1
|
Villa R, Nieto S, Donaire A, Lozano P. Direct Biocatalytic Processes for CO 2 Capture as a Green Tool to Produce Value-Added Chemicals. Molecules 2023; 28:5520. [PMID: 37513391 PMCID: PMC10383722 DOI: 10.3390/molecules28145520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Direct biocatalytic processes for CO2 capture and transformation in value-added chemicals may be considered a useful tool for reducing the concentration of this greenhouse gas in the atmosphere. Among the other enzymes, carbonic anhydrase (CA) and formate dehydrogenase (FDH) are two key biocatalysts suitable for this challenge, facilitating the uptake of carbon dioxide from the atmosphere in complementary ways. Carbonic anhydrases accelerate CO2 uptake by promoting its solubility in water in the form of hydrogen carbonate as the first step in converting the gas into a species widely used in carbon capture storage and its utilization processes (CCSU), particularly in carbonation and mineralization methods. On the other hand, formate dehydrogenases represent the biocatalytic machinery evolved by certain organisms to convert CO2 into enriched, reduced, and easily transportable hydrogen species, such as formic acid, via enzymatic cascade systems that obtain energy from chemical species, electrochemical sources, or light. Formic acid is the basis for fixing C1-carbon species to other, more reduced molecules. In this review, the state-of-the-art of both methods of CO2 uptake is assessed, highlighting the biotechnological approaches that have been developed using both enzymes.
Collapse
Affiliation(s)
- Rocio Villa
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Susana Nieto
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| | - Antonio Donaire
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
2
|
Promoter analysis and transcriptional regulation of human carbonic anhydrase VIII gene in a MERRF disease cell model. Arch Biochem Biophys 2018; 641:50-61. [DOI: 10.1016/j.abb.2018.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/22/2017] [Accepted: 01/19/2018] [Indexed: 02/01/2023]
|
3
|
Ozensoy Guler O, Capasso C, Supuran CT. A magnificent enzyme superfamily: carbonic anhydrases, their purification and characterization. J Enzyme Inhib Med Chem 2015; 31:689-94. [PMID: 26118417 DOI: 10.3109/14756366.2015.1059333] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this paper, we reviewed the purification and characterization methods of the α-carbonic anhydrase (CA, EC 4.2.1.1) class. Six genetic families (α-, β-, γ-, δ-, ζ- and η-CAs) all know to date, all encoding such enzymes in organisms widely distributed over the phylogenetic tree. Starting from the manuscripts published in the 1930s on the isolation and purification of α-CAs from blood and other tissues, and ending with the recent discovery of the last genetic family in protozoa, the η-CAs, considered for long time an α-CA, we present historically the numerous and different procedures which were employed for obtaining these catalysts in pure form. α-CAs possess important application in medicine (as many human α-CA isoforms are drug targets) as well as biotechnological processes, in which the enzymes are ultimately used for CO2 capture in order to mitigate the global warming effects due to greenhouse gases. Recently, it was discovered an involvement of CAs in cancerogenesis as well as infection caused by pathogenic agents such as bacteria, fungi and protozoa. Inhibition studies of CAs identified in the genome of the aforementioned organisms might lead to the discovery of innovative drugs with a novel mechanism of action.
Collapse
Affiliation(s)
- Ozen Ozensoy Guler
- a Department of Medical Biology, Faculty of Medicine , Yildirim Beyazit University, Bilkent Campus , Ankara , Turkey
| | - Clemente Capasso
- b CNR-Institute of Biosciences and Bioresources, Napoli, Italy , Napoli , Italy , and
| | - Claudiu T Supuran
- c Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, NEUROFARBA Department, Section of Pharmaceutical and Nutriceutical Chemistry , Florence , Italy
| |
Collapse
|
4
|
Boone CD, Pinard M, McKenna R, Silverman D. Catalytic mechanism of α-class carbonic anhydrases: CO2 hydration and proton transfer. Subcell Biochem 2014; 75:31-52. [PMID: 24146373 DOI: 10.1007/978-94-007-7359-2_3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The carbonic anhydrases (CAs; EC 4.2.1.1) are a family of metalloenzymes that catalyze the reversible hydration of carbon dioxide (CO2) and dehydration of bicarbonate (HCO3 (-)) in a two-step ping-pong mechanism: [Formula: see text] CAs are ubiquitous enzymes and are categorized into five distinct classes (α, β, γ, δ and ζ). The α-class is found primarily in vertebrates (and the only class of CA in mammals), β is observed in higher plants and some prokaryotes, γ is present only in archaebacteria whereas the δ and ζ classes have only been observed in diatoms.The focus of this chapter is on α-CAs as the structure-function relationship is best understood for this class, in particular for humans. The reader is referred to other reviews for an overview of the structure and catalytic mechanism of the other CA classes. The overall catalytic site structure and geometry of α-CAs are described in the first section of this chapter followed by the kinetic studies, binding of CO2, and the proton shuttle network.
