016.02.191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/26/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
An Escherichia coli BW25113 wildtype strain and mutant strains lacking genes that protect against oxidative stress were examined at different growth phases for susceptibility to zero-valent iron (nZVI). Viability of cells was determined by the plate count method. All mutant strains were more susceptible than the wild type strain to nZVI; however, susceptibility differed among the mutant strains. Consistent with the role of rpoS as a global stress regulator, an rpoS gene knockout mutant exhibited the greatest susceptibility to nZVI under the majority of conditions tested (except exponential and declining phases at longer exposure time). Mutants lacking genes encoding the inducible and constitutively expressed cytosolic superoxide dismutases, sodA and sodB, respectively, were more susceptible to nZVI than a mutant lacking the gene encoding sodC, a periplasmic superoxide dismutase. This suggests that nZVI induces oxidative stress inside the cells via superoxide generation. Quantitative polymerase chain reaction was used to examine the expression of katG, a gene encoding the catalase-peroxidase enzyme, in nZVI-treated E. coli at different growth phases. Results showed that nZVI repressed the expression of katG in all but lag phases.
Collapse
Affiliation(s)
- Krittanut Chaithawiwat
- International Postgraduate Programs in Environmental Management, Graduate School Chulalongkorn University, Bangkok 10330, Thailand; Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Alisa Vangnai
- Department of Biochemistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - John M McEvoy
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Birgit Pruess
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | | - Eakalak Khan
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
14
|
Bongers M, Chrysanthopoulos PK, Behrendorff JBYH, Hodson MP, Vickers CE, Nielsen LK. Systems analysis of methylerythritol-phosphate pathway flux in E. coli: insights into the role of oxidative stress and the validity of lycopene as an isoprenoid reporter metabolite. Microb Cell Fact 2015; 14:193. [PMID: 26610700 PMCID: PMC4662018 DOI: 10.1186/s12934-015-0381-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/11/2015] [Indexed: 12/13/2022] Open
Abstract
Background High-throughput screening methods assume that the output measured is representative of changes in metabolic flux toward the desired product and is not affected by secondary phenotypes. However, metabolic engineering can result in unintended phenotypes that may go unnoticed in initial screening. The red pigment lycopene, a carotenoid with antioxidant properties, has been used as a reporter of isoprenoid pathway flux in metabolic engineering for over a decade. Lycopene production is known to vary between wild-type Escherichia coli hosts, but the reasons behind this variation have never been fully elucidated. Results In an examination of six E. coli strains we observed that strains also differ in their capacity for increased lycopene production in response to metabolic engineering. A combination of genetic complementation, quantitative SWATH proteomics, and biochemical analysis in closely-related strains was used to examine the mechanistic reasons for variation in lycopene accumulation. This study revealed that rpoS, a gene previously identified in lycopene production association studies, exerts its effect on lycopene accumulation not through modulation of pathway flux, but through alteration of cellular oxidative status. Specifically, absence of rpoS results in increased accumulation of reactive oxygen species during late log and stationary phases. This change in cellular redox has no effect on isoprenoid pathway flux, despite the presence of oxygen-sensitive iron-sulphur cluster enzymes and the heavy redox requirements of the methylerythritol phosphate pathway. Instead, decreased cellular lycopene in the ΔrpoS strain is caused by degradation of lycopene in the presence of excess reactive oxygen species. Conclusions Our results demonstrate that lycopene is not a reliable indicator of isoprenoid pathway flux in the presence of oxidative stress, and suggest that caution should be exercised when using lycopene as a screening tool in genome-wide metabolic engineering studies. More extensive use of systems biology for strain analysis will help elucidate such unpredictable side-effects in metabolic engineering projects. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0381-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mareike Bongers
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Panagiotis K Chrysanthopoulos
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Metabolomics Australia (Queensland Node), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - James B Y H Behrendorff
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Mark P Hodson
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Metabolomics Australia (Queensland Node), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
15
|
Peano C, Wolf J, Demol J, Rossi E, Petiti L, De Bellis G, Geiselmann J, Egli T, Lacour S, Landini P. Characterization of the Escherichia coli σ(S) core regulon by Chromatin Immunoprecipitation-sequencing (ChIP-seq) analysis. Sci Rep 2015; 5:10469. [PMID: 26020590 PMCID: PMC4447067 DOI: 10.1038/srep10469] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/15/2015] [Indexed: 11/29/2022] Open
Abstract
In bacteria, selective promoter recognition by RNA polymerase is achieved by its association with σ factors, accessory subunits able to direct RNA polymerase “core enzyme” (E) to different promoter sequences. Using Chromatin Immunoprecipitation-sequencing (ChIP-seq), we searched for promoters bound by the σS-associated RNA polymerase form (EσS) during transition from exponential to stationary phase. We identified 63 binding sites for EσS overlapping known or putative promoters, often located upstream of genes (encoding either ORFs or non-coding RNAs) showing at least some degree of dependence on the σS-encoding rpoS gene. EσS binding did not always correlate with an increase in transcription level, suggesting that, at some σS-dependent promoters, EσS might remain poised in a pre-initiation state upon binding. A large fraction of EσS-binding sites corresponded to promoters recognized by RNA polymerase associated with σ70 or other σ factors, suggesting a considerable overlap in promoter recognition between different forms of RNA polymerase. In particular, EσS appears to contribute significantly to transcription of genes encoding proteins involved in LPS biosynthesis and in cell surface composition. Finally, our results highlight a direct role of EσS in the regulation of non coding RNAs, such as OmrA/B, RyeA/B and SibC.
