1
|
Schactler SA, Scheuerman SJ, Lius A, Altemeier WA, An D, Matula TJ, Mikula M, Kulecka M, Denisenko O, Mar D, Bomsztyk K. CryoGrid-PIXUL-RNA: high throughput RNA isolation platform for tissue transcript analysis. BMC Genomics 2023; 24:446. [PMID: 37553584 PMCID: PMC10408117 DOI: 10.1186/s12864-023-09527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Disease molecular complexity requires high throughput workflows to map disease pathways through analysis of vast tissue repositories. Great progress has been made in tissue multiomics analytical technologies. To match the high throughput of these advanced analytical platforms, we have previously developed a multipurpose 96-well microplate sonicator, PIXUL, that can be used in multiple workflows to extract analytes from cultured cells and tissue fragments for various downstream molecular assays. And yet, the sample preparation devices, such as PIXUL, along with the downstream multiomics analytical capabilities have not been fully exploited to interrogate tissues because storing and sampling of such biospecimens remain, in comparison, inefficient. RESULTS To mitigate this tissue interrogation bottleneck, we have developed a low-cost user-friendly system, CryoGrid, to catalog, cryostore and sample tissue fragments. TRIzol is widely used to isolate RNA but it is labor-intensive, hazardous, requires fume-hoods, and is an expensive reagent. Columns are also commonly used to extract RNA but they involve many steps, are prone to human errors, and are also expensive. Both TRIzol and column protocols use test tubes. We developed a microplate PIXUL-based TRIzol-free and column-free RNA isolation protocol that uses a buffer containing proteinase K (PK buffer). We have integrated the CryoGrid system with PIXUL-based PK buffer, TRIzol, and PureLink column methods to isolate RNA for gene-specific qPCR and genome-wide transcript analyses. CryoGrid-PIXUL, when integrated with either PK buffer, TRIzol or PureLink column RNA isolation protocols, yielded similar transcript profiles in frozen organs (brain, heart, kidney and liver) from a mouse model of sepsis. CONCLUSIONS RNA isolation using the CryoGrid-PIXUL system combined with the 96-well microplate PK buffer method offers an inexpensive user-friendly high throughput workflow to study transcriptional responses in tissues in health and disease as well as in therapeutic interventions.
Collapse
Affiliation(s)
- Scott A Schactler
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Stephen J Scheuerman
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Andrea Lius
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - William A Altemeier
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
- Center for Lung Biology, University of Washington, Seattle, WA, 98109, USA
| | - Dowon An
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
- Center for Lung Biology, University of Washington, Seattle, WA, 98109, USA
| | - Thomas J Matula
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, 98195, USA
- Matchstick Technologies, Inc, Kirkland, WA, 98033, USA
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781, Warsaw, Poland
| | - Maria Kulecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 01-813, Warsaw, Poland
| | - Oleg Denisenko
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
| | - Daniel Mar
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Karol Bomsztyk
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.
- Matchstick Technologies, Inc, Kirkland, WA, 98033, USA.
