Ohtsuki T, Sakurai M, Sato A, Watanabe K. Characterization of the interaction between the nucleotide exchange factor EF-Ts from nematode mitochondria and elongation factor Tu.
Nucleic Acids Res 2002;
30:5444-51. [PMID:
12490713 PMCID:
PMC140056 DOI:
10.1093/nar/gkf679]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Caenorhabditis elegans mitochondria have two elongation factor (EF)-Tu species, denoted EF-Tu1 and EF-Tu2. Recombinant nematode EF-Ts purified from Escherichia coli bound both of these molecules and also stimulated the translational activity of EF-Tu, indicating that the nematode EF-Ts homolog is a functional EF-Ts protein of mitochondria. Complexes formed by the interaction of nematode EF-Ts with EF-Tu1 and EF-Tu2 could be detected by native gel electrophoresis and purified by gel filtration. Although the nematode mitochondrial (mt) EF-Tu molecules are extremely unstable and easily form aggregates, native gel electrophoresis and gel filtration analysis revealed that EF-Tu.EF-Ts complexes are significantly more soluble. This indicates that nematode EF-Ts can be used to stabilize homologous EF-Tu molecules for experimental purposes. The EF-Ts bound to two eubacterial EF-Tu species (E.coli and Thermus thermophilus). Although the EF-Ts did not bind to bovine mt EF-Tu, it could bind to a chimeric nematode-bovine EF-Tu molecule containing domains 1 and 2 from bovine mt EF-Tu. Thus, the nematode EF-Ts appears to have a broad specificity for EF-Tu molecules from different species.
Collapse