Collapse
Affiliation(s)
- Clelia Peano
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate (MI), Italy
| | - Johannes Wolf
- EAWAG, Swiss Federal Institute for Environmental Science and Technology, Dübendorf, Switzerland
| | - Julien Demol
- Lab. Adaptation et Pathogénie des Micro-organismes (LAPM), Univ. Grenoble Alpes, F-38000 Grenoble, France.,UMR 5163, Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Elio Rossi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Luca Petiti
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate (MI), Italy
| | - Gianluca De Bellis
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate (MI), Italy
| | - Johannes Geiselmann
- Lab. Adaptation et Pathogénie des Micro-organismes (LAPM), Univ. Grenoble Alpes, F-38000 Grenoble, France.,UMR 5163, Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Thomas Egli
- EAWAG, Swiss Federal Institute for Environmental Science and Technology, Dübendorf, Switzerland
| | - Stephan Lacour
- Lab. Adaptation et Pathogénie des Micro-organismes (LAPM), Univ. Grenoble Alpes, F-38000 Grenoble, France.,UMR 5163, Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Paolo Landini
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
16
|
Huang CJ, Wang ZC, Huang HY, Huang HD, Peng HL. YjcC, a c-di-GMP phosphodiesterase protein, regulates the oxidative stress response and virulence of Klebsiella pneumoniae CG43. PLoS One 2013; 8:e66740. [PMID: 23935824 PMCID: PMC3720812 DOI: 10.1371/journal.pone.0066740] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/10/2013] [Indexed: 12/20/2022] Open
Abstract
This study shows that the expression of yjcC, an in vivo expression (IVE) gene, and the stress response regulatory genes soxR, soxS, and rpoS are paraquat inducible in Klebsiella pneumoniae CG43. The deletion of rpoS or soxRS decreased yjcC expression, implying an RpoS- or SoxRS-dependent control. After paraquat or H2O2 treatment, the deletion of yjcC reduced bacterial survival. These effects could be complemented by introducing the ΔyjcC mutant with the YjcC-expression plasmid pJR1. The recombinant protein containing only the YjcC-EAL domain exhibited phosphodiesterase (PDE) activity; overexpression of yjcC has lower levels of cyclic di-GMP. The yjcC deletion mutant also exhibited increased reactive oxygen species (ROS) formation, oxidation damage, and oxidative stress scavenging activity. In addition, the yjcC deletion reduced capsular polysaccharide production in the bacteria, but increased the LD50 in mice, biofilm formation, and type 3 fimbriae major pilin MrkA production. Finally, a comparative transcriptome analysis showed 34 upregulated and 29 downregulated genes with the increased production of YjcC. The activated gene products include glutaredoxin I, thioredoxin, heat shock proteins, chaperone, and MrkHI, and proteins for energy metabolism (transporters, cell surface structure, and transcriptional regulation). In conclusion, the results of this study suggest that YjcC positively regulates the oxidative stress response and mouse virulence but negatively affects the biofilm formation and type 3 fimbriae expression by altering the c-di-GMP levels after receiving oxidative stress signaling inputs.
Collapse
Affiliation(s)
- Ching-Jou Huang
- Institute of Molecular Medicine and Biological Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Zhe-Chong Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Hsi-Yuan Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Hsien-Da Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Hwei-Ling Peng
- Institute of Molecular Medicine and Biological Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
17
|
Abstract
ibeA is a virulence factor found in some extraintestinal pathogenic Escherichia coli (ExPEC) strains from the B2 phylogenetic group and particularly in newborn meningitic and avian pathogenic strains. It was shown to be involved in the invasion process of the newborn meningitic strain RS218. In a previous work, we showed that in the avian pathogenic E. coli (APEC) strain BEN2908, isolated from a colibacillosis case, ibeA was rather involved in adhesion to eukaryotic cells by modulating type 1 fimbria synthesis (M. A. Cortes et al., Infect. Immun. 76:4129-4136, 2008). In this study, we demonstrate a new role for ibeA in oxidative stress resistance. We showed that an ibeA mutant of E. coli BEN2908 was more sensitive than its wild-type counterpart to H(2)O(2) killing. This phenotype was also observed in a mutant deleted for the whole GimA genomic region carrying ibeA and might be linked to alterations in the expression of a subset of genes involved in the oxidative stress response. We also showed that RpoS expression was not altered by the ibeA deletion. Moreover, the transfer of an ibeA-expressing plasmid into an E. coli K-12 strain, expressing or not expressing type 1 fimbriae, rendered it more resistant to an H(2)O(2) challenge. Altogether, these results show that ibeA by itself is able to confer increased H(2)O(2) resistance to E. coli. This feature could partly explain the role played by ibeA in the virulence of pathogenic strains.
