1
|
Bychkov ML, Shulepko MA, Shlepova OV, Kulbatskii DS, Chulina IA, Paramonov AS, Baidakova LK, Azev VN, Koshelev SG, Kirpichnikov MP, Shenkarev ZO, Lyukmanova EN. SLURP-1 Controls Growth and Migration of Lung Adenocarcinoma Cells, Forming a Complex With α7-nAChR and PDGFR/EGFR Heterodimer. Front Cell Dev Biol 2021; 9:739391. [PMID: 34595181 PMCID: PMC8476798 DOI: 10.3389/fcell.2021.739391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
Secreted Ly6/uPAR-related protein 1 (SLURP-1) is a secreted Ly6/uPAR protein that negatively modulates the nicotinic acetylcholine receptor of α7 type (α7-nAChR), participating in control of cancer cell growth. Previously we showed, that a recombinant analogue of human SLURP-1 (rSLURP-1) diminishes the lung adenocarcinoma A549 cell proliferation and abolishes the nicotine-induced growth stimulation. Here, using multiplex immunoassay, we demonstrated a decrease in PTEN and mammalian target of rapamycin (mTOR) kinase phosphorylation in A549 cells upon the rSLURP-1 treatment pointing on down-regulation of the PI3K/AKT/mTOR signaling pathway. Decreased phosphorylation of the platelet-derived growth factor receptor type β (PDGFRβ) and arrest of the A549 cell cycle in the S and G2/M phases without apoptosis induction was also observed. Using a scratch migration assay, inhibition of A549 cell migration under the rSLURP-1 treatment was found. Affinity extraction demonstrated that rSLURP-1 in A549 cells forms a complex not only with α7-nAChR, but also with PDGFRα and epidermal growth factor receptor (EGFR), which are known to be involved in regulation of cancer cell growth and migration and are able to form a heterodimer. Knock-down of the genes encoding α7-nAChR, PDGFRα, and EGFR confirmed the involvement of these receptors in the anti-migration effect of SLURP-1. Thus, SLURP-1 can target the α7-nAChR complexes with PDGFRα and EGFR in the membrane of epithelial cells. Using chimeric proteins with grafted SLURP-1 loops we demonstrated that loop I is the principal active site responsible for the SLURP-1 interaction with α7-nAChR and its antiproliferative effect. Synthetic peptide mimicking the loop I cyclized by a disulfide bond inhibited ACh-evoked current at α7-nAChR, as well as A549 cell proliferation and migration. This synthetic peptide represents a promising prototype of new antitumor drug with the properties close to that of the native SLURP-1 protein.
Collapse
Affiliation(s)
- Maxim L. Bychkov
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Mikhail A. Shulepko
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Olga V. Shlepova
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Dmitrii S. Kulbatskii
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Irina A. Chulina
- Group of Peptide Chemistry, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - Alexander S. Paramonov
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Ludmila K. Baidakova
- Group of Peptide Chemistry, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - Viatcheslav N. Azev
- Group of Peptide Chemistry, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - Sergey G. Koshelev
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Zakhar O. Shenkarev
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Ekaterina N. Lyukmanova
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Design, synthesis and biological evaluation of anticholinesterase peptides: Fragment-based vs. template-based peptide design. Bioorg Chem 2020; 105:104351. [PMID: 33068814 DOI: 10.1016/j.bioorg.2020.104351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/19/2020] [Accepted: 10/04/2020] [Indexed: 12/29/2022]
Abstract
The prevalence of Alzheimer's disease (AD) has become a substantial global concern. Approved AChE inhibitors have been used for symptomatic treatment of AD. Binding of amyloid β (Aβ) to the peripheral anionic site of AChE facilitates the formation of Aβ plaques. Blocking this proposed protein-protein interaction by inhibition of the peripheral anionic site of AChE, in addition to increasing the level of ACh, reduces the Aβ aggregation and might qualify to slow down the progression of disease besides the palliative treatment. Targeting protein-protein interactions consider as one of the most challenging issues in the realm of drug design in which peptides have potentials to excel in. In the present study, we applied two virtual fragment-based and template-based approaches to design peptidic inhibitors of the PAS of AChE. Based on the in silico studies, high scored peptides p2 (WTWYGYWVW) and p10 (NHRMLTRRY) obtained from fragment-based and template-based design respectively. Regarding in vitro results, p2 (IC50 = 16 ± 3.2 μM) and p10 (IC50 = 23.6 ± 4.9 μM) showed significant AChE inhibitory effects. The molecular mechanism of inhibition studied by Lineweaver-Burk plots was mixed inhibition for both peptides. The in vitro results conformed to the in silico results and showed that both peptides occupied the CAS and PAS of AChE. The comparison of two peptide-design approaches revealed that the fragment-based design had more chemical diversity and showed priority to the template-based design. According to the obtained results, peptidic inhibitors of AChE designed by the proposed fragment-based approach might be more efficient in comparison to traditional approaches.