Collapse
Affiliation(s)
- Christopher D Boone
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA,
| | | | | | | |
Collapse
|
5
|
Boone CD, Habibzadegan A, Gill S, McKenna R. Carbonic anhydrases and their biotechnological applications. Biomolecules 2013; 3:553-62. [PMID: 24970180 PMCID: PMC4030944 DOI: 10.3390/biom3030553] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 01/11/2023] Open
Abstract
The carbonic anhydrases (CAs) are mostly zinc-containing metalloenzymes which catalyze the reversible hydration/dehydration of carbon dioxide/bicarbonate. The CAs have been extensively studied because of their broad physiological importance in all kingdoms of life and clinical relevance as drug targets. In particular, human CA isoform II (HCA II) has a catalytic efficiency of 108 M-1 s-1, approaching the diffusion limit. The high catalytic rate, relatively simple procedure of expression and purification, relative stability and extensive biophysical studies of HCA II has made it an exciting candidate to be incorporated into various biomedical applications such as artificial lungs, biosensors and CO2 sequestration systems, among others. This review highlights the current state of these applications, lists their advantages and limitations, and discusses their future development.
Collapse
Affiliation(s)
- Christopher D Boone
- Biochemistry & Molecular Biology, University of Florida, P.O. Box 100245, Gainesville, FL 32610, USA.
| | - Andrew Habibzadegan
- Biochemistry & Molecular Biology, University of Florida, P.O. Box 100245, Gainesville, FL 32610, USA.
| | - Sonika Gill
- Biochemistry & Molecular Biology, University of Florida, P.O. Box 100245, Gainesville, FL 32610, USA.
| | - Robert McKenna
- Biochemistry & Molecular Biology, University of Florida, P.O. Box 100245, Gainesville, FL 32610, USA.
| |
Collapse
|
6
|
Aspatwar A, Tolvanen MEE, Parkkila S. An update on carbonic anhydrase-related proteins VIII, X and XI. J Enzyme Inhib Med Chem 2013; 28:1129-42. [PMID: 23294106 DOI: 10.3109/14756366.2012.727813] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The catalytically inactive isoforms of carbonic anhydrase (CAs) are known as CA-related proteins (CARPs) VIII, X, and XI. They have highly conserved amino acid sequences. These proteins are predominantly expressed in human and mouse brain, however, their precise roles are poorly known. CARP VIII is functionally associated with motor coordination in human and mouse. CARP X is more highly expressed in the pineal gland during night compared to the day time, suggesting a function for wake/sleep patterns. Phylogeny shows that CARP XI has emerged from CARP X. It is only found in tetrapods and is highly expressed in the central nervous system (CNS) of humans and is also associated with several cancers. Detailed analysis of CARPs is in progress in our laboratory to understand their role in normal physiology. We present a review of literature on CARPs and present some novel data on CARPs obtained in our laboratory.