Collapse
|
18
|
Mertens K, Samuel JE. Defense Mechanisms Against Oxidative Stress in Coxiella burnetii: Adaptation to a Unique Intracellular Niche. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 984:39-63. [DOI: 10.1007/978-94-007-4315-1_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Lucchini S, McDermott P, Thompson A, Hinton JCD. The H-NS-like protein StpA represses the RpoS (sigma 38) regulon during exponential growth of Salmonella Typhimurium. Mol Microbiol 2009; 74:1169-86. [PMID: 19843227 DOI: 10.1111/j.1365-2958.2009.06929.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
StpA is a paralogue of the nucleoid-associated protein H-NS that is conserved in a range of enteric bacteria and had no known function in Salmonella Typhimurium. We show that 5% of the Salmonella genome is regulated by StpA, which contrasts with the situation in Escherichia coli where deletion of stpA only had minor effects on gene expression. The StpA-dependent genes of S. Typhimurium are a specific subset of the H-NS regulon that are predominantly under the positive control of sigma(38) (RpoS), CRP-cAMP and PhoP. Regulation by StpA varied with growth phase; StpA controlled sigma(38) levels at mid-exponential phase by preventing inappropriate activation of sigma(38) during rapid bacterial growth. In contrast, StpA only activated the CRP-cAMP regulon during late exponential phase. ChIP-chip analysis revealed that StpA binds to PhoP-dependent genes but not to most genes of the CRP-cAMP and sigma(38) regulons. In fact, StpA indirectly regulates sigma(38)-dependent genes by enhancing sigma(38) turnover by repressing the anti-adaptor protein rssC. We discovered that StpA is essential for the dynamic regulation of sigma(38) in response to increased glucose levels. Our findings identify StpA as a novel growth phase-specific regulator that plays an important physiological role by linking sigma(38) levels to nutrient availability.
Collapse
Affiliation(s)
- Sacha Lucchini
- Institute of Food Research, Colney Lane, Norwich, NR4 7UA, UK.
| | | | | | | |
Collapse
|
20
|
Williams AB, Foster PL. The Escherichia coli histone-like protein HU has a role in stationary phase adaptive mutation. Genetics 2007; 177:723-35. [PMID: 17720921 PMCID: PMC2034638 DOI: 10.1534/genetics.107.075861] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stationary phase adaptive mutation in Escherichia coli is thought to be a mechanism by which mutation rates are increased during stressful conditions, increasing the possibility that fitness-enhancing mutations arise. Here we present data showing that the histone-like protein, HU, has a role in the molecular pathway by which adaptive Lac(+) mutants arise in E. coli strain FC40. Adaptive Lac(+) mutations are largely but not entirely due to error-prone DNA polymerase IV (Pol IV). Mutations in either of the HU subunits, HUalpha or HUbeta, decrease adaptive mutation to Lac(+) by both Pol IV-dependent and Pol IV-independent pathways. Additionally, HU mutations inhibit growth-dependent mutations without a reduction in the level of Pol IV. These effects of HU mutations on adaptive mutation and on growth-dependent mutations reveal novel functions for HU in mutagenesis.
Collapse
Affiliation(s)
- Ashley B Williams
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
21
|
Robbe-Saule V, Lopes MD, Kolb A, Norel F. Physiological effects of Crl in Salmonella are modulated by sigmaS level and promoter specificity. J Bacteriol 2007; 189:2976-87. [PMID: 17293430 PMCID: PMC1855858 DOI: 10.1128/jb.01919-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small regulatory protein Crl activates sigma(S) (RpoS), the stationary-phase and general stress response sigma factor. Crl has been reported to bind sigma(S) in vitro and to facilitate the formation of RNA polymerase holoenzyme. In Salmonella enterica serovar Typhimurium, Crl is required for the development of the rdar morphotype and transcription initiation of the sigma(S)-dependent genes csgD and adrA, involved in curli and cellulose production. Here, we examined the expression of other sigma(S)-dependent phenotypes and genes in a Deltacrl mutant of Salmonella. Gene fusion analyses and in vitro transcription assays indicate that the magnitude of Crl activation differs between promoters and is highly dependent on sigma(S) levels. We replaced the wild-type rpoS allele in S. enterica serovar Typhimurium strain ATCC 14028 with the rpoS(LT2) allele that shows reduced expression of sigma(S); the result was an increased Crl activation ratio and larger physiological effects of Crl on oxidative, thermal, and acid stress resistance levels during stationary phase. We also found that crl, rpoS, and crl rpoS strains grew better on succinate than did the wild type and expressed the succinate dehydrogenase sdhCDBA operon more strongly. The crl and rpoS(LT2) mutations also increased the competitive fitness of Salmonella in stationary phase. These results show that Crl contributes to negative regulation by sigma(S), a finding consistent with a role for Crl in sigma factor competition via the facilitation of sigma(S) binding to core RNA polymerase.