| |
Collapse
|
2
|
Rochow H, Franz A, Jung M, Weickmann S, Ralla B, Kilic E, Stephan C, Fendler A, Jung K. Instability of circular RNAs in clinical tissue samples impairs their reliable expression analysis using RT-qPCR: from the myth of their advantage as biomarkers to reality. Am J Cancer Res 2020; 10:9268-9279. [PMID: 32802191 PMCID: PMC7415809 DOI: 10.7150/thno.46341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Circular RNAs (circRNAs) are a new class of RNAs with medical significance. Compared to that of linear mRNA transcripts, the stability of circRNAs against degradation owing to their circular structure is considered advantageous for their use as biomarkers. As systematic studies on the stability of circRNAs depending on the RNA integrity, determined as RNA integrity number (RIN), in clinical tissue samples are lacking, we have investigated this aspect in the present study under model and clinical conditions. Methods: Total RNA isolated from kidney cancer tissue and cell lines (A-498 and HEK-293) with different RIN after thermal degradation was used in model experiments. Further, RNA isolated from kidney cancer and prostate cancer tissue collected under routine surgical conditions, representing clinical samples with RIN ranging from 2 to 9, were examined. Quantitative real-time reverse-transcription polymerase chain reaction (RT-qPCR) analysis of several circRNAs (circEGLN3, circRHOBTB3, circCSNK1G3, circRNA4, and circRNA9), their corresponding linear counterparts, tissue-specific reference genes, and three microRNAs (as controls) was performed. The quantification cycles were converted into relative quantities and normalized to the expression of specific reference genes for the corresponding tissue. The effect of RIN on the expression of different RNA entities was determined using linear regression analysis, and clinical samples were classified into two groups based on RIN greater or lesser than 6. Results: The results of model experiments and clinical sample analyses showed that all relative circRNA expression gradually decreased with reduction in RIN values. The adverse effect of RIN was partially compensated after normalizing the data and limiting the samples to only those with RIN values > 6. Conclusions: Our results suggested that circRNAs are not stable in clinical tissue samples, but are subjected to degradative processes similar to mRNAs. This has not been investigated extensively in circRNA expression studies, and hence must be considered in future for obtaining reliable circRNA expression data. This can be achieved by applying the principles commonly used in mRNA expression studies.
Collapse
|
3
|
Prats-Ejarque G, Lu L, Salazar VA, Moussaoui M, Boix E. Evolutionary Trends in RNA Base Selectivity Within the RNase A Superfamily. Front Pharmacol 2019; 10:1170. [PMID: 31649540 PMCID: PMC6794472 DOI: 10.3389/fphar.2019.01170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/12/2019] [Indexed: 11/13/2022] Open
Abstract
There is a growing interest in the pharmaceutical industry to design novel tailored drugs for RNA targeting. The vertebrate-specific RNase A superfamily is nowadays one of the best characterized family of enzymes and comprises proteins involved in host defense with specific cytotoxic and immune-modulatory properties. We observe within the family a structural variability at the substrate-binding site associated to a diversification of biological properties. In this work, we have analyzed the enzyme specificity at the secondary base binding site. Towards this end, we have performed a kinetic characterization of the canonical RNase types together with a molecular dynamic simulation of selected representative family members. The RNases' catalytic activity and binding interactions have been compared using UpA, UpG and UpI dinucleotides. Our results highlight an evolutionary trend from lower to higher order vertebrates towards an enhanced discrimination power of selectivity for adenine respect to guanine at the secondary base binding site (B2). Interestingly, the shift from guanine to adenine preference is achieved in all the studied family members by equivalent residues through distinct interaction modes. We can identify specific polar and charged side chains that selectively interact with donor or acceptor purine groups. Overall, we observe selective bidentate polar and electrostatic interactions: Asn to N1/N6 and N6/N7 adenine groups in mammals versus Glu/Asp and Arg to N1/N2, N1/O6 and O6/N7 guanine groups in non-mammals. In addition, kinetic and molecular dynamics comparative results on UpG versus UpI emphasize the main contribution of Glu/Asp interactions to N1/N2 group for guanine selectivity in lower order vertebrates. A close inspection at the B2 binding pocket also highlights the principal contribution of the protein ß6 and L4 loop regions. Significant differences in the orientation and extension of the L4 loop could explain how the same residues can participate in alternative binding modes. The analysis suggests that within the RNase A superfamily an evolution pressure has taken place at the B2 secondary binding site to provide novel substrate-recognition patterns. We are confident that a better knowledge of the enzymes' nucleotide recognition pattern would contribute to identify their physiological substrate and eventually design applied therapies to modulate their biological functions.
