1
|
Li J, Wang JL, Zhang WL, Tu Z, Cai XF, Wang YW, Gan CY, Deng HJ, Cui J, Shu ZC, Long QX, Chen J, Tang N, Hu X, Huang AL, Hu JL. Protein sensors combining both on-and-off model for antibody homogeneous assay. Biosens Bioelectron 2022; 209:114226. [PMID: 35413624 PMCID: PMC8968183 DOI: 10.1016/j.bios.2022.114226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 01/03/2023]
Abstract
Protein sensors based on allosteric enzymes responding to target binding with rapid changes in enzymatic activity are potential tools for homogeneous assays. However, a high signal-to-noise ratio (S/N) is difficult to achieve in their construction. A high S/N is critical to discriminate signals from the background, a phenomenon that might largely vary among serum samples from different individuals. Herein, based on the modularized luciferase NanoLuc, we designed a novel biosensor called NanoSwitch. This sensor allows direct detection of antibodies in 1 μl serum in 45 min without washing steps. In the detection of Flag and HA antibodies, NanoSwitches respond to antibodies with S/N ratios of 33-fold and 42-fold, respectively. Further, we constructed a NanoSwitch for detecting SARS-CoV-2-specific antibodies, which showed over 200-fold S/N in serum samples. High S/N was achieved by a new working model, combining the turn-off of the sensor with human serum albumin and turn-on with a specific antibody. Also, we constructed NanoSwitches for detecting antibodies against the core protein of hepatitis C virus (HCV) and gp41 of the human immunodeficiency virus (HIV). Interestingly, these sensors demonstrated a high S/N and good performance in the assays of clinical samples; this was partly attributed to the combination of off-and-on models. In summary, we provide a novel type of protein sensor and a working model that potentially guides new sensor design with better performance.
Collapse
|
2
|
Banala S, Arts R, Aper SJA, Merkx M. No washing, less waiting: engineering biomolecular reporters for single-step antibody detection in solution. Org Biomol Chem 2013; 11:7642-9. [DOI: 10.1039/c3ob41315b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Longjam N, Deb R, Sarmah AK, Tayo T, Awachat VB, Saxena VK. A Brief Review on Diagnosis of Foot-and-Mouth Disease of Livestock: Conventional to Molecular Tools. Vet Med Int 2011; 2011:905768. [PMID: 21776357 PMCID: PMC3135314 DOI: 10.4061/2011/905768] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/25/2011] [Accepted: 04/20/2011] [Indexed: 12/31/2022] Open
Abstract
Foot-and-mouth disease (FMD) is one of the highly contagious diseases of domestic animals. Effective control of this disease needs sensitive, specific, and quick diagnostic tools at each tier of control strategy. In this paper we have outlined various diagnostic approaches from old to new generation in a nutshell. Presently FMD diagnosis is being carried out using techniques such as Virus Isolation (VI), Sandwich-ELISA (S-ELISA), Liquid-Phase Blocking ELISA (LPBE), Multiplex-PCR (m-PCR), and indirect ELISA (DIVA), and real time-PCR can be used for detection of antibody against nonstructural proteins. Nucleotide sequencing for serotyping, microarray as well as recombinant antigen-based detection, biosensor, phage display, and nucleic-acid-based diagnostic are on the way for rapid and specific detection of FMDV. Various pen side tests, namely, lateral flow, RT-LAMP, Immunostrip tests, and so forth. are also developed for detection of the virus in field condition.
