1
|
Wei Y, Nie Y, Han Z, Huang H, Liao X, Wang X, Fan Z, Zheng Y. Au@polydopamine nanoparticles/tocilizumab composite as efficient scavengers of oxygen free radicals for improving the treatment of rheumatoid arthritis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111434. [PMID: 33255028 DOI: 10.1016/j.msec.2020.111434] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis (RA) is the most common chronic autoimmune disorder associated with high-cost, side effects, and low therapeutic effects. To improve the treatment of RA, we originally developed a novel anti-RA Au@polydopamine nanoparticles (PDANPs)/TCZ composite using PDANPs as the binding sites of gold nanoparticles (AuNPs) and the drug carries of tocilizumab (TCZ) through a facile and environmentally-friend method, aiming to effectively scavenge oxygen free radicals (OFR) and inhibit the formation of related inflammatory factors. Characterizations showed that AuNPs with the size of 11.4 ± 2.9 nm randomly distributed onto the surface of PDANPs (145.8 ± 31.9 nm), meanwhile TCZ was chemically cross-linked to PDANPs through Schiff base linkage. The synthesized composite had good biocompatibility that can promote the proliferation and growth of chondrocytes and fibroblasts. More importantly, Au@PDANPs/TCZ composite showed more excellent abilities to scavenge OFR and inhibit the related inflammatory factors in vitro and in vivo than that of AuNPs and PDANPs owing to the synergistic scavenging effect, ensuring its best therapeutic effect in RA therapy. This new composite will have application potential in the treatment of RA related disease.
Collapse
Affiliation(s)
- Yuan Wei
- School of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Yingying Nie
- Institute of Sensing Technology, Gansu Academy of Sciences, Lanzhou 730000, PR China
| | - Zongpu Han
- School of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Haofei Huang
- School of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Xiaozhu Liao
- School of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Xusen Wang
- School of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Zengjie Fan
- School of Stomatology, Lanzhou University, Lanzhou 730000, PR China.
| | - Yan Zheng
- School of Stomatology, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
2
|
Walters KA, Golbeck JH. Expression, purification and characterization of an active C491G variant of ferredoxin sulfite reductase from Synechococcus elongatus PCC 7942. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1096-1107. [PMID: 29959913 DOI: 10.1016/j.bbabio.2018.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
Recently developed molecular wire technology takes advantage of [4Fe-4S] clusters that are ligated by at least one surface exposed Cys residue. Mutagenesis of this Cys residue to a Gly opens an exchangeable coordination site to a corner iron atom that can be chemically rescued by an external thiolate ligand. This ligand can be subsequently displaced by mass action using a dithiol molecular wire to tether two redox active proteins. We intend to apply this technique to tethering Photosystem I to ferredoxin sulfite reductase (FdSiR), an enzyme that catalyzes the six-electron reduction of sulfite to hydrogen sulfite and nitrite to ammonia. The enzyme contains a [4Fe-4S]2+/1+ cluster and a siroheme active site. FdSiRWT and an FdSiRC491G variant were cloned from Synechococcus elongatus PCC 7942 and expressed along with the cysG gene from Salmonella typhimurium using the pCDFDuet plasmid. UV/Vis absorbance spectra of both FdSiRWT and the FdSiRC491G variant displayed characteristic peaks at 278, 392 (Soret), 585 (α) and 714 nm (charge transfer band), and 278, 394 (Soret), 587 (α) and 714 nm (charge transfer band) respectively. Both enzymes in their as-isolated forms displayed an EPR spectrum characteristic of an S = 5/2 high spin heme. When reduced, both enzymes exhibited the signal of a low spin S = 1/2 [4Fe-4S]1+ cluster. The FdSiRWT and FdSiRC491G variant both showed activity using reduced methyl viologen and Synechococcus elongatus PCC 7942 ferredoxin 1 (Fd1) as electron donors. Based on these results, the FdSIRC491G variant should be a suitable candidate for wiring to Photosystem I.