Collapse
Affiliation(s)
- Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vivian A Salazar
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mohammed Moussaoui
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Lu L, Li J, Moussaoui M, Boix E. Immune Modulation by Human Secreted RNases at the Extracellular Space. Front Immunol 2018; 9:1012. [PMID: 29867984 PMCID: PMC5964141 DOI: 10.3389/fimmu.2018.01012] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022] Open
Abstract
The ribonuclease A superfamily is a vertebrate-specific family of proteins that encompasses eight functional members in humans. The proteins are secreted by diverse innate immune cells, from blood cells to epithelial cells and their levels in our body fluids correlate with infection and inflammation processes. Recent studies ascribe a prominent role to secretory RNases in the extracellular space. Extracellular RNases endowed with immuno-modulatory and antimicrobial properties can participate in a wide variety of host defense tasks, from performing cellular housekeeping to maintaining body fluid sterility. Their expression and secretion are induced in response to a variety of injury stimuli. The secreted proteins can target damaged cells and facilitate their removal from the focus of infection or inflammation. Following tissue damage, RNases can participate in clearing RNA from cellular debris or work as signaling molecules to regulate the host response and contribute to tissue remodeling and repair. We provide here an overall perspective on the current knowledge of human RNases’ biological properties and their role in health and disease. The review also includes a brief description of other vertebrate family members and unrelated extracellular RNases that share common mechanisms of action. A better knowledge of RNase mechanism of actions and an understanding of their physiological roles should facilitate the development of novel therapeutics.
Collapse
Affiliation(s)
- Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jiarui Li
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Mohammed Moussaoui
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
5
|
Gupta SK, Haigh BJ, Wheeler TT. Abundance of RNase4 and RNase5 mRNA and protein in host defence related tissues and secretions in cattle. Biochem Biophys Rep 2016; 8:261-267. [PMID: 28955965 PMCID: PMC5613968 DOI: 10.1016/j.bbrep.2016.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/26/2016] [Accepted: 09/02/2016] [Indexed: 12/14/2022] Open
Abstract
Members of the RNaseA family are present in various tissues and secretions but their function is not well understood. Some of the RNases are proposed to participate in host defence. RNase4 and RNase5 are present in cows' milk and have antimicrobial activity. However, their presence in many tissues and secretions has not been characterised. We hypothesised that these two RNases are present in a range of tissues and secretions where they could contribute to host defence. We therefore, determined the relative abundance of RNase4 and RNase5 mRNA as well as protein levels in a range of host defence related and other tissues as well as a range of secretions in cattle, using real time PCR and western blotting. The two RNases were found to be expressed in liver, lung, pancreas, mammary gland, placenta, endometrium, small intestine, seminal vesicle, salivary gland, kidney, spleen, lymph node, skin as well as testes. Corresponding proteins were also detected in many of the above tissues, as well as in seminal fluid, mammary secretions and saliva. This study provides evidence for the presence of RNase4 and RNase5 in a range of tissues and secretions, as well as some major organs in cattle. The data are consistent with the idea that these proteins could contribute to host defence in these locations. This work contributes to growing body of data suggesting that these proteins contribute to the physiology of the organism in a more complex way than acting merely as digestive enzymes. RNase4 and RNase5 are present in several tissues and secretions in cattle. mRNA and protein levels of the RNases correlate in various tissues analysed. The RNases could contribute to host defence in these tissues and secretions.