Collapse
Affiliation(s)
- Neeta Longjam
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati 781022, India
| | - Rajib Deb
- Division of Animal Biotechnology, Indian Veterinary Research Institute (IVRI), Izatnagar 243122, India
| | - A. K. Sarmah
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati 781022, India
| | - Tilling Tayo
- Division of Animal Nutrition, Indian Veterinary Research Institute (IVRI), Izatnagar 243122, India
| | - V. B. Awachat
- Division of Poultry Science, Central Avian Research Institute (CARI), Izatnagar 243122, India
| | - V. K. Saxena
- Division of Veterinary Biochemistry and Physiology, Central Sheep and Wool Research Institute (CSWRI), Avikanagar, India
| |
Collapse
|
4
|
Discriminating foot-and-mouth disease virus-infected and vaccinated animals by use of beta-galactosidase allosteric biosensors. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1228-35. [PMID: 19553549 DOI: 10.1128/cvi.00139-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recombinant beta-galactosidases accommodating one or two different peptides from the foot-and-mouth disease virus (FMDV) nonstructural protein 3B per enzyme monomer showed a drastic enzymatic activity reduction, which mainly affected proteins with double insertions. Recombinant beta-galactosidases were enzymatically reactivated by 3B-specific murine monoclonal and rabbit polyclonal antibodies. Interestingly, these recombinant beta-galactosidases, particularly those including one copy of each of the two 3B sequences, were efficiently reactivated by sera from infected pigs. We found reaction conditions that allowed differentiation between sera of FMDV-infected pigs, cattle, and sheep and those of naïve and conventionally vaccinated animals. These FMDV infection-specific biosensors can provide an effective and versatile alternative for the serological distinction of FMDV-infected animals.
Collapse
|
5
|
Laczka O, Ferraz RM, Ferrer-Miralles N, Villaverde A, Muñoz FX, Campo FJD. Fast electrochemical detection of anti-HIV antibodies: Coupling allosteric enzymes and disk microelectrode arrays. Anal Chim Acta 2009; 641:1-6. [DOI: 10.1016/j.aca.2009.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 11/28/2022]
|
6
|
Nahary L, Trahtenherts A, Benhar I. Isolation of scFvs that inhibit the NS3 protease of hepatitis C virus by a combination of phage display and a bacterial genetic screen. Methods Mol Biol 2009; 562:115-132. [PMID: 19554291 DOI: 10.1007/978-1-60327-302-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The need for inhibitors for enzymes linked with microbial infection, specifically the NS3 protease of hepatitis C virus (HCV), inspired us to develop a unique, rapid and easy color-based method described herein. The NS3 serine protease of HCV has a role in processing viral polyprotein and it has been implicated in interactions with various cell constituents, resulting in phenotypic changes including malignant transformation. NS3 is currently regarded a prime target for antiviral drugs.We established a genetic screen that is based on coexpression of NS3, a beta-galactosidase reporter that is cleavable by NS3, and potential inhibitors within the same bacterial cell. A single-chain antibody (scFv) library was prepared from spleens of NS3-immunized mice and the screen was used to isolate a panel of protease-inhibiting scFvs. Candidate scFvs were validated for inhibitory activity using an o-nitrophenyl-beta-galactoside (ONPG) hydrolysis assay.The methods can be used more generally to isolate protease-inhibiting cytoplasmic intrabodies able to inhibit proteases or other activities that can be linked with the phenotype of Escherichia coli.
