1
|
Morao AK, Kim J, Obaji D, Sun S, Ercan S. Topoisomerases I and II facilitate condensin DC translocation to organize and repress X chromosomes in C. elegans. Mol Cell 2022; 82:4202-4217.e5. [PMID: 36302374 PMCID: PMC9837612 DOI: 10.1016/j.molcel.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/24/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
Abstract
Condensins are evolutionarily conserved molecular motors that translocate along DNA and form loops. To address how DNA topology affects condensin translocation, we applied auxin-inducible degradation of topoisomerases I and II and analyzed the binding and function of an interphase condensin that mediates X chromosome dosage compensation in C. elegans. TOP-2 depletion reduced long-range spreading of condensin-DC (dosage compensation) from its recruitment sites and shortened 3D DNA contacts measured by Hi-C. TOP-1 depletion did not affect long-range spreading but resulted in condensin-DC accumulation within expressed gene bodies. Both TOP-1 and TOP-2 depletion resulted in X chromosome derepression, indicating that condensin-DC translocation at both scales is required for its function. Together, the distinct effects of TOP-1 and TOP-2 suggest two distinct modes of condensin-DC association with chromatin: long-range DNA loop extrusion that requires decatenation/unknotting of DNA and short-range translocation across genes that requires resolution of transcription-induced supercoiling.
Collapse
Affiliation(s)
- Ana Karina Morao
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA.
| | - Jun Kim
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Daniel Obaji
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Siyu Sun
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
2
|
Wani S, Kuroyanagi H. An emerging model organism Caenorhabditis elegans for alternative pre-mRNA processing in vivo. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28703462 DOI: 10.1002/wrna.1428] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022]
Abstract
A nematode Caenorhabditis elegans is an intron-rich organism and up to 25% of its pre-mRNAs are estimated to be alternatively processed. Its compact genomic organization enables construction of fluorescence splicing reporters with intact genomic sequences and visualization of alternative processing patterns of interest in the transparent living animals with single-cell resolution. Genetic analysis with the reporter worms facilitated identification of trans-acting factors and cis-acting elements, which are highly conserved in mammals. Analysis of unspliced and partially spliced pre-mRNAs in vivo raised models for alternative splicing regulation relying on specific order of intron excision. RNA-seq analysis of splicing factor mutants and CLIP-seq analysis of the factors allow global search for target genes in the whole animal. An mRNA surveillance system is not essential for its viability or fertility, allowing analysis of unproductively spliced noncoding mRNAs. These features offer C. elegans as an ideal model organism for elucidating alternative pre-mRNA processing mechanisms in vivo. Examples of isoform-specific functions of alternatively processed genes are summarized. WIREs RNA 2017, 8:e1428. doi: 10.1002/wrna.1428 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Shotaro Wani
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidehito Kuroyanagi
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
3
|
Gracida X, Norris AD, Calarco JA. Regulation of Tissue-Specific Alternative Splicing: C. elegans as a Model System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:229-61. [DOI: 10.1007/978-3-319-29073-7_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Ragle JM, Katzman S, Akers TF, Barberan-Soler S, Zahler AM. Coordinated tissue-specific regulation of adjacent alternative 3' splice sites in C. elegans. Genome Res 2015; 25:982-94. [PMID: 25922281 PMCID: PMC4484395 DOI: 10.1101/gr.186783.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/27/2015] [Indexed: 12/30/2022]
Abstract
Adjacent alternative 3′ splice sites, those separated by ≤18 nucleotides, provide a unique problem in the study of alternative splicing regulation; there is overlap of the cis-elements that define the adjacent sites. Identification of the intron's 3′ end depends upon sequence elements that define the branchpoint, polypyrimidine tract, and terminal AG dinucleotide. Starting with RNA-seq data from germline-enriched and somatic cell-enriched Caenorhabditis elegans samples, we identify hundreds of introns with adjacent alternative 3′ splice sites. We identify 203 events that undergo tissue-specific alternative splicing. For these, the regulation is monodirectional, with somatic cells preferring to splice at the distal 3′ splice site (furthest from the 5′ end of the intron) and germline cells showing a distinct shift toward usage of the adjacent proximal 3′ splice site (closer to the 5′ end of the intron). Splicing patterns in somatic cells follow C. elegans consensus rules of 3′ splice site definition; a short stretch of pyrimidines preceding an AG dinucleotide. Splicing in germline cells occurs at proximal 3′ splice sites that lack a preceding polypyrimidine tract, and in three instances the germline-specific site lacks the AG dinucleotide. We provide evidence that use of germline-specific proximal 3′ splice sites is conserved across Caenorhabditis species. We propose that there are differences between germline and somatic cells in the way that the basal splicing machinery functions to determine the intron terminus.