Collapse
Affiliation(s)
- Sandeep K Gupta
- Dairy Foods, AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | - Brendan J Haigh
- Dairy Foods, AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | - Thomas T Wheeler
- Dairy Foods, AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| |
Collapse
|
6
|
Liang S, Acharya KR. Structural basis of substrate specificity in porcine RNase 4. FEBS J 2016; 283:912-28. [PMID: 26748441 DOI: 10.1111/febs.13646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/26/2015] [Accepted: 01/06/2016] [Indexed: 01/01/2023]
Abstract
UNLABELLED RNase 4, a member of the RNase A superfamily with substrate preference for uridine, has roles in host defence, angiogenesis and neurodegenerative diseases. It also exhibits the highest interspecies amino acid sequence similarity amongst RNase A family members. However, compared to other members of the RNase A family, including eosinophil-derived neurotoxin, eosinophil cationic protein and angiogenin, little is known about the molecular basis of substrate specificity in RNase 4. Here we report high to medium resolution structures of native porcine RNase 4 (PL3), a 'substrate-specificity' determining mutant D80A and their respective complexes with deoxyuridine 5'-monophosphate (dUMP) and deoxycytidine 5'-monophosphate (dCMP). These structures provide insight into the structural basis of the uridine versus cytosine substrate specificity in RNase 4: in the D80A mutant (D80A•dCMP), the side chain of Arg101 is positioned further away from the substrate-binding pocket due to the loss of the Asp80 side chain, reducing the repulsion force on the less favoured dCMP from Arg101 and allowing the ligand to occupy the binding pocket. This can also explain the observation that the ligand in the D80A•dCMP complex is stabilized only by a small number of hydrogen bonds. Compared to the previously reported structure of the human RNase 4•2'-deoxyuridine 3'-phosphate complex, the structure of PL3•dUMP complex shows additional hydrogen bonds between the ligand and the protein. In addition, the interaction between Arg101 and the dUMP ligand is absent. These observed differences are probably the result of the flexibility and different 'positioning' of the phosphate group among the mononucleotide ligands. DATABASE The atomic coordinates and structure factors for PL3 (5AR6), D80A (5ARJ), PL3∙dUMP (5ARK) and D80A∙dCMP (5ARL) complexes have been deposited with the Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers University, New Brunswick, NJ, USA (http://www.rcsb.org/).
Collapse
Affiliation(s)
- Shutian Liang
- Department of Biology and Biochemistry, University of Bath, UK
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
7
|
Gagné D, Doucet N. Sequence-specific backbone (1)H, (13)C, and (15)N resonance assignments of human ribonuclease 4. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:181-5. [PMID: 25030111 PMCID: PMC4764873 DOI: 10.1007/s12104-014-9570-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/09/2014] [Indexed: 05/11/2023]
Abstract
Human ribonuclease 4 (RNase 4) is the most evolutionarily conserved member of the 8 canonical human pancreatic-like RNases, showing more than 90% identity with bovine and porcine homologues. The enzyme displays ribonucleolytic activity with a strong preference for uracil-containing RNA substrates, a feature only shared with human eosinophil derived-neurotoxin (EDN, or RNase 2) and eosinophil cationic protein (ECP, or RNase 3). It is also the shortest member of the human family, with a significantly truncated C-terminal tail. Its unique active-site pocket and high degree of conservation among vertebrates suggest that the enzyme plays a crucial biological function. Here, we report on the (1)H, (13)C and (15)N backbone resonance assignments of RNase 4, providing means to characterize its molecular function at the atomic level by NMR.
Collapse
Affiliation(s)
- Donald Gagné
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Nicolas Doucet
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
- PROTEO, the Québec Network for Research on Protein Function, Structure, and Engineering, 1045 Avenue de la Médecine, Université Laval, Québec, Québec, G1V 0A6, Canada
- GRASP, the Groupe de Recherche Axé sur la Structure des Protéines, 3649 Promenade Sir William Osler, McGill University, Montréal, Québec, H3G 0B1, Canada
- To whom correspondence should be addressed: INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, CANADA, Tel: (450) 687-5010, ext. 4212; Fax: (450) 686-5501;
| |
Collapse
|
8
|
Nucleotide binding architecture for secreted cytotoxic endoribonucleases. Biochimie 2012; 95:1087-97. [PMID: 23274129 DOI: 10.1016/j.biochi.2012.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/13/2012] [Indexed: 12/20/2022]
Abstract
Vertebrate secreted RNases are small cationic protein endowed with an endoribonuclease activity that belong to the RNase A superfamily and display diverse cytotoxic activities. In an effort to unravel their mechanism of action, we have analysed their nucleotide binding recognition patterns. General shared features with other nucleotide binding proteins were deduced from overall statistics on the available structure complexes at the Protein Data Bank and compared with the particularities of selected representative endoribonuclease families. Results were compared with other endoribonuclease representative families and with the overall protein-nucleotide interaction features. Preferred amino acids and atom types involved in pair bonding interactions were identified, defining the spatial motives for phosphate, base and ribose building blocks. Together with the conserved catalytic triad at the active site, variability was observed for secondary binding subsites that may contribute to the proper substrate alignment and could explain the distinct substrate preference patterns. Highly conserved binding patterns were identified for the pyrimidine and purine subsites at the main and secondary base subsites. Particular substitution could be ascribed to specific adenine or guanine specificities. Distribution of evolutionary conserved residues were compared to search for the structure determinants that underlie their diverse catalytic efficiency and those that may account for putative physiological substrate targets or other non-catalytic biological activities that contribute to the antipathogen role of the RNases involved in the host defence system. A side by side comparison with another endoribonuclease superfamily of secreted cytotoxic proteins, the microbial RNases, was carried on to analyse the common features and peculiarities that rule their substrate recognition. The data provides the structural basis for the development of applied therapies targeting cellular nucleotide polymers.