Collapse
Affiliation(s)
- Véronique Robbe-Saule
- Institut Pasteur, Unité des Régulations Transcriptionnelles, URA-CNRS 2172, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
22
|
Huang YH, Ferrières L, Clarke DJ. The role of the Rcs phosphorelay in Enterobacteriaceae. Res Microbiol 2006; 157:206-12. [PMID: 16427772 DOI: 10.1016/j.resmic.2005.11.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 11/23/2005] [Accepted: 11/25/2005] [Indexed: 11/28/2022]
Abstract
The Rcs phosphorelay is composed of the sensor kinase, RcsC, the HPt-domain protein RcsD and the response regulator, RcsB. In this review we discuss the role of the Rcs phosphorelay in the Enterobacteriaceae, highlighting the observation that the Rcs phosphorelay appears to play a key role in the temporal regulation of biofilm formation and pathogenicity.
Collapse
Affiliation(s)
- Ya-Hui Huang
- Molecular Microbiology Laboratory, Department of Biology and Biochemistry, University of Bath, UK
| | | | | |
Collapse
|
23
|
McInerney P, Mizutani T, Shiba T. Inorganic polyphosphate interacts with ribosomes and promotes translation fidelity in vitro and in vivo. Mol Microbiol 2006; 60:438-47. [PMID: 16573692 DOI: 10.1111/j.1365-2958.2006.05103.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Inorganic polyphosphate is a biological macromolecule consisting of multiple phosphates linked by high-energy bonds. Polyphosphate occurs in cells from all domains of life, and is known to play roles in a diverse collection of cellular functions. Here we examine the relationship between polyphosphate and protein synthesis in Escherichia coli. We report that polyphosphate associates with E. coli ribosomes in vitro. Characterization of this interaction reveals that both long-chain and short-chain polyphosphates interact with the ribosome. Intact 70S ribosomes, as well as 50S and 30S subunits, display a specific interaction with polyphosphate that is mediated primarily by contacts with ribosomal proteins. Additionally, we examined functional consequences of a ppk mutation, which severely reduces levels of intracellular polyphosphate. Extracts from ppk mutants contain lower levels of polysomes than wild-type cells, suggesting a defect in mRNA utilization or the mRNA-ribosome interaction. Ribosomes from wild-type and ppk mutant cells were isolated, and their activities were compared using a polyU RNA in vitro translation assay. While rates of polyphenylalanine synthesis are similar, use of ribosomes from ppk cells results in a misincorporation rate about five times higher compared with the rate observed when ribosomes from wild-type cells are used. Mistranslation rates in vivo were measured directly, and ppk mutants displayed higher readthrough frequencies for two different stop codons. Taken together, these results indicate that polyphosphate plays an important role in maintaining optimal translation efficiency in vivo and in vitro.
Collapse
Affiliation(s)
- Peter McInerney
- Fujirebio, Inc., Research and Development Division, 51 Komiya-Cho, Hachioji, Tokyo 192-0031, Japan.
| | | | | |
Collapse
|
24
|
Abstract
RcsC, RcsB, and RcsA were first identified as a sensor kinase, a response regulator, and an auxiliary regulatory protein, respectively, regulating the genes of capsular polysaccharide synthesis. Recent advances have demonstrated that these proteins are part of a complex phosphorelay, in which phosphate travels from the histidine kinase domain in RcsC to a response regulator domain in the same protein; from there to a phosphotransfer protein, RcsD; and from there to RcsB. In addition to capsule synthesis, which requires the unstable regulatory protein RcsA, RcsB also stimulates transcription of a small RNA, RprA; the cell division gene ftsZ; and genes encoding membrane and periplasmic proteins, including the osmotically inducible genes osmB and osmC. The Rcs system appears to play an important role in the later stages of biofilm development; induction of Rcs signaling by surfaces is consistent with this role.
Collapse
Affiliation(s)
- Nadim Majdalani
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
25
|
Koga K, Harada T, Shimizu H, Tanaka K. Bacterial luciferase activity and the intracellular redox pool in Escherichia coli. Mol Genet Genomics 2005; 274:180-8. [PMID: 16047200 DOI: 10.1007/s00438-005-0008-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 04/26/2005] [Indexed: 11/30/2022]
Abstract
In this study, we analyzed the activity of a bacterial luciferase (LuxAB of Vibrio fischeri) expressed under the control of a consensus-type promoter, lacUV5, in Escherichia coli, and found that activity declines abruptly upon entry into the stationary growth phase. Since this decline was reproducibly observed in strains cultured in various growth media, we refer to this phenomenon as ADLA (Abrupt Decline of Luciferase Activity) and define the time point when activity begins to decline as T (0). Because the levels of luciferase proteins (LuxA and LuxB) remained constant before and after T (0), ADLA cannot be due to the repression of luciferase gene expression. Further analyses suggested that a decline in the supply of intracellular reducing power for luciferase was responsible for ADLA. We also found that ADLA was alleviated or did not occur in several mutants deficient in nucleoid proteins, suggesting that ADLA is a genetically controlled process involved in intracellular redox flow.
