1
|
Belato FA, Coates CJ, Halanych KM, Weber RE, Costa-Paiva EM. Evolutionary History of the Globin Gene Family in Annelids. Genome Biol Evol 2020; 12:1719-1733. [PMID: 32597988 PMCID: PMC7549130 DOI: 10.1093/gbe/evaa134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
Animals depend on the sequential oxidation of organic molecules to survive; thus, oxygen-carrying/transporting proteins play a fundamental role in aerobic metabolism. Globins are the most common and widespread group of respiratory proteins. They can be divided into three types: circulating intracellular, noncirculating intracellular, and extracellular, all of which have been reported in annelids. The diversity of oxygen transport proteins has been underestimated across metazoans. We probed 250 annelid transcriptomes in search of globin diversity in order to elucidate the evolutionary history of this gene family within this phylum. We report two new globin types in annelids, namely androglobins and cytoglobins. Although cytoglobins and myoglobins from vertebrates and from invertebrates are referred to by the same name, our data show they are not genuine orthologs. Our phylogenetic analyses show that extracellular globins from annelids are more closely related to extracellular globins from other metazoans than to the intracellular globins of annelids. Broadly, our findings indicate that multiple gene duplication and neo-functionalization events shaped the evolutionary history of the globin family.
Collapse
Affiliation(s)
- Flávia A Belato
- Department of Zoology, Institute of Biosciences, University of Sao Paulo, Brazil
| | - Christopher J Coates
- Department of Biosciences, College of Science, Swansea University, United Kingdom
| | - Kenneth M Halanych
- Department of Biological Sciences, Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University
| | - Roy E Weber
- Zoophysiology, Department of Biology, Aarhus University, Denmark
| | - Elisa M Costa-Paiva
- Department of Zoology, Institute of Biosciences, University of Sao Paulo, Brazil
| |
Collapse
|
2
|
Tomita A, Kreutzer U, Adachi SI, Koshihara SY, Jue T. ‘It's hollow’: the function of pores within myoglobin. J Exp Biol 2010; 213:2748-54. [DOI: 10.1242/jeb.042994] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Despite a century of research, the cellular function of myoglobin (Mb), the mechanism regulating oxygen (O2) transport in the cell and the structure–function relationship of Mb remain incompletely understood. In particular, the presence and function of pores within Mb have attracted much recent attention. These pores can bind to Xe as well as to other ligands. Indeed, recent cryogenic X-ray crystallographic studies using novel techniques have captured snapshots of carbon monoxide (CO) migrating through these pores. The observed movement of the CO molecule from the heme iron site to the internal cavities and the associated structural changes of the amino acid residues around the cavities confirm the integral role of the pores in forming a ligand migration pathway from the protein surface to the heme. These observations resolve a long-standing controversy – but how these pores affect the physiological function of Mb poses a striking question at the frontier of biology.
Collapse
Affiliation(s)
- Ayana Tomita
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo, 152-8551, Japan
- Non-equilibrium Dynamics Project, ERATO/JST, 1-1 O-ho, Tsukuba, Ibaraki 305-0801, Japan
| | - Ulrike Kreutzer
- Department of Biochemistry and Molecular Medicine, University of California Davis, CA 95616-8635, USA
| | - Shin-ichi Adachi
- Non-equilibrium Dynamics Project, ERATO/JST, 1-1 O-ho, Tsukuba, Ibaraki 305-0801, Japan
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 O-ho, Tsukuba, Ibaraki 305-0801, Japan
| | - Shin-ya Koshihara
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo, 152-8551, Japan
- Non-equilibrium Dynamics Project, ERATO/JST, 1-1 O-ho, Tsukuba, Ibaraki 305-0801, Japan
| | - Thomas Jue
- Department of Biochemistry and Molecular Medicine, University of California Davis, CA 95616-8635, USA
| |
Collapse
|
3
|
Bailly X, Chabasse C, Hourdez S, Dewilde S, Martial S, Moens L, Zal F. Globin gene family evolution and functional diversification in annelids. FEBS J 2007; 274:2641-52. [PMID: 17451435 DOI: 10.1111/j.1742-4658.2007.05799.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Globins are the most common type of oxygen-binding protein in annelids. In this paper, we show that circulating intracellular globin (Alvinella pompejana and Glycera dibranchiata), noncirculating intracellular globin (Arenicola marina myoglobin) and extracellular globin from various annelids share a similar gene structure, with two conserved introns at canonical positions B12.2 and G7.0. Despite sequence divergence between intracellular and extracellular globins, these data strongly suggest that these three globin types are derived from a common ancestral globin-like gene and evolved by duplication events leading to diversification of globin types and derived functions. A phylogenetic analysis shows a distinct evolutionary history of annelid extracellular hemoglobins with respect to intracellular annelid hemoglobins and mollusc and arthropod extracellular hemoglobins. In addition, dehaloperoxidase (DHP) from the annelid, Amphitrite ornata, surprisingly exhibits close phylogenetic relationships to some annelid intracellular globins. We have characterized the gene structure of A. ornata DHP to confirm assumptions about its homology with globins. It appears that it has the same intron position as in globin genes, suggesting a common ancestry with globins. In A. ornata, DHP may be a derived globin with an unusual enzymatic function.