Collapse
|
9
|
The eight human "canonical" ribonucleases: molecular diversity, catalytic properties, and special biological actions of the enzyme proteins. FEBS Lett 2010; 584:2194-200. [PMID: 20388512 DOI: 10.1016/j.febslet.2010.04.018] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/07/2010] [Accepted: 04/07/2010] [Indexed: 01/25/2023]
Abstract
Human ribonucleases (RNases) are members of a large superfamily of rapidly evolving homologous proteins. Upon completion of the human genome, eight catalytically active RNases (numbered 1-8) were identified. These structurally distinct RNases, characterized by their various catalytic differences on different RNA substrates, constitute a gene family that appears to be the sole vertebrate-specific enzyme family. Apart from digestion of dietary RNA, a wide variety of biological actions, including neurotoxicity, angiogenesis, immunosuppressivity, and anti-pathogen activity, have been recently reported for almost all members of the family. Recent evolutionary studies suggest that RNases started off in vertebrates as host defence or angiogenic proteins.
Collapse
|
10
|
Thompson KL, Pine PS, Rosenzweig BA, Turpaz Y, Retief J. Characterization of the effect of sample quality on high density oligonucleotide microarray data using progressively degraded rat liver RNA. BMC Biotechnol 2007; 7:57. [PMID: 17854504 PMCID: PMC2082023 DOI: 10.1186/1472-6750-7-57] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 09/13/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The interpretability of microarray data can be affected by sample quality. To systematically explore how RNA quality affects microarray assay performance, a set of rat liver RNA samples with a progressive change in RNA integrity was generated by thawing frozen tissue or by ex vivo incubation of fresh tissue over a time course. RESULTS Incubation of tissue at 37 degrees C for several hours had little effect on RNA integrity, but did induce changes in the transcript levels of stress response genes and immune cell markers. In contrast, thawing of tissue led to a rapid loss of RNA integrity. Probe sets identified as most sensitive to RNA degradation tended to be located more than 1000 nucleotides upstream of their transcription termini, similar to the positioning of control probe sets used to assess sample quality on Affymetrix GeneChip(R) arrays. Samples with RNA integrity numbers less than or equal to 7 showed a significant increase in false positives relative to undegraded liver RNA and a reduction in the detection of true positives among probe sets most sensitive to sample integrity for in silico modeled changes of 1.5-, 2-, and 4-fold. CONCLUSION Although moderate levels of RNA degradation are tolerated by microarrays with 3'-biased probe selection designs, in this study we identify a threshold beyond which decreased specificity and sensitivity can be observed that closely correlates with average target length. These results highlight the value of annotating microarray data with metrics that capture important aspects of sample quality.