Collapse
Affiliation(s)
- Karim A Walters
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
3
|
Lin YH, Huang LF, Hase T, Huang HE, Feng TY. Expression of plant ferredoxin-like protein (PFLP) enhances tolerance to heat stress in Arabidopsis thaliana. N Biotechnol 2014; 32:235-42. [PMID: 25527360 DOI: 10.1016/j.nbt.2014.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/10/2014] [Accepted: 12/08/2014] [Indexed: 01/22/2023]
Abstract
Under adverse environments, plants produce reactive oxygen species (ROS), which can trigger cell death when their accumulation surpasses the antioxidant capacity of ROS scavenging systems. These systems function in chloroplasts mainly through the ascorbate-mediated water-water cycle, in which ascorbate is photoreduced by ferredoxin in the photosynthetic system. Our previous study showed that the fraction of the reduced form of ascorbate was increased in ferredoxin-transgenic Arabidopsis (CPF) plants which overexpressed plant ferredoxin-like protein (PFLP) in their chloroplasts. Thus, we hypothesized that expression of PFLP could alter the tolerance of plants to abiotic stresses through increasing reduced form of ascorbate. In this study, we found that two CPF lines exhibited lower mortality rates at five days, following two days of heat treatment. Compared to non-transgenic wild type (Col-0) plants, CPF plants exhibited decreased H2O2 content, MDA accumulation, and ion leakage after heat treatment. To confirm the efficacy of ferredoxin against heat stress in chloroplasts, we evaluated two RNA interference (RNAi) lines on two endogenous ferredoxin isoforms, Atfd1 or Atfd2, of Arabidopsis plants. Both lines not only decreased their amounts of ascorbate, but also exhibited adverse reactions following heat treatment. Based on these results, we conclude that expression of PFLP in chloroplasts can confer tolerance to heat stress. This tolerance might be associated with the increasing of ascorbate in plants.
Collapse
Affiliation(s)
- Yi-Hsien Lin
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Li-Fen Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Tashiharu Hase
- Laboratory of Regulation of Biological Reactions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Hsiang-En Huang
- Department of Life Science, National Taitung University, Taitung, Taiwan
| | - Teng-Yung Feng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
4
|
Namukwaya B, Tripathi L, Tripathi JN, Arinaitwe G, Mukasa SB, Tushemereirwe WK. Transgenic banana expressing Pflp gene confers enhanced resistance to Xanthomonas wilt disease. Transgenic Res 2011; 21:855-65. [DOI: 10.1007/s11248-011-9574-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/11/2011] [Indexed: 10/15/2022]
|
5
|
Winkler M, Kawelke S, Happe T. Light driven hydrogen production in protein based semi-artificial systems. BIORESOURCE TECHNOLOGY 2011; 102:8493-8500. [PMID: 21696949 DOI: 10.1016/j.biortech.2011.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 05/04/2011] [Accepted: 05/08/2011] [Indexed: 05/31/2023]
Abstract
Photobiological hydrogen production has recently attracted interest in terms of being a potential source for an alternative energy carrier. Especially the natural light driven hydrogen metabolism of unicellular green algae appears as an attractive blueprint for a clean and potentially unlimited dihydrogen source. However, the efficiency of in vivo systems is limited by physiological and evolutionary constraints and scientists only begin to understand the regulatory networks influencing cellular hydrogen production. A growing number of projects aim at circumventing these limitations by focusing on semi-artificial systems. They reconstitute parts of the native electron transfer chains in vitro, combining photosystem I as a photoactive element with a proton reducing catalytic element such as hydrogenase enzymes or noble metal nanoparticles. This review summarizes various approaches and discusses limitations that have to be overcome in order to establish economically applicable systems.