Collapse
Affiliation(s)
- Xavier Bailly
- Equipe Ecophysiologie: Adaptation et Evolution Moléculaires, UPMC, CNRS UMR 7144, Station Biologique, BP 74, Roscoff, France
| | | | | | | | | | | | | |
Collapse
|
4
|
Chabasse C, Bailly X, Rousselot M, Zal F. The multigenic family of the extracellular hemoglobin from the annelid polychaete Arenicola marina. Comp Biochem Physiol B Biochem Mol Biol 2006; 144:319-25. [PMID: 16766219 DOI: 10.1016/j.cbpb.2006.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 03/14/2006] [Accepted: 03/15/2006] [Indexed: 11/24/2022]
Abstract
The extracellular hemoglobin of the lugworm Arenicola marina which inhabits on the intertidal area, a sulfide-rich environment, comprises eight globin chains previously determined by mass spectrometry. We have cloned and sequenced five of the globin components. The deduced amino-acid sequences exhibit an extracellular signal peptide and two cysteine residues involved in an internal disulfide bond. The molecular weights calculated from the globin primary structures obtained from complete cDNA sequences are in good agreement with the mass spectrometry values obtained with the native hemoglobin. Phylogenetic analysis has allowed assigning the five A. marina sequences to the different globin sub-families. Two of the globins were found to be A2 globin chains lacking the cysteine residues proposed to be involved in the binding of hydrogen sulfide by such hemoglobin. We discuss the unusual absence of these cysteines in the light of their invariant occurrence in the A2 subfamily of hemoglobins from annelids inhabiting sulfide-rich environments.
Collapse
Affiliation(s)
- Christine Chabasse
- Equipe Ecophysiologie: Adaptation et Evolution Moléculaires, UPMC, CNRS UMR 7144, Station Biologique, BP 74, 29682 Roscoff cedex, France.
| | | | | | | |
Collapse
|
5
|
Sanna MT, Manconi B, Castagnola M, Giardina B, Masia D, Messana I, Olianas A, Patamia M, Petruzzelli R, Pellegrini M. Functional and structural characterization of the myoglobin from the polychaete Ophelia bicornis. Biochem J 2005; 389:497-505. [PMID: 15796716 PMCID: PMC1175128 DOI: 10.1042/bj20050267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The myoglobin of the polychaete annelid Ophelia bicornis was isolated, purified to homogeneity and characterized. The primary structure, obtained from cDNA and protein sequencing, consists of 139 amino acid residues. The alignment with other globin sequences showed that O. bicornis myoglobin misses the pre-A helix and the first six residues of the A helix. The presence of a PheB10-GlnE7 haem distal residue pair is in agreement with the measured oxygen affinity (P50=0.85 mmHg; 1 mmHg=0.133 kPa) and the only slightly higher autoxidation rate constant (0.28 h(-1)) with respect to that of the sperm whale myoglobin mutant E7 His-->Gln (0.21 h(-1)) and to elephant myoglobin (0.1 h(-1)). Oxygen-binding co-operativity was found to be absent under all the examined experimental conditions. The resistance of O. bicornis myoglobin towards autoxidation seems to confirm the important role of part of the A helix in the stability of the globin. The higher pKa of the acid-alkaline ferric transition of O. bicornis with respect to Asian elephant myoglobin, as well as the higher absorbance ratio of its ferric form to the oxy form measured in the Soret region (gammamet/gammaoxy) with respect to that of the African elephant myoglobin, suggested a stronger interaction between the distal glutamine and the water molecule at the sixth co-ordinate position.
Collapse
Affiliation(s)
- M Teresa Sanna
- Dipartimento di Scienze Applicate ai Biosistemi, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato, CA, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Roesner A, Fuchs C, Hankeln T, Burmester T. A globin gene of ancient evolutionary origin in lower vertebrates: evidence for two distinct globin families in animals. Mol Biol Evol 2004; 22:12-20. [PMID: 15356282 DOI: 10.1093/molbev/msh258] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hemoglobin, myoglobin, neuroglobin, and cytoglobin are four types of vertebrate globins with distinct tissue distributions and functions. Here, we report the identification of a fifth and novel globin gene from fish and amphibians, which has apparently been lost in the evolution of higher vertebrates (Amniota). Because its function is presently unknown, we tentatively call it globin X (GbX). Globin X sequences were obtained from three fish species, the zebrafish Danio rerio, the goldfish Carassius auratus, and the pufferfish Tetraodon nigroviridis, and the clawed frog Silurana tropicalis. Globin X sequences are distinct from vertebrate hemoglobins, myoglobins, neuroglobins, and cytoglobins. Globin X displays the highest identity scores with neuroglobin (approximately 26% to 35%), although it is not a neuronal protein, as revealed by RT-PCR experiments on goldfish RNA from various tissues. The distal ligand-binding and the proximal heme-binding histidines (E7 and F8), as well as the conserved phenylalanine CD1 are present in the globin X sequences, but because of extensions at the N-terminal and C-terminal, the globin X proteins are longer than the typical eight alpha-helical globins and comprise about 200 amino acids. In addition to the conserved globin introns at helix positions B12.2 and G7.0, the globin X genes contain two introns in E10.2 and H10.0. The intron in E10.2 is shifted by 1 bp in respect to the vertebrate neuroglobin gene (E11.0), providing possible evidence for an intron sliding event. Phylogenetic analyses confirm an ancient evolutionary relationship of globin X with neuroglobin and suggest the existence of two distinct globin types in the last common ancestor of Protostomia and Deuterostomia.