Collapse
Affiliation(s)
- Karol L Thompson
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - P Scott Pine
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Barry A Rosenzweig
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | | | - Jacques Retief
- Affymetrix Inc., Santa Clara, CA, USA
- Current- Illumina Inc., San Diego, CA, USA
| |
Collapse
|
11
|
Benner SA, Sassi SO, Gaucher EA. Molecular paleoscience: systems biology from the past. ACTA ACUST UNITED AC 2007; 75:1-132, xi. [PMID: 17124866 DOI: 10.1002/9780471224464.ch1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Experimental paleomolecular biology, paleobiochemistry, and paleogenetics are closely related emerging fields that infer the sequences of ancient genes and proteins from now-extinct organisms, and then resurrect them for study in the laboratory. The goal of paleogenetics is to use information from natural history to solve the conundrum of modern genomics: How can we understand deeply the function of biomolecular structures uncovered and described by modern chemical biology? Reviewed here are the first 20 cases where biomolecular resurrections have been achieved. These show how paleogenetics can lead to an understanding of the function of biomolecules, analyze changing function, and put meaning to genomic sequences, all in ways that are not possible with traditional molecular biological studies.
Collapse
Affiliation(s)
- Steven A Benner
- Foundation for Applied Molecular Evolution, 1115 NW 4th Street, Gainesville, FL 32601, USA
| | | | | |
Collapse
|
12
|
Cho S, Beintema JJ, Zhang J. The ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories. Genomics 2005; 85:208-20. [PMID: 15676279 DOI: 10.1016/j.ygeno.2004.10.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Accepted: 10/13/2004] [Indexed: 12/22/2022]
Abstract
The RNase A superfamily has been important in biochemical, structural, and evolutionary studies and is believed to be the sole vertebrate-specific enzyme family. To understand the origin and diversification of the superfamily, we here determine its entire repertoire in the sequenced genomes of human, mouse, rat, and chicken. We report a previously unnoticed gene cluster in mouse chromosome 10 and a number of new genes, including mammalian RNases 11-13, which are close relatives of the recently identified RNases 9 and 10. Gene expression data imply male-reproductive functions for RNases 9-13, although their sequences suggest the lack of ribonucleolytic activities. In contrast to the presence of 13-20 functional genes in mammals, chicken has only 3 RNase genes, which are evolutionarily close to mammalian RNase 5, like other nonmammalian RNases. This and other evidence suggests that the RNase A superfamily originated from an RNase 5-like gene and expanded in mammals. Together with the fact that multiple lineages of the superfamily, including RNases 2, 3, 5, and 7, have antipathogenic activities, we suggest that the superfamily started off as a host-defense mechanism in vertebrates. Consistent with this hypothesis, all members of the superfamily exhibit high rates of amino acid substitution as is commonly observed in immunity genes.
Collapse
Affiliation(s)
- Soochin Cho
- Department of Ecology and Evolutionary Biology, University of Michigan, 3003 Natural Science Building, 830 North University Avenue, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
13
|
Dyer KD, Rosenberg HF. The mouse RNase 4 and RNase 5/ang 1 locus utilizes dual promoters for tissue-specific expression. Nucleic Acids Res 2005; 33:1077-86. [PMID: 15722482 PMCID: PMC549413 DOI: 10.1093/nar/gki250] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The ribonuclease A (RNase A) superfamily has been the subject of extensive studies in the areas of protein evolution, structure and biochemistry and are exciting molecules in that they appear to be responding to unique selection pressures, generating proteins capable of multiple and diverse activities. The RNase 4 and RNase 5/ang 1 shared locus breaks a pattern that is otherwise canonical among the members of the RNase A gene superfamily. Conserved among humans, mice and rats, the locus includes two non-coding exons followed by two distinct exons encoding RNase 4 and RNase 5/ang 1. Transcription from this locus is controlled by differential splicing and tissue-specific expression from promoters located 5′ to each of the non-coding exons. Promoter 1, 5′ to exon I, is universally active, while Promoter 2, 5′ to exon II, is active only in hepatic cells in promoter assays in vitro. Transcription from Promoter 2 is dependent on an intact HNF-1 consensus binding site which binds the transcription factor HNF-1α. In summary, RNase 4 and RNase 5/ang 1 are unique among the RNase A ribonuclease genes in that they maintain a complex gene locus that is conserved across species with transcription initiated from tissue-specific dual promoters followed by differential exon splicing.