Collapse
|
3
|
From Venom to AChE Inhibitor: Design, Molecular Modeling, and Synthesis of a Peptidic Inhibitor of AChE. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10103-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
4
|
Kryukova EV, Egorova NS, Kudryavtsev DS, Lebedev DS, Spirova EN, Zhmak MN, Garifulina AI, Kasheverov IE, Utkin YN, Tsetlin VI. From Synthetic Fragments of Endogenous Three-Finger Proteins to Potential Drugs. Front Pharmacol 2019; 10:748. [PMID: 31333465 PMCID: PMC6616073 DOI: 10.3389/fphar.2019.00748] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 06/11/2019] [Indexed: 12/25/2022] Open
Abstract
The proteins of the Ly6 family have a three-finger folding as snake venom α-neurotoxins, targeting nicotinic acetylcholine receptors (nAChRs), and some of them, like mammalian secreted Ly6/uPAR protein (SLURP1) and membrane-attached Ly-6/neurotoxin (Lynx1), also interact with distinct nAChR subtypes. We believed that synthetic fragments of these endogenous proteins might open new ways for drug design because nAChRs are well-known targets for developing analgesics and drugs against neurodegenerative diseases. Since interaction with nAChRs was earlier shown for synthetic fragments of the α-neurotoxin central loop II, we synthesized a 15-membered fragment of human Lynx1, its form with two Cys residues added at the N- and C-termini and forming a disulfide, as well as similar forms of human SLURP1, SLURP2, and of Drosophila sleepless protein (SSS). The IC50 values measured in competition with radioiodinated α-bungarotoxin for binding to the membrane-bound Torpedo californica nAChR were 4.9 and 7.4 µM for Lynx1 and SSS fragments, but over 300 µM for SLURP1 or SLURP2 fragments. The affinity of these compounds for the α7 nAChR in the rat pituitary tumor-derived cell line GH4C1 was different: 13.1 and 147 µM for SSS and Lynx1 fragments, respectively. In competition for the ligand-binding domain of the α9 nAChR subunit, SSS and Lynx1 fragments had IC50 values of about 40 µM, which correlates with the value found for the latter with the rat α9α10 nAChR expressed in the Xenopus oocytes. Thus, the activity of these synthetic peptides against muscle-type and α9α10 nAChRs indicates that they may be useful in design of novel myorelaxants and analgesics.
Collapse
Affiliation(s)
- Elena V Kryukova
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Natalia S Egorova
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Denis S Kudryavtsev
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry S Lebedev
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina N Spirova
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maxim N Zhmak
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Aleksandra I Garifulina
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Igor E Kasheverov
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, Russia
| | - Yuri N Utkin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Victor I Tsetlin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,PhysBio of MEPhI, Moscow, Russia
| |
Collapse
|
5
|
Kini RM, Doley R. Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon 2010; 56:855-67. [PMID: 20670641 DOI: 10.1016/j.toxicon.2010.07.010] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/19/2010] [Indexed: 12/15/2022]
Abstract
Snake venoms are complex mixtures of pharmacologically active peptides and proteins. These protein toxins belong to a small number of superfamilies of proteins. Three-finger toxins belong to a superfamily of non-enzymatic proteins found in all families of snakes. They have a common structure of three beta-stranded loops extending from a central core containing all four conserved disulphide bonds. Despite the common scaffold, they bind to different receptors/acceptors and exhibit a wide variety of biological effects. Thus, the structure-function relationships of this group of toxins are complicated and challenging. Studies have shown that the functional sites in these 'sibling' toxins are located on various segments of the molecular surface. Targeting to a wide variety of receptors and ion channels and hence distinct functions in this group of mini proteins is achieved through a combination of accelerated rate of exchange of segments as well as point mutations in exons. In this review, we describe the structural and functional diversity, structure-function relationships and evolution of this group of snake venom toxins.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| | | |
Collapse
|
6
|
Abstract
1. Snake venoms are complex mixtures of pharmacologically active peptides and proteins. 2. These protein toxins belong to a small number of superfamilies of proteins. The present review describes structure-function relationships of three-finger toxins. 3. All toxins share a common structure of three beta-stranded loops extending from a central core. However, they bind to different receptors/acceptors and exhibit a wide variety of biological effects. 4. Thus, the structure-function relationships of this group of toxins are complicated and challenging. 5. Studies have shown that the functional sites in these "sibling" toxins are located on various segments of the molecular surface.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260.
| |
Collapse
|
7
|
Falkenstein RJ, Peña C. Interaction of synthetic peptides from fasciculin with acetylcholinesterase. JOURNAL OF PROTEIN CHEMISTRY 1999; 18:233-8. [PMID: 10333298 DOI: 10.1023/a:1020688325108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fasciculins (Fas) are three-looped polypeptides isolated from mamba venom which exert their toxic action by inhibiting noncompetitively acetylcholinesterase (AChE). A peptide (Fas-D) encompassing the first loop sequence was synthesized and characterized chemically, structurally, and functionally. Fas-D possesses an intramolecular disulfide bridge, present in the native toxin. Circular dichroism (CD) indicated the existence of 21.8% beta-sheet content and 24.2% beta-turn in this peptide, compatible with crystallographic data of the native toxin. The peptide showed only low partial AChE inhibition at submillimolar concentrations, much lower than that observed with Fas and a peptide (Fas-B) encompassing the second loop sequence. The simultaneous presence of Fas-D and Fas-B produced an additive inhibitory effect on AChE activity; calculated Ki and alphaKi values (7.3 +/-2.4 microM and 10.0 +/- 1.8 microM, respectively) were not significantly different, thus indicating noncompetitive inhibition. These results are consistent with site-directed mutagenesis studies and analysis of the crystal structure of the Fas-AChE complex, which indicate that residues from loops I and II contribute to Fas binding to the enzyme.
Collapse
Affiliation(s)
- R J Falkenstein
- Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | |
Collapse
|