Collapse
Affiliation(s)
- Limor Nahary
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, 69978, Israel
| | | | | |
Collapse
|
7
|
De Clercq K, Goris N, Barnett PV, MacKay DK. The Importance of Quality Assurance/Quality Control of Diagnostics to Increase the Confidence in Global Foot-and-Mouth Disease Control. Transbound Emerg Dis 2008; 55:35-45. [DOI: 10.1111/j.1865-1682.2007.01011.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Gianneschi N, Ghadiri M. Design of Molecular Logic Devices Based on a Programmable DNA-Regulated Semisynthetic Enzyme. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200700047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Gianneschi NC, Ghadiri MR. Design of molecular logic devices based on a programmable DNA-regulated semisynthetic enzyme. Angew Chem Int Ed Engl 2007; 46:3955-8. [PMID: 17427900 PMCID: PMC2790070 DOI: 10.1002/anie.200700047] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nathan C. Gianneschi
- Dr. N. C. Gianneschi, Prof. Dr. M. R. Ghadiri, Departments of Chemistry and Molecular Biology and the, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 (USA), Fax: (+1) 858-784-2798
| | - M. Reza Ghadiri
- Dr. N. C. Gianneschi, Prof. Dr. M. R. Ghadiri, Departments of Chemistry and Molecular Biology and the, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 (USA), Fax: (+1) 858-784-2798, E-mail:
| |
Collapse
|
10
|
Ferraz RM, Arís A, Martínez MA, Villaverde A. High-throughput, functional screening of the anti-HIV-1 humoral response by an enzymatic nanosensor. Mol Immunol 2006; 43:2119-23. [PMID: 16464501 DOI: 10.1016/j.molimm.2005.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 11/14/2005] [Accepted: 12/23/2005] [Indexed: 11/29/2022]
Abstract
The impact of antibodies on the target's epitope conformation is a major determinant of HIV-1 neutralization and a potential contributor to disease progression. We explore here a conformation-sensitive enzymatic nanosensor for the high-throughput functional screening of human anti-HIV-1 antibodies in sera. When displaying a model epitope from a gp41 immunodominant region (Env residues from 579 to 613), the sensing signal quantitatively distinguishes between adaptive and non-adaptive antibody binding. By using this tool, we have identified IgG4 as the immunoglobulin subpopulation most efficient in the structural modification of the target epitope.
Collapse
Affiliation(s)
- Rosa María Ferraz
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | |
Collapse
|
11
|
Ferraz RM, Vera A, Arís A, Villaverde A. Insertional protein engineering for analytical molecular sensing. Microb Cell Fact 2006; 5:15. [PMID: 16584558 PMCID: PMC1459189 DOI: 10.1186/1475-2859-5-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 04/03/2006] [Indexed: 11/10/2022] Open
Abstract
The quantitative detection of low analyte concentrations in complex samples is becoming an urgent need in biomedical, food and environmental fields. Biosensors, being hybrid devices composed by a biological receptor and a signal transducer, represent valuable alternatives to non biological analytical instruments because of the high specificity of the biomolecular recognition. The vast range of existing protein ligands enable those macromolecules to be used as efficient receptors to cover a diversity of applications. In addition, appropriate protein engineering approaches enable further improvement of the receptor functioning such as enhancing affinity or specificity in the ligand binding. Recently, several protein-only sensors are being developed, in which either both the receptor and signal transducer are parts of the same protein, or that use the whole cell where the protein is produced as transducer. In both cases, as no further chemical coupling is required, the production process is very convenient. However, protein platforms, being rather rigid, restrict the proper signal transduction that necessarily occurs through ligand-induced conformational changes. In this context, insertional protein engineering offers the possibility to develop new devices, efficiently responding to ligand interaction by dramatic conformational changes, in which the specificity and magnitude of the sensing response can be adjusted up to a convenient level for specific analyte species. In this report we will discuss the major engineering approaches taken for the designing of such instruments as well as the relevant examples of resulting protein-only biosensors.