Collapse
Affiliation(s)
- Kimberly D Dyer
- Laboratory of Allergic Diseases NIAID, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
14
|
Landré JBP, Hewett PW, Olivot JM, Friedl P, Ko Y, Sachinidis A, Moenner M. Human endothelial cells selectively express large amounts of pancreatic-type ribonuclease (RNase 1). J Cell Biochem 2003; 86:540-52. [PMID: 12210760 DOI: 10.1002/jcb.10234] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pyrimidine-specific ribonucleases are a superfamily of structurally related enzymes with distinct catalytic and biological properties. We used a combination of enzymatic and non-enzymatic assays to investigate the release of such enzymes by isolated cells in serum-free and serum-containing media. We found that human endothelial cells typically expressed large amounts of a pancreatic-type RNase that is related to, if not identical to, human pancreatic RNase. This enzyme exhibits pyrimidine-specific catalytic activity, with a marked preference for poly(C) substrate over poly(U) substrate. It was potently inhibited by placental RNase inhibitor, the selective pancreatic-type RNase inhibitor Inhibit-Ace, and a polyclonal antibody against human pancreatic RNase. The enzyme isolated from medium conditioned by immortalized umbilical vein endothelial cells (EA.hy926) possesses an amino-terminal sequence identical to that of pancreatic RNase, and shows molecular heterogeneity (molecular weights 18,000-26,000) due to different degrees of N-glycosylation. Endothelial cells from arteries, veins, and capillaries secreted up to 100 ng of this RNase daily per million cells, whereas levels were low or undetectable in media conditioned by other cell types examined. The corresponding messenger RNA was detected by RT-PCR in most cell types tested so far, and level of its expression was in keeping with the amounts of protein. The selective strong release of pancreatic-type RNase by endothelial cells suggests that it is endowed with non-digestive functions and involved in vascular homeostasis.
Collapse
Affiliation(s)
- Julien B P Landré
- INSERM EPI-0113, Université Bordeaux-I, Avenue des Facultés, Talence, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Breukelman HJ, Jekel PA, Dubois JY, Mulder PP, Warmels HW, Beintema JJ. Secretory ribonucleases in the primitive ruminant chevrotain (Tragulus javanicus). EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3890-7. [PMID: 11453981 DOI: 10.1046/j.1432-1327.2001.02294.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phylogenetic analyses of secretory ribonucleases or RNases 1 have shown that gene duplication events, giving rise to three paralogous genes (pancreatic, seminal and brain RNase), occurred during the evolution of ancestral ruminants. A higher number of paralogous sequences are present in chevrotain (Tragulus javanicus), the earliest diverged taxon within the ruminants. Two pancreatic RNase sequences were identified, one encoding the pancreatic enzyme, the other encoding a pseudogene. The identity of the pancreatic enzyme was confirmed by isolation of the protein and N-terminal sequence analysis. It is the most acidic pancreatic ribonuclease identified so far. Formation of the mature enzyme requires cleavage by signal peptidase of a peptide bond between two glutamic acid residues. The seminal-type RNase gene shows features of a pseudogene, like orthologous genes in other ruminants investigated with the exception of the bovine species. The brain-type RNase gene of chevrotain is expressed in brain tissue. A hybrid gene with a pancreatic-type N-terminal and a brain-type C-terminal sequence has been identified but nothing is known about its expression. Phylogenetic analysis of RNase 1 sequences of six ruminant, three other artiodactyl and two whale species support previous findings that two gene duplications occurred in a ruminant ancestor. Three distinct groups of pancreatic, seminal-type and brain-type RNases have been identified and within each group the chevrotain sequence it the first to diverge. In taxa with duplications of the RNase gene (ruminants and camels) the gene evolved at twice as fast than in taxa in which only one gene could be demonstrated; in ruminants there was an approximately fourfold increase directly after the duplications and then a slowing in evolutionary rate.