Collapse
Affiliation(s)
- Anja Roesner
- Institute of Zoology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | |
Collapse
|
7
|
Abstract
Hemoglobin (Hb) occurs in all the kingdoms of living organisms. Its distribution is episodic among the nonvertebrate groups in contrast to vertebrates. Nonvertebrate Hbs range from single-chain globins found in bacteria, algae, protozoa, and plants to large, multisubunit, multidomain Hbs found in nematodes, molluscs and crustaceans, and the giant annelid and vestimentiferan Hbs comprised of globin and nonglobin subunits. Chimeric hemoglobins have been found recently in bacteria and fungi. Hb occurs intracellularly in specific tissues and in circulating red blood cells (RBCs) and freely dissolved in various body fluids. In addition to transporting and storing O(2) and facilitating its diffusion, several novel Hb functions have emerged, including control of nitric oxide (NO) levels in microorganisms, use of NO to control the level of O(2) in nematodes, binding and transport of sulfide in endosymbiont-harboring species and protection against sulfide, scavenging of O(2 )in symbiotic leguminous plants, O(2 )sensing in bacteria and archaebacteria, and dehaloperoxidase activity useful in detoxification of chlorinated materials. This review focuses on the extensive variation in the functional properties of nonvertebrate Hbs, their O(2 )binding affinities, their homotropic interactions (cooperativity), and the sensitivities of these parameters to temperature and heterotropic effectors such as protons and cations. Whenever possible, it attempts to relate the ligand binding properties to the known molecular structures. The divergent and convergent evolutionary trends evident in the structures and functions of nonvertebrate Hbs appear to be adaptive in extending the inhabitable environment available to Hb-containing organisms.
Collapse
Affiliation(s)
- R E Weber
- Danish Centre for Respiratory Adaptation, Department of Zoophysiology, Institute of Biology, University of Aarhus, Aarhus, Denmark.
| | | |
Collapse
|
8
|
Rashid AK, Weber RE. Functional differentiation in trematode hemoglobin isoforms. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:717-25. [PMID: 10103000 DOI: 10.1046/j.1432-1327.1999.00194.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Hbs and the major electrophoretic Hb components (isoHbs) were isolated from three species of the trematodes, Explanatum explanatum (Ee), Gastrothylax crumenifer (Gc) and Paramphistomum epiclitum (Pe), that parasitise the common Indian water buffalo Bubalus bubalis. The Hbs are monomeric and resemble the so-called nonfunctional mutant hemoglobins that have Tyr at B10 or E7 positions (replacing Leu and the His residues, respectively). However, they are capable of binding with O2 and CO. O2 equilibrium studies of trematode Hb isoforms reveal extremely high O2 affinities, with half-saturation O2 tension (P50) values up to 800 times lower than those of human hemoglobins. This correlates with Tyr residues at B10 and at the distal position (E7) that decrease the O2 dissociation rate by contributing hydrogen bonds (H-bonds) to the bound O2. These substitutions also increase the O2 association rates either due to orientation of E7-Tyr towards the solvent and/or by sterically hindering the entry of water molecules into the heme pocket. The latter may account for the low rate of autoxidation of trematode Hbs. The Hbs and their isoforms from different species exhibited pronounced variation in O2 affinity, which may relate to subtle differences in the structure of the heme pocket. The O2 affinities of the composite (unfractionated) Hbs were intermediate to those of the individual Hb isoform. The P50 values of Hbs here obtained by direct O2 equilibrium measurements differed from those calculated from kinetic data already published [Kiger, L., Rashid, A. K., Griffon, N., Haque, M., Moens, L.,Gibson, Q. H., Poyart, C., & Marden, M. C. (1998). Biophys. J. 75, 990-998.] Intermediate state(s) due to slow reorientation of E7-Tyr may account for this difference. Some Hb isoforms showed slight (either normal or reverse) Bohr effects. The hyperbolic O2 equilibrium curve, Hill coefficient (n) values near unity accord with a monomeric nature of trematode Hbs. In marked contrast to vertebrate Hbs, CO does not seem to compete effectively with O2 in trematode Hbs, as evident from partition coefficient values (M) below 1.
Collapse
Affiliation(s)
- A K Rashid
- Danish Center for Respiratory Adaptation (CRA), Department of Zoophysiology, Institute of Biological Sciences, Denmark
| | | |
Collapse
|