Collapse
Affiliation(s)
- K Koga
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
26
|
Funabashi H, Ishikawa M, Mie M, Takahashi F, Yanagida Y, Aizawa M, Kobatake E. Electrochemical evaluation of cellular physiological status under stress in Escherichia coli with the rpoS-lacZ reporter gene. Biotechnol Bioeng 2005; 90:509-15. [PMID: 15782408 DOI: 10.1002/bit.20459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We developed an electrochemical detection method for evaluating cellular physiological status based on the stringent response as a means to monitor cell viability. A reporter plasmid was constructed by inserting the beta-galactosidase gene (lacZ) under the control of the rpoS promoter, and then used to transform E. coli cells. Electrochemical responses from the products catalyzed by beta-galactosidase expressed by these E. coli cells were detected using the chronoamperometric technique in a nondestructive manner. Comparisons of response currents between the relA-positive strain and relA-negative strain revealed that increases in these currents were caused by the stringent response due to the stressful alcoholic environment, and thus as a model of stressful cultivating conditions. The current was proportional to the beta-galactosidase activity assayed by a conventional method that required the destruction of cells. The cellular physiological status, which depends on the stringent response as a viability marker, therefore, could then be evaluated online with a current using the rpoS-lacZ reporter gene in the relA-positive strain without pretreatment.
Collapse
Affiliation(s)
- Hisakage Funabashi
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Layton JC, Foster PL. Error-prone DNA polymerase IV is regulated by the heat shock chaperone GroE in Escherichia coli. J Bacteriol 2005; 187:449-57. [PMID: 15629916 PMCID: PMC543561 DOI: 10.1128/jb.187.2.449-457.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An insertion in the promoter of the operon that encodes the molecular chaperone GroE was isolated as an antimutator for stationary-phase or adaptive mutation. The groE operon consists of two genes, groES and groEL; point mutations in either gene conferred the same phenotype, reducing Lac+ adaptive mutation 10- to 20-fold. groE mutant strains had 1/10 the amount of error-prone DNA polymerase IV (Pol IV). In recG+ strains, the reduction in Pol IV was sufficient to account for their low rate of adaptive mutation, but in recG mutant strains, a deficiency of GroE had some additional effect on adaptive mutation. Pol IV is induced as part of the SOS response, but the effect of GroE on Pol IV was independent of LexA. We were unable to show that GroE interacts directly with Pol IV, suggesting that GroE may act indirectly. Together with previous results, these findings indicate that Pol IV is a component of several cellular stress responses.
Collapse
Affiliation(s)
- Jill C Layton
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third St., Bloomington, IN 47405, USA
| | | |
Collapse
|
28
|
Maehana K, Tani H, Shiba T, Kamidate T. Effects of using a low-copy plasmid and controlling membrane permeability in SOS-based genotoxic bioassay. Anal Chim Acta 2004. [DOI: 10.1016/j.aca.2004.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Hagiwara D, Sugiura M, Oshima T, Mori H, Aiba H, Yamashino T, Mizuno T. Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. J Bacteriol 2003; 185:5735-46. [PMID: 13129944 PMCID: PMC193970 DOI: 10.1128/jb.185.19.5735-5746.2003] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, capsular colanic acid polysaccharide synthesis is regulated through the multistep RcsC-->YojN-->RcsB phosphorelay. By monitoring a hallmarked cps::lacZ reporter gene, we first searched for physiological stimuli that propagate the Rcs signaling system. The expression of cps::lacZ was activated when cells were grown at a low temperature (20 degrees C) in the presence of glucose as a carbon source and in the presence of a relatively high concentration of external zinc (1 mM ZnCl(2)). In this Rcs signaling system, the rcsF gene product (a putative outer membrane-located lipoprotein) was also an essential signaling component. Based on the defined signaling pathway and physiological stimuli for the Rcs signaling system, we conducted genome-wide analyses with microarrays to clarify the Rcs transcriptome (i.e., Rcs regulon). Thirty-two genes were identified as putative Rcs regulon members; these genes included 15 new genes in addition to 17 of the previously described cps genes. Using a set of 37 two-component system mutants, we performed alternative genome-wide analyses. The results showed that the propagation of the zinc-responsive Rcs signaling system was largely dependent on another two-component system, PhoQ/P. Considering the fact that the PhoQ/P signaling system responds to external magnesium, we obtained evidence which supports the view that there is a signaling network that connects the Rcs system with the PhoQ/P system, which coordinately regulates extracellular polysaccharide synthesis in response to the external concentrations of divalent cations.