Collapse
Affiliation(s)
- H J Breukelman
- Department of Biochemistry, University of Groningen, the Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Zhao W, Confalone E, Breukelman HJ, Sasso MP, Jekel PA, Hodge E, Furia A, Beintema JJ. Ruminant brain ribonucleases: expression and evolution. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1547:95-103. [PMID: 11343795 DOI: 10.1016/s0167-4838(01)00173-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Molecular evolutionary analyses of mammalian ribonucleases have shown that gene duplication events giving rise to three paralogous genes occurred in ruminant ancestors. One of these genes encodes a ribonuclease identified in bovine brain. A peculiar feature of this enzyme and orthologous sequences in other ruminants are C-terminal extensions consisting of 17-27 amino acid residues. Evidence was obtained by Western blot analysis for the presence of brain-type ribonucleases in brain tissue not only of ox, but also of sheep, roe deer and chevrotain (Tragulus javanicus), a member of the earliest diverged taxon of the ruminants. The C-terminal extension of brain-type ribonuclease from giraffe deviates much in sequence from orthologues in other ruminants, due to a change of reading frame. However, the gene encodes a functional enzyme, which could be expressed in heterologous systems. The messenger RNA of bovine brain ribonuclease is not only expressed at a high level in brain tissue but also in lactating mammary gland. The enzyme was isolated and identified from this latter tissue, but was not present in bovine milk, although pancreatic ribonucleases A and B could be isolated from both sources. This suggests different ways of secretion of the two enzyme types, possibly related to structural differences. The sequence of the brain-type RNase from chevrotain suggests that the C-terminal extensions of ruminant brain-type ribonucleases originate from deletions in the ancestral DNA (including a region with stop codons), followed by insertion of a 5-8-fold repeated hexanucleotide sequence, coding for a proline-rich polypeptide.
Collapse
Affiliation(s)
- W Zhao
- Department of Biochemistry, University of Groningen, Nijenborgh, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kleineidam RG, Jekel PA, Beintema JJ, Situmorang P. Seminal-type ribonuclease genes in ruminants, sequence conservation without protein expression? Gene 1999; 231:147-53. [PMID: 10231579 DOI: 10.1016/s0378-1119(99)00095-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bovine seminal ribonuclease (BS-RNase) is an interesting enzyme both for functional and structural reasons. The enzyme is the product of a gene duplication that occurred in an ancestral ruminant. It is possible to demonstrate the presence of seminal-type genes in all other investigated ruminant species, but they are not expressed and show features of pseudogenes. In this paper we report the determination of two pancreatic and one seminal-type ribonuclease gene sequences of swamp-type water buffalo (Bubalus bubalis). The two pancreatic sequences encode proteins with identical amino acid sequences as previously determined for the enzymes isolated from swamp-type and river-type water buffalo, respectively. The seminal-type sequence has no pseudogene features and codes for an enzyme with no unusual features compared with the active bovine enzyme, except for the replacement of one of the cysteines which takes part in the two intersubunit disulfide bridges. However, Western blotting demonstrates the presence of only small amounts of the pancreatic enzymes in water buffalo semen, suggesting that also in this species the seminal-type sequence is not expressed. But it is still possible that the gene is expressed somewhere else in the body or during development. Reconstruction of seminal-type ribonuclease sequences in ancestors of Bovinae and Bovidae indicates no serious abnormalities in the encoded proteins and leads us to the hypothesis that the ruminant seminal-type ribonuclease gene has not come to expression during most of its evolutionary history, but did not exhibit a high evolutionary rate that is generally observed in pseudogenes.
Collapse
Affiliation(s)
- R G Kleineidam
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | | | | | | |
Collapse
|