Collapse
Affiliation(s)
- James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology and The Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Sol Katzman
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Taylor F Akers
- Department of Molecular, Cell, and Developmental Biology and The Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Sergio Barberan-Soler
- Gene Regulation, Stem Cells, and Cancer Program, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Alan M Zahler
- Department of Molecular, Cell, and Developmental Biology and The Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
5
|
Alternative Splicing Regulation of Cancer-Related Pathways in Caenorhabditis elegans: An In Vivo Model System with a Powerful Reverse Genetics Toolbox. Int J Cell Biol 2013; 2013:636050. [PMID: 24069034 PMCID: PMC3771449 DOI: 10.1155/2013/636050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/29/2013] [Indexed: 11/18/2022] Open
Abstract
Alternative splicing allows for the generation of protein diversity and fine-tunes gene expression. Several model systems have been used for the in vivo study of alternative splicing. Here we review the use of the nematode Caenorhabditis elegans to study splicing regulation in vivo. Recent studies have shown that close to 25% of genes in the worm genome undergo alternative splicing. A big proportion of these events are functional, conserved, and under strict regulation either across development or other conditions. Several techniques like genome-wide RNAi screens and bichromatic reporters are available for the study of alternative splicing in worms. In this review, we focus, first, on the main studies that have been performed to dissect alternative splicing in this system and later on examples from genes that have human homologs that are implicated in cancer. The significant advancement towards understanding the regulation of alternative splicing and cancer that the C. elegans system has offered is discussed.
Collapse
|
6
|
Cha DS, Hollis SE, Datla US, Lee S, Ryu J, Jung HR, Kim E, Kim K, Lee M, Li C, Lee MH. Differential subcellular localization of DNA topoisomerase-1 isoforms and their roles during Caenorhabditis elegans development. Gene Expr Patterns 2012; 12:189-95. [PMID: 22452997 DOI: 10.1016/j.gep.2012.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/03/2012] [Accepted: 03/11/2012] [Indexed: 10/28/2022]
Abstract
DNA topoisomerase-1 (TOP-1) resolves the topological problems associated with DNA replication, transcription and recombination by introducing temporary single-strand breaks in the DNA. Caenorhabditis elegans TOP-1 has two isoforms, TOP-1α and TOP-1β. TOP-1β is broadly localized to the nuclei of many cells at all developmental stages and concentrated in nucleoli in embryo gut and oogenic cells. However, TOP-1α is specifically localized to centrosomes, neuronal cells, excretory cells and chromosomes of germ cells in embryonic and larval stages. Reporter gene analysis also shows that top-1 transcription is highly activated in several sensory neurons, speculating the possible role of TOP-1α in neuronal development. From RNA interference (RNAi) experiments, we demonstrated that C. elegans TOP-1 is required for chromosomal segregation, germline proliferation and gonadal migration, which are all correlated with the expression and activity of TOP-1. Therefore, our findings may provide an insight into a new role of TOP-1 in development of multicellular organisms.