Collapse
Affiliation(s)
- Daisuke Hagiwara
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Bertani I, Sevo M, Kojic M, Venturi V. Role of GacA, LasI, RhlI, Ppk, PsrA, Vfr and ClpXP in the regulation of the stationary-phase sigma factor rpoS/RpoS in Pseudomonas. Arch Microbiol 2003; 180:264-71. [PMID: 12879217 DOI: 10.1007/s00203-003-0586-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Revised: 07/02/2003] [Accepted: 07/04/2003] [Indexed: 11/25/2022]
Abstract
RpoS is the stationary phase sigma factor responsible for increased transcription of a set of genes when bacterial cells enter stationary phase and under stress conditions. In Escherichia coli, RpoS expression is modulated at the level of transcription, translation, and post-translational stability whereas in Pseudomonas, previous studies have implicated four genetic loci ( psrA, gacA, lasI and rhlI) involved in rpoS transcription. In this report, the transcription, translation and proteins profiles of rpoS/RpoS were analyzed in response to growth phase of knockout genomic mutants in the P. aeruginosa transcriptional regulatory loci psrA, gacA, vfr, and in the las and rhl quorum-sensing systems. Gene expression and protein profiles were also analyzed in the ppk genomic mutant. This gene is responsible for the biosynthesis of polyphosphate, an alarmone involved in the regulation of RpoS accumulation in E. coli. Finally, the role of the ClpXP protease in RpoS regulation was also studied; in E. coli, this protease has been shown to rapidly degrade RpoS during exponential growth. These studies confirm the significant role of PsrA in rpoS transcription during the late-exponential and stationary growth phases, the probable role of Vfr in transcriptional repression during exponential phase, and the function of the ClpXP protease in RpoS degradation during exponential phase. GacA/GacS, the quorum-sensing systems, and the polyphosphate alarmone molecule were not significant in rpoS/RpoS regulation. These results demonstrate important similarities and differences with the regulation of this sigma factor in E. coli and in Pseudomonas.
Collapse
Affiliation(s)
- Iris Bertani
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34012, Trieste, Italy
| | | | | | | |
Collapse
|
31
|
Nakjarung K, Mongkolsuk S, Vattanaviboon P. The oxyR from Agrobacterium tumefaciens: evaluation of its role in the regulation of catalase and peroxide responses. Biochem Biophys Res Commun 2003; 304:41-7. [PMID: 12705881 DOI: 10.1016/s0006-291x(03)00535-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gene for Agrobacterium tumefaciens OxyR, a peroxide sensor and transcriptional regulator, was characterized. Phylogenetic analysis of bacterial OxyR showed that the protein could be divided into four clades. The A. tumefaciens OxyR grouped in clade III that consists primarily of OxyRs of Alphaproteobacteria displayed the highest homology to OxyR from Rhizobium leguminosarum. oxyR is located next to, and is divergently transcribed from, a bifunctional catalase-peroxidase gene (katA). An A. tumefaciens oxyR mutant was constructed and shown to be hyper-sensitive to H2O2, but not to the superoxide generator, menadione, or an organic hydroperoxide. Exposure of A. tumefaciens to H2O2 resulted in induction of the catalase-peroxidase enzyme. This induction was abolished in the oxyR mutant. In vivo analysis of a katA::lacZ promoter fusion confirmed the results of enzyme assays and indicated that induction of the katA promoter by H2O2 was dependent on functional OxyR. We also examined the regulation of oxyR in A. tumefaciens. Exposure to H2O2 did not induce expression of the gene but simply changed OxyR from a reduced to an oxidized form. The in vivo oxyR promoter analysis showed that the promoter was auto-regulated and that transcription was not induced by H2O2.
Collapse
Affiliation(s)
- Kaewkanya Nakjarung
- Department of Biotechnology, Faculty of Science, Mahidol University, 10400, Bangkok, Thailand
| | | | | |
Collapse
|
32
|
Rajkumari K, Gowrishankar J. An N-terminally truncated RpoS (sigma(S)) protein in Escherichia coli is active in vivo and exhibits normal environmental regulation even in the absence of rpoS transcriptional and translational control signals. J Bacteriol 2002; 184:3167-75. [PMID: 12029032 PMCID: PMC135099 DOI: 10.1128/jb.184.12.3167-3175.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RpoS (sigma(S)) in Escherichia coli is a stationary-phase-specific primary sigma factor of RNA polymerase which is 330 amino acids long and belongs to the eubacterial sigma(70) family of proteins. Conserved domain 1.1 at the N-terminal end of sigma(70) has been shown to be essential for RNA polymerase function, and its deletion has been shown to result in a dominant-lethal phenotype. We now report that a sigma(S) variant with a deletion of its N-terminal 50 amino acids (sigma(S)Delta1-50), when expressed in vivo either from a chromosomal rpoS::IS10 allele (in rho mutant strains) or from a plasmid-borne arabinose-inducible promoter, is as proficient as the wild type in directing transcription from the proU P1 promoter; at three other sigma(S)-dependent promoters that were tested (osmY, katE, and csiD), the truncated protein exhibited a three- to sevenfold reduced range of activities. Catabolite repression at the csiD promoter (which requires both sigma(S) and cyclic AMP [cAMP]-cAMP receptor protein for its activity) was also preserved in the strain expressing sigma(S)Delta1-50. The intracellular content of sigma(S)Delta1-50 was regulated by culture variables such as growth phase, osmolarity, and temperature in the same manner as that described earlier for sigma(S), even when the truncated protein was expressed from a template that possessed neither the transcriptional nor the translational control elements of wild-type rpoS. Our results indicate that, unlike that in sigma(70), the N-terminal domain in sigma(S) may not be essential for the protein to function as a sigma factor in vivo. Furthermore, our results suggest that the induction of sigma(S)-specific promoters in stationary phase and during growth under conditions of high osmolarity or low temperature is mediated primarily through the regulation of sigma(S) protein degradation.