Collapse
Affiliation(s)
- Martin Winkler
- Ruhr-Universität Bochum, Fakultät für Biologie und Biotechnologie, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, 44780 Bochum, Germany
| | | | | |
Collapse
|
6
|
Community genomic and proteomic analyses of chemoautotrophic iron-oxidizing "Leptospirillum rubarum" (Group II) and "Leptospirillum ferrodiazotrophum" (Group III) bacteria in acid mine drainage biofilms. Appl Environ Microbiol 2009; 75:4599-615. [PMID: 19429552 DOI: 10.1128/aem.02943-08] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We analyzed near-complete population (composite) genomic sequences for coexisting acidophilic iron-oxidizing Leptospirillum group II and III bacteria (phylum Nitrospirae) and an extrachromosomal plasmid from a Richmond Mine, Iron Mountain, CA, acid mine drainage biofilm. Community proteomic analysis of the genomically characterized sample and two other biofilms identified 64.6% and 44.9% of the predicted proteins of Leptospirillum groups II and III, respectively, and 20% of the predicted plasmid proteins. The bacteria share 92% 16S rRNA gene sequence identity and >60% of their genes, including integrated plasmid-like regions. The extrachromosomal plasmid carries conjugation genes with detectable sequence similarity to genes in the integrated conjugative plasmid, but only those on the extrachromosomal element were identified by proteomics. Both bacterial groups have genes for community-essential functions, including carbon fixation and biosynthesis of vitamins, fatty acids, and biopolymers (including cellulose); proteomic analyses reveal these activities. Both Leptospirillum types have multiple pathways for osmotic protection. Although both are motile, signal transduction and methyl-accepting chemotaxis proteins are more abundant in Leptospirillum group III, consistent with its distribution in gradients within biofilms. Interestingly, Leptospirillum group II uses a methyl-dependent and Leptospirillum group III a methyl-independent response pathway. Although only Leptospirillum group III can fix nitrogen, these proteins were not identified by proteomics. The abundances of core proteins are similar in all communities, but the abundance levels of unique and shared proteins of unknown function vary. Some proteins unique to one organism were highly expressed and may be key to the functional and ecological differentiation of Leptospirillum groups II and III.
Collapse
|
7
|
Feng TY, Lin YH, Huang HE. Improvement of Agronomic Traits Using Different Isoforms of Ferredoxin for Plant Development and Disease Resistance. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2009. [DOI: 10.1201/9781420077070.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Huang HE, Ger MJ, Chen CY, Pandey AK, Yip MK, Chou HW, Feng TY. Disease resistance to bacterial pathogens affected by the amount of ferredoxin-I protein in plants. MOLECULAR PLANT PATHOLOGY 2007; 8:129-37. [PMID: 20507485 DOI: 10.1111/j.1364-3703.2006.00378.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
SUMMARY Ferredoxin-I (Fd-I) is a fundamental protein that is involved in several metabolic pathways. The amount of Fd-I found in plants is generally regulated by environmental stress, including biotic and abiotic events. In this study, the correlation between quantity of Fd-I and plant disease resistance was investigated. Fd-I levels were increased by inoculation with Pseudomonas syringae pv. syringae but were reduced by Erwinia carotovora ssp. carotovora. Transgenic tobacco over-expressing Fd-I with the sense sweet pepper Fd-I gene (pflp) was resistant to E. carotovora ssp. carotovora and the saprophytic bacterium P. fluorescens. By contrast, transgenic tobacco with reduced total Fd-I and the antisense pflp gene was susceptible to E. carotovora ssp. carotovora and P. fluorescens. Both of these transgenic tobaccos were resistant to P. syringae pv. syringae. By contrast, the mutated E. carotovora ssp. carotovora, with a defective harpin protein, was able to invade the sense-pflp transgenic tobacco as well as the non-transgenic tobacco. An in vitro kinase assay revealed that harpin could activate unidentified kinases to phosphorylate PFLP. These results demonstrate that Fd-I plays an important role in the disease defence mechanism.