Collapse
Affiliation(s)
- Dong Seok Cha
- Division of Hematology/Oncology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Barberan-Soler S, Zahler AM. Alternative splicing regulation during C. elegans development: splicing factors as regulated targets. PLoS Genet 2008; 4:e1000001. [PMID: 18454200 PMCID: PMC2265522 DOI: 10.1371/journal.pgen.1000001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 01/15/2008] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (∼18%) of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold) during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 – now named hrpf-1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors by NMD may have downstream effects on alternative splicing regulation. Alternative splicing is a mechanism for generating more than one messenger RNA from a given gene. The alternative transcripts can encode different proteins that share some regions in common but have modified functions, thus increasing the number of proteins encoded by the genome. Alternative splicing can also lead to the production of mRNA isoforms that are then subject to degradation by the nonsense-mediated decay pathway, thus providing a mechanism to down-regulate gene expression without decreasing transcription. Examples of cell type-specific, hormone-responsive, and developmentally-regulated alternative splicing have been described. We decided to measure the extent of developmentally regulated alternative splicing in the nematode model organism Caenorhabditis elegans. We developed a DNA microarray that can measure the alternative splicing of 352 cassette exons simultaneously and used it to probe alternative splicing in RNA extracted from embryos, the four larval stages, and adults. We show that 18% of the alternatively spliced genes tested show >4-fold changes in alternative splicing during development. In addition, we show that one of the most regulated genes is itself a splicing factor, providing support for a model in which a cascade of alternative splicing regulation occurs during development.
Collapse
Affiliation(s)
- Sergio Barberan-Soler
- Department of MCD Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Alan M. Zahler
- Department of MCD Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Lee MH, Park H, Shim G, Lee J, Koo HS. Regulation of gene expression, cellular localization, and in vivo function of Caenorhabditis elegans DNA topoisomerase I. Genes Cells 2001; 6:303-12. [PMID: 11318873 DOI: 10.1046/j.1365-2443.2001.00423.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND DNA topoisomerase I is dispensable in yeast, but is essential during the embryogenesis of Drosophila and mouse. In order to determine functions of the enzyme in the development of Caenorhabditis elegans, phenotypes resulting from the deficiency were observed and correlated with the expression of the gene. RESULTS The transcriptional regulation of the C. elegans DNA topoisomerase I gene was investigated by mRNA localization and reporter gene expression in C. elegans. The mRNA was expressed in the gonad and in the early embryos, followed by a rapid decrease in its level during the late embryonic stage. A reporter gene expression induced by the 5'-upstream DNA sequence appeared at the comma stage of embryos, continued through the L1 larval stage, and began to decrease gradually afterwards. The DNA topoisomerase I protein was immuno-localized in the nuclei of meiotic gonad cells and interphase embryonic cells, and unexpectedly in centrosomes of mitotic embryonic cells. Double-stranded RNA interference of DNA topoisomerase I gene expression resulted in pleiotropic phenotypes showing abnormal gonadogenesis, oocyte development and embryogenesis. CONCLUSION These phenotypes, along with expressional regulations, demonstrate that DNA topoisomerase I plays important roles in rapidly growing germ cells and embryonic cells.
Collapse
Affiliation(s)
- M H Lee
- Department of Biochemistry, College of Science, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | |
Collapse
|
9
|
Longman D, Johnstone IL, Cáceres JF. Functional characterization of SR and SR-related genes in Caenorhabditis elegans. EMBO J 2000; 19:1625-37. [PMID: 10747030 PMCID: PMC310231 DOI: 10.1093/emboj/19.7.1625] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The SR proteins constitute a family of nuclear phosphoproteins, which are required for constitutive splicing and also influence alternative splicing regulation. Initially, it was suggested that SR proteins were functionally redundant in constitutive splicing. However, differences have been observed in alternative splicing regulation, suggesting unique functions for individual SR proteins. Homology searches of the Caenorhabditis elegans genome identified seven genes encoding putative orthologues of the human factors SF2/ASF, SRp20, SC35, SRp40, SRp75 and p54, and also several SR-related genes. To address the issue of functional redundancy, we used dsRNA interference (RNAi) to inhibit specific SR protein function during C.elegans development. RNAi with CeSF2/ASF caused late embryonic lethality, suggesting that this gene has an essential function during C.elegans development. RNAi with other SR genes resulted in no obvious phenotype, which is indicative of gene redundancy. Simultaneous interference of two or more SR proteins in certain combinations caused lethality or other developmental defects. RNAi with CeSRPK, an SR protein kinase, resulted in early embryonic lethality, suggesting an essential role for SR protein phosphorylation during development.
Collapse
Affiliation(s)
- D Longman
- MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU
| | | | | |
Collapse
|