Collapse
Affiliation(s)
- Ashok Aspatwar
- University of Tampere, Institute of Biomedical Technology , Tampere , Finland
| | | | | |
Collapse
|
7
|
Restoring catalytic activity to the human carbonic anhydrase (CA) related proteins VIII, X and XI affords isoforms with high catalytic efficiency and susceptibility to anion inhibition. Bioorg Med Chem Lett 2012. [PMID: 23200251 DOI: 10.1016/j.bmcl.2012.10.103] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mutation of amino acid residues 94, 96 and 119 to histidine(s) in the human carbonic anhydrase (CA, EC 4.2.1.1) related proteins CARP VIII, X and XI restored the zinc binding and catalytic activity for the hydration of CO(2) to bicarbonate. CA VIII, X and XI thus obtained showed high catalytic activity (67.3-92.0% of the activity of hCA II and much higher compared to hCA I) and were inhibited in the milli-micromolar range by inorganic anions, sulfamide, sulfamic acid, phenylboronic acid and phenylarsonic acid. Among the three new isoforms, hCA X was the most efficient enzyme and also showed the highest affinity for anion inhibitors (K(I)s of 3.6-68 μM for phenylboronic acid, sufamic acid, sulfamide, cyanide and azide). hCA VIII was poorly inhibited by halides, cyanate, nitrate and sulfate (K(I)s of 38.4-65.4 mM), whereas CA XI had a behavior intermediate between that of hCA VIII and X, both regarding the catalytic activity and sensitivity to anion inhibitors.
Collapse
|
8
|
Aggarwal M, Boone CD, Kondeti B, McKenna R. Structural annotation of human carbonic anhydrases. J Enzyme Inhib Med Chem 2012; 28:267-77. [DOI: 10.3109/14756366.2012.737323] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Mayank Aggarwal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida,
Gainesville, FL, USA
| | - Christopher D. Boone
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida,
Gainesville, FL, USA
| | - Bhargav Kondeti
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida,
Gainesville, FL, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida,
Gainesville, FL, USA
| |
Collapse
|
9
|
Picaud SS, Muniz JRC, Kramm A, Pilka ES, Kochan G, Oppermann U, Yue WW. Crystal structure of human carbonic anhydrase-related protein VIII reveals the basis for catalytic silencing. Proteins 2009; 76:507-11. [DOI: 10.1002/prot.22411] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Lu SH, Takeuchi T, Fujita J, Ishida T, Akisawa Y, Nishimori I, Kohsaki T, Onishi S, Sonobe H, Ohtsuki Y. Effect of carbonic anhydrase-related protein VIII expression on lung adenocarcinoma cell growth. Lung Cancer 2004; 44:273-80. [PMID: 15140539 DOI: 10.1016/j.lungcan.2003.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 11/24/2003] [Accepted: 12/18/2003] [Indexed: 10/26/2022]
Abstract
Carbonic anhydrase-related protein VIII (CA-RP VIII) is expressed in most non-small cell lung cancer, and especially strongly at the front of tumor progression. Screening analysis of CA-RP VIII expression in a panel of cultured lung cancer cell lines showed that a well differentiated adenocarcinoma cell line, PC-9, appeared to lack CA-RP VIII. Subsequently, CA8 cDNA was transfected with an expression vector into PC-9. Ectopic overexpression of CA-RP VIII reduced the growth of PC-9 cells on uncoated culture dishes, especially when the cultures were started at low cell density, but increased cell growth on laminin-coated dishes. Interestingly, ectopic CA-RP VIII expression markedly reduced caspase-3 activity induced by serum starvation and anti-cancer agents in PC-9 cells. The present findings suggest that CA-RP VIII expression promotes progression of lung cancer by multifarious mechanisms.
Collapse
Affiliation(s)
- Shu-hui Lu
- Department of Tumor Pathology, Kochi Medical School, Nankoku, Kochi 783-8505, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Taniuchi K, Nishimori I, Takeuchi T, Fujikawa-Adachi K, Ohtsuki Y, Onishi S. Developmental expression of carbonic anhydrase-related proteins VIII, X, and XI in the human brain. Neuroscience 2002; 112:93-9. [PMID: 12044474 DOI: 10.1016/s0306-4522(02)00066-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three cDNA homologues of carbonic anhydrase with unknown biological functions have been reported: carbonic anhydrase-related proteins (CA-RP) VIII, X, and XI. In the present study, we produced monoclonal antibodies to these CA-RPs and studied their regional and cellular distributions in the human adult and fetal brains by immunohistochemical analysis. In the adult brain, CA-RP VIII was expressed in the neural cell body spreading to most parts of the brain. CA-RP X was expressed in the myelin sheath and its expression was shown in the cytoplasm of cultured tumor cells by immunocytochemical analysis. CA-RP XI was expressed in the neural cell body, neurites, and astrocytes in relatively limited regions of the brain. In the fetal brain, CA-RP VIII and XI were expressed in the neuroprogenitor cells in the subventricular zone as early as the 84th day of gestation and subsequently detected in the neural cells migrating to the cortex. CA-RP X first appeared in the neural cells in the cortex at the 141st day. In the choroid plexus, the epithelial cells gave CA-RP VIII and XI expressions in both adult and fetal brains. From the findings in the present study on the distribution and the developmental expression of CA-RP VIII, X, and XI in the human brain we suggest that these CA-RPs play roles in various biological process of the CNS.