Collapse
Affiliation(s)
- Hsiang-En Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | | | | | | | |
Collapse
|
9
|
Schnell R, Sandalova T, Hellman U, Lindqvist Y, Schneider G. Siroheme- and [Fe4-S4]-dependent NirA from Mycobacterium tuberculosis Is a Sulfite Reductase with a Covalent Cys-Tyr Bond in the Active Site. J Biol Chem 2005; 280:27319-28. [PMID: 15917234 DOI: 10.1074/jbc.m502560200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nirA gene of Mycobacterium tuberculosis is up-regulated in the persistent state of the bacteria, suggesting that it is a potential target for the development of antituberculosis agents particularly active against the pathogen in its dormant phase. This gene encodes a ferredoxin-dependent sulfite reductase, and the structure of the enzyme has been determined using x-ray crystallography. The enzyme is a monomer comprising 555 amino acids and contains a [Fe4-S4] cluster and a siroheme cofactor. The molecule is built up of three domains with an alpha/beta fold. The first domain consists of two ferredoxin-like subdomains, related by a pseudo-2-fold symmetry axis passing through the whole molecule. The other two domains, which provide much of the binding interactions with the cofactors, have a common fold that is unique to the sulfite/nitrite reductase family. The domains form a trilobal structure, with the cofactors and the active site located at the interface of all three domains in the center of the molecule. NirA contains an unusual covalent bond between the side chains of Tyr69 and Cys161 in the active site, in close proximity to the siroheme cofactor. Removal of this covalent bond by site-directed mutagenesis impairs catalytic activity, suggesting that it is important for the enzymatic reaction. These residues are part of a sequence fingerprint, able to distinguish between ferredoxin-dependent sulfite and nitrite reductases. Comparison of NirA with the structure of the truncated NADPH-dependent sulfite reductase from Escherichia coli suggests a binding site for the external electron donor ferredoxin close to the [Fe4-S4] cluster.
Collapse
Affiliation(s)
- Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm S-171 77, Sweden
| | | | | | | | | |
Collapse
|
10
|
Flores E, Frías JE, Rubio LM, Herrero A. Photosynthetic nitrate assimilation in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2005; 83:117-33. [PMID: 16143847 DOI: 10.1007/s11120-004-5830-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Accepted: 11/02/2004] [Indexed: 05/03/2023]
Abstract
Nitrate uptake and reduction to nitrite and ammonium are driven in cyanobacteria by photosynthetically generated assimilatory power, i.e., ATP and reduced ferredoxin. High-affinity nitrate and nitrite uptake takes place in different cyanobacteria through either an ABC-type transporter or a permease from the major facilitator superfamily (MFS). Nitrate reductase and nitrite reductase are ferredoxin-dependent metalloenzymes that carry as prosthetic groups a [4Fe-4S] center and Mo-bis-molybdopterin guanine dinucleotide (nitrate reductase) and [4Fe-4S] and siroheme centers (nitrite reductase). Nitrate assimilation genes are commonly found forming an operon with the structure: nir (nitrite reductase)-permease gene(s)-narB (nitrate reductase). When the cells perceive a high C to N ratio, this operon is transcribed from a complex promoter that includes binding sites for NtcA, a global nitrogen-control regulator that belongs to the CAP family of bacterial transcription factors, and NtcB, a pathway-specific regulator that belongs to the LysR family of bacterial transcription factors. Transcription is also affected by other factors such as CnaT, a putative glycosyl transferase, and the signal transduction protein P(II). The latter is also a key factor for regulation of the activity of the ABC-type nitrate/nitrite transporter, which is inhibited when the cells are incubated in the presence of ammonium or in the absence of CO(2). Notwithstanding significant advance in understanding the regulation of nitrate assimilation in cyanobacteria, further post-transcriptional regulatory mechanisms are likely to be discovered.
Collapse
Affiliation(s)
- Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C.-Universidad de Sevilla, Avda. Américo Vespucio 49, Seville 41092, Spain.
| | | | | | | |
Collapse
|