Collapse
Affiliation(s)
- K Rajkumari
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | |
Collapse
|
33
|
Funabashi H, Haruyama T, Mie M, Yanagida Y, Kobatake E, Aizawa M. Non-destructive monitoring of rpoS promoter activity as stress marker for evaluating cellular physiological status. J Biotechnol 2002; 95:85-93. [PMID: 11879714 DOI: 10.1016/s0168-1656(01)00446-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To monitor the extent of cellular physiological stress, the activity of the rpoS promoter was evaluated as a marker of the stress pathway. A reporter plasmid was constructed by inserting the GFPuv gene under the rpoS promoter and used to transform Escherichia coli cells. The fluorescence of the GFPuv protein was measured in intact cells in a non-destructive manner. The physiological status of the cells could be conveniently monitored using the rpoS-GFPuv reporter gene with respect to the cellular growth phase and to elevated ethanol and NaCl concentrations as two examples of environmental stress factors. Comparison of the response of different E. coli strains demonstrated an essential role of the relA gene in the induction of the rpoS-GFPuv reporter gene.
Collapse
Affiliation(s)
- Hisakage Funabashi
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Umitsuki G, Wachi M, Takada A, Hikichi T, Nagai K. Involvement of RNase G in in vivo mRNA metabolism in Escherichia coli. Genes Cells 2001; 6:403-10. [PMID: 11380618 DOI: 10.1046/j.1365-2443.2001.00430.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Escherichia coli rng gene (previously called cafA) encodes a novel RNase, named RNase G, which is involved in the 5' end-processing of 16S rRNA. In rng mutant cells, a precursor form of 16S rRNA, 16.3S rRNA, is accumulated. Here we report a role of RNase G in the in vivo mRNA metabolism. RESULTS We found that rng:cat mutant strains overproduced a protein of about 100 kDa. N-terminal amino acid sequencing of this protein showed that it was identical to the fermentative alcohol dehydrogenase, the product of the adhE gene located at 28 min on the E. coli genetic map. The level of adhE mRNA was significantly higher in the rng:cat mutant strain than that in its parental strain, while such differences were not seen in other genes we examined. A rifampicin-chase experiment revealed that the half-life of adhE mRNA was 2.5-fold longer in the rng:cat disruptant than in the wild-type. CONCLUSION These results indicate that, in addition to rRNA processing, RNase G is involved in in vivo mRNA degradation in E. coli.
Collapse
Affiliation(s)
- G Umitsuki
- Department of Bioengineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
35
|
Shiga Y, Sekine Y, Kano Y, Ohtsubo E. Involvement of H-NS in transpositional recombination mediated by IS1. J Bacteriol 2001; 183:2476-84. [PMID: 11274106 PMCID: PMC95163 DOI: 10.1128/jb.183.8.2476-2484.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IS1, the smallest active transposable element in bacteria, encodes a transposase that promotes inter- and intramolecular transposition. Host-encoded factors, e.g., histone-like proteins HU and integration host factor (IHF), are involved in the transposition reactions of some bacterial transposable elements. Host factors involved in the IS1 transposition reaction, however, are not known. We show that a plasmid with an IS1 derivative that efficiently produces transposase did not generate miniplasmids, the products of intramolecular transposition, in mutants deficient in a nucleoid-associated DNA-binding protein, H-NS, but did generate them in mutants deficient in histone-like proteins HU, IHF, Fis, and StpA. Nor did IS1 transpose intermolecularly to the target plasmid in the H-NS-deficient mutant. The hns mutation did not affect transcription from the indigenous promoter of IS1 for the expression of the transposase gene. These findings show that transpositional recombination mediated by IS1 requires H-NS but does not require the HU, IHF, Fis, or StpA protein in vivo. Gel retardation assays of restriction fragments of IS1-carrying plasmid DNA showed that no sites were bound preferentially by H-NS within the IS1 sequence. The central domain of H-NS, which is involved in dimerization and/or oligomerization of the H-NS protein, was important for the intramolecular transposition of IS1, but the N- and C-terminal domains, which are involved in the repression of certain genes and DNA binding, respectively, were not. The SOS response induced by the IS1 transposase was absent in the H-NS-deficient mutant strain but was present in the wild-type strain. We discuss the possibility that H-NS promotes the formation of an active IS1 DNA-transposase complex in which the IS1 ends are cleaved to initiate transpositional recombination through interaction with IS1 transposase.