Collapse
Affiliation(s)
- Rosa María Ferraz
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Matemática Aplicada IV, Universitat Politècnica de Catalunya, Campus Nord, Jordi Girona, 1-3, 08034 Barcelona, Spain
| | - Andrea Vera
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Anna Arís
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
12
|
Opinion of the Scientific Panel on Animal Health and Welfare (AHAW) on request from the European Commission related to: Assessing the risk of Foot and Mouth Disease introduction into the EU from developing countries, assessing the reduction of this risk t. EFSA J 2006. [DOI: 10.2903/j.efsa.2006.313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
13
|
Selz KA, Samoylova TI, Samoylov AM, Vodyanoy VJ, Mandell AJ. Designing allosteric peptide ligands targeting a globular protein. Biopolymers 2006; 85:38-59. [PMID: 17009317 DOI: 10.1002/bip.20607] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Patented signal analytic algorithms applied to hydrophobically transformed, numerical amino acid sequences have previously been used to design short, protein-targeted, L or D retro-inverso peptides. These peptides have demonstrated allosteric and/or indirect agonist effects on a variety of G-protein and tyrosine kinase coupled membrane receptors with 30% to over 80% hit rates. Here we extend these approaches to a globular protein target. We designed eight peptide ligands targeting an ELISA antibody responsive protein, beta-galactosidase, betaGAL. Three of the eight 14mer peptides allosterically activated betaGAL with ELISA methodology. Using Bayesian statistics, this 38% hit rate would have occurred 2 x 10(-9) by chance. These peptides demonstrated binding site competitive or noncompetitive interactions, suggesting allosteric site multiplicity with respect to their betaGAL binding-mediated ELISA signal. Kinetic studies demonstrated the temperature dependence of the betaGAL peptide binding functions. Using the van't Hoff relation, we found evidence for enthalpy-entropy compensation. This relation is often found for hydrophobic interactions in aqueous media, and is consistent with the postulated hydrophobic series encoding underlying our protein-targeted, peptide design methods. It appears that our algorithmic, hydrophobic autocovariance eigenvector template approach to the design of allosteric peptides targeting membrane receptors may also be applicable to the design of peptide ligands targeting nonmembrane involved globular proteins.
Collapse
|
14
|
Ferraz RM, Arís A, Villaverde A. Enhanced molecular recognition signal in allosteric biosensing by proper substrate selection. Biotechnol Bioeng 2006; 94:193-9. [PMID: 16538674 DOI: 10.1002/bit.20798] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Among protein biosensors, those based on enzymatic responses to specific analytes offer convenient instruments for fast and ultra-fast molecular diagnosis, through the comparative analysis of the product formed in presence and in absence of the effector. We have explored here the performance of five beta-galactosidase substrates during the activation of a beta-galactosidase sensor by antibodies against the human immunodeficiency virus (HIV). Interestingly, the employed substrate determines the dynamic range of the allosteric signal and significantly influences the sensitivity of the senso-enzymatic reaction. While ortho-nitrophenyl beta-D-galactopyranoside allows the detection of a model anti-gp41 monoclonal antibody below 0.024 ng/microL, phenol red beta-D-galactopyranoside offers the most dynamic response with signal/background ratios higher than 12-fold and a detection limit around 0.071 ng/microL. The hydrolysis of both chromogenic substrates generates linear sensing responses to immune human sera and parallel time-course topologies of the allosteric reaction. Therefore, the obtained results stress the potential of chromogenic substrates versus those rendering quimioluminescent, amperometric, or fluorescent signals, for the further automatization, miniaturization, or adaptation of beta-galactosidase-based biosensing to high-throughput applications.
Collapse
Affiliation(s)
- Rosa María Ferraz
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | |
Collapse
|
15
|
Geddie ML, O’Loughlin TL, Woods KK, Matsumura I. Rational design of p53, an intrinsically unstructured protein, for the fabrication of novel molecular sensors. J Biol Chem 2005; 280:35641-6. [PMID: 16118206 PMCID: PMC2045634 DOI: 10.1074/jbc.m508149200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The dominant paradigm of protein engineering is structure-based site-directed mutagenesis. This rational approach is generally more effective for the engineering of local properties, such as substrate specificity, than global ones such as allostery. Previous workers have modified normally unregulated reporter enzymes, including beta-galactosidase, alkaline phosphatase, and beta-lactamase, so that the engineered versions are activated (up to 4-fold) by monoclonal antibodies. A reporter that could easily be "reprogrammed" for the facile detection of novel effectors (binding or modifying activities) would be useful in high throughput screens for directed evolution or drug discovery. Here we describe a straightforward and general solution to this potentially difficult design problem. The transcription factor p53 is normally regulated by a variety of post-translational modifications. The insertion of peptides into intrinsically unstructured domains of p53 generated variants that were activated up to 100-fold by novel effectors (proteases or antibodies). An engineered p53 was incorporated into an existing high throughput screen for the detection of human immunodeficiency virus protease, an arbitrarily chosen novel effector. These results suggest that the molecular recognition properties of intrinsically unstructured proteins are relatively easy to engineer and that the absence of crystal structures should not deter the rational engineering of this class of proteins.