Collapse
Affiliation(s)
- K Taniuchi
- First Department of Internal Medicine, Kochi Medical School, Nankoku, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Tashian RE, Hewett-Emmett D, Carter N, Bergenhem NC. Carbonic anhydrase (CA)-related proteins (CA-RPs), and transmembrane proteins with CA or CA-RP domains. EXS 2001:105-20. [PMID: 11268511 DOI: 10.1007/978-3-0348-8446-4_6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- R E Tashian
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
13
|
Scozzafava A, Banciu MD, Popescu A, Supuran CT. Carbonic anhydrase inhibitors: synthesis of Schiff bases of hydroxybenzaldehydes with aromatic sulfonamides and their reactions with arylsulfonyl isocyanates. JOURNAL OF ENZYME INHIBITION 2001; 15:533-46. [PMID: 11140609 DOI: 10.3109/14756360009040708] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reaction of o- or p-hydroxybenzaldehydes with sulfanilamide, homosulfanilamide and p-(2-aminoethyl)- benzene-sulfonamide afforded several new Schiff bases which were subsequently derivatized at the phenolic hydroxy moiety by reaction with arylsulfonylisocyanates. The new arylsulfonylcarbamates obtained in this way possessed interesting inhibitory properties against three carbonic anhydrase (CA) isozymes, hCA I, hCA II and bCA IV (h = human, b = bovine isozyme). All these new derivatives, the simple Schiff bases and the arylsulfonylcarbamates obtained as outlined above, were more inhibitory against all isozymes as compared to the corresponding parent sulfonamide from which they were obtained. Generally, the p-hydroxybenzaldehyde derivatives were more active than the corresponding ortho isomers. An interesting behavior was evidenced for some of the ortho-substituted arylsulfonylcarbamato-sulfonamides, which showed higher affinities for the isozyme hCA I, as compared to hCA II and bCA IV (generally hCA I is 10-1000 less sensitive to "normal" sulfonamide inhibitors, such as acetazolamide, methazolamide or dorzolamide, as compared to hCA II). This make the new derivatives attractive leads for designing isozyme I-specific inhibitors.
Collapse
Affiliation(s)
- A Scozzafava
- Università degli Studi, Laboratorio di Chimica Inorganica e Bioinorganica, Firenze, Italia
| | | | | | | |
Collapse
|
14
|
Supuran CT, Briganti F, Tilli S, Chegwidden WR, Scozzafava A. Carbonic anhydrase inhibitors: sulfonamides as antitumor agents? Bioorg Med Chem 2001; 9:703-14. [PMID: 11310605 DOI: 10.1016/s0968-0896(00)00288-1] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Novel sulfonamide inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1) were prepared by reaction of aromatic or heterocyclic sulfonamides containing amino, imino, or hydrazino moieties with N,N-dialkyldithiocarbamates in the presence of oxidizing agents (sodium hypochlorite or iodine). The N,N-dialkylthiocarbamylsulfenamido-sulfonamides synthesized in this way behaved as strong inhibitors of human CA I and CA II (hCA I and hCA II) and bovine CA IV (bCA IV). For the most active compounds, inhibition constants ranged from 10(-8) to 10(-9) M (for isozymes II and IV). Three of the derivatives belonging to this new class of CA inhibitors were also tested as inhibitors of tumor cell growth in vitro. These sulfonamides showed potent inhibition of growth against several leukemia, non-small cell lung, ovarian, melanoma, colon, CNS, renal, prostate and breast cancer cell lines. With several cell lines. GI50 values of 10-75 nM were observed. The mechanism of antitumor action with the new sulfonamides reported here remains obscure, but may involve inhibition of CA isozymes which predominate in tumor cell membranes (CA IX and CA XII), perhaps causing acidification of the intercellular milieu, or inhibition of intracellular isozymes which provide bicarbonate for