Collapse
Affiliation(s)
- Y Shiga
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
36
|
Tsutsumi K, Munekata M, Shiba T. Involvement of inorganic polyphosphate in expression of SOS genes. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1493:73-81. [PMID: 10978509 DOI: 10.1016/s0167-4781(00)00165-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Inorganic polyphosphate (poly(P)) is a linear polymer that has been found in every organism so far examined. To elucidate the functions of poly(P) in the regulation of gene expression, the level of cellular poly(P) in Escherichia coli was reduced to a barely detectable concentration by overproduction of exopolyphosphatase (exopoly(P)ase) with a plasmid encoding yeast exopoly(P)ase (Shiba et al., Proc. Natl. Acad. Sci. USA 94 (1997) 11210-11215). It was found that exopoly(P)ase-overproducing cells were more sensitive to UV or mitomycin C (MMC) than were control cells. Poly(P) accumulation was observed after treatment with MMC, whereas the poly(P) level was below the detectable level in cells that overproduced exopoly(P)ase. When exopoly(P)ase-overproducing cells were transformed again by a multiple copy number plasmid that carries the polyphosphate kinase gene (ppk), the cells accumulated a great amount of poly(P) and restored the UV and MMC sensitivities to the level of control cells. In exopoly(P)ase-overproducing cells, the expression of recA and umuDC were not induced by MMC. In addition, a strain containing multiple copies of ppk accumulated not only a large amount of poly(P) but also recA mRNA. Since recA expression was induced in a recA-deletion strain harboring a plasmid with the ppk gene, poly(P) could be necessary for regulating the expression of SOS genes without depending on the RecA-LexA regulatory network.
Collapse
Affiliation(s)
- K Tsutsumi
- Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, 060-8628, Sapporo, Japan
| | | | | |
Collapse
|
37
|
Ohnuma M, Fujita N, Ishihama A, Tanaka K, Takahashi H. A carboxy-terminal 16-amino-acid region of sigma(38) of Escherichia coli is important for transcription under high-salt conditions and sigma activities in vivo. J Bacteriol 2000; 182:4628-31. [PMID: 10913098 PMCID: PMC94636 DOI: 10.1128/jb.182.16.4628-4631.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2000] [Accepted: 05/15/2000] [Indexed: 11/20/2022] Open
Abstract
sigma(38) (or sigma(S), the rpoS gene product) is a sigma subunit of RNA polymerase in Escherichia coli and directs transcription from a number of stationary-phase promoters as well as osmotically inducible promoters. In this study, we analyzed the function of the carboxy-terminal 16-amino-acid region of sigma(38) (residues 315 to 330), which is well conserved among the rpoS gene products of enteric bacterial species. Truncation of this region was shown to result in the loss of sigma activity in vivo using promoter-lacZ fusion constructs, but the mutant sigma(38) retained the binding activity in vivo to the core enzyme. The in vitro transcription analysis revealed that the transcription activity of sigma(38) holoenzyme under high potassium glutamate concentrations was significantly decreased by the truncation of the carboxy-terminal tail element.
Collapse
Affiliation(s)
- M Ohnuma
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
38
|
Wachi M, Takada A, Nagai K. Overproduction of the outer-membrane proteins FepA and FhuE responsible for iron transport in Escherichia coli hfq::cat mutant. Biochem Biophys Res Commun 1999; 264:525-9. [PMID: 10529396 DOI: 10.1006/bbrc.1999.1537] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We found that 82- and 76-kDa proteins in the outer-membrane fractions were overproduced in the hfq::cat mutant cells when grown in synthetic media. Expression of these proteins was repressed by addition of FeCl(3) in the mutant as well as in the wild type. It was revealed that these are FepA and FhuE proteins involved in iron transport. The hfq::cat mutant was more susceptible to killing by hydrogen peroxide, probably due to the excess incorporation of iron, which potentially generates hydroxyl radicals. Increased incorporation of iron in the hfq::cat mutant was also confirmed by the suppressive effect on the ftsH1 mutation. These results suggest that the hfq gene product is involved in the defense mechanism against oxidative stress.
Collapse
Affiliation(s)
- M Wachi
- Department of Bioengineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan.
| | | | | |
Collapse
|
39
|
Tsuchiya K, Okuno K, Ano T, Tanaka K, Takahashi H, Shoda M. High magnetic field enhances stationary phase-specific transcription activity of Escherichia coli. BIOELECTROCHEMISTRY AND BIOENERGETICS (LAUSANNE, SWITZERLAND) 1999; 48:383-7. [PMID: 10379558 DOI: 10.1016/s0302-4598(99)00023-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
When Escherichia coli B was aerobically grown at 37 degrees C under inhomogeneous 5.2-6.1 Tesla (T) magnetic fields in the superconducting magnet biosystem (SBS), the cell number in the stationary phase after the growth had leveled off, was about 3 times higher than that under a geomagnetic field. When the E. coli defective in the rpoS gene which encodes a sigma factor, sigmaS of RNA polymerase and is specifically expressed in the stationary phase was cultivated at 37 degrees C in SBS, such enhancement of cell survival was significantly reduced. The E. coli cells carrying rpoS-lacZ fusion gene or other rpoS dependent genes fused with lacZ were grown, significant increase in the activity of beta-galactosidase was observed in the stationary phase under high magnetic field. These data suggest that enhancement of the transcription activity in stationary phase is involved in the higher survival of the cells under magnetic field.
Collapse
Affiliation(s)
- K Tsuchiya
- Research Laboratory of Resources Utilization, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|