Collapse
Affiliation(s)
| | | | | | - Ichiro Matsumura
- To whom correspondence should be addressed: Dept. of Biochemistry, Center for Fundamental and Applied Molecular Evolution, Emory University School of Medicine, Rollins Research Center, Rm. 4119, 1510 Clifton Rd., Atlanta, GA 30322. Tel.: 404-727-5625; Fax: 404-727-3452; E-mail:
| |
Collapse
|
16
|
Gal-Tanamy M, Zemel R, Berdichevsky Y, Bachmatov L, Tur-Kaspa R, Benhar I. HCV NS3 serine protease-neutralizing single-chain antibodies isolated by a novel genetic screen. J Mol Biol 2005; 347:991-1003. [PMID: 15784258 DOI: 10.1016/j.jmb.2005.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 02/02/2005] [Accepted: 02/07/2005] [Indexed: 10/25/2022]
Abstract
Hepatitis C virus (HCV) infection is a major world-wide health problem causing chronic hepatitis, liver cirrhosis and primary liver cancer. The high frequency of treatment failure points to the need for more specific, less toxic and more active antiviral therapies for HCV. The HCV NS3 is currently regarded as a prime target for anti-viral drugs, thus specific inhibitors of its activity are of utmost importance. Here, we report the development of a novel bacterial genetic screen for inhibitors of NS3 catalysis and its application for the isolation of single-chain antibody-inhibitors. Our screen is based on the concerted co-expression of a reporter gene, of recombinant NS3 protease and of fusion-stabilized single-chain antibodies (scFvs) in Escherichia coli. The reporter system had been constructed by inserting a short peptide corresponding to the NS5A/B cleavage site of NS3 into a permissive site of the enzyme beta-galactosidase. The resulting engineered lacZ gene, coding for an NS3-cleavable beta-galactosidase, is carried on a low copy plasmid that also carried the NS3 protease-coding sequence. The resultant beta-galactosidase enzyme is active, conferring a Lac+ phenotype (blue colonies on indicator 5-bromo-4-chloro-3-indolyl beta-D-galactoside (X-gal) plates), while induction of NS3 expression results in loss of beta-galactosidase activity (transparent colonies on X-gal plates). The identification of inhibitors, as shown here by isolating NS3-inhibiting single-chain antibodies, expressed from a compatible high copy number plasmid, is based on the appearance of blue colonies (NS3 inhibited) on the background of colorless colonies (NS3 active). Our source of inhibitory scFvs was an scFv library that we prepared from spleens of NS3-immunized mice and subjected to limited affinity selection. Once isolated, the inhibitors were validated as genuine and specific NS3 binders by an enzyme-linked immunosorbent assay and as bone fide NS3 serine protease inhibitors by an in vitro catalysis assay. We further show that upon expression as cytoplasmic intracellular antibodies (intrabodies) in NS3-expressing mammalian cells, three of the scFvs inhibit NS3-mediated cell proliferation. Although applied here for the isolation of antibody-based inhibitors, our genetic screen should be applicable for the identification of candidate inhibitors from other sources.
Collapse
Affiliation(s)
- Meital Gal-Tanamy
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Green Building, Room 202, Tel-Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Biosensors are hybrid analytical devices that amplify signals generated from the specific interaction between a receptor and the analyte, through a biochemical mechanism. Biosensors use tissues, whole cells, artificial membranes or cell components like proteins or nucleic acids as receptors, coupled to a physicochemical signal transducer. Allosteric enzymes exhibit a catalytic activity that is modulated by specific effectors, through binding to receptor sites that are distinct from the active site. Several enzymes, catalyzing easily measurable reactions, have been engineered to allosterically respond to specific ligands, being themselves the main constituent of new-generation biosensors. The molecular basis, robustness and application of allosteric enzymatic biosensing are revised here.
Collapse
Affiliation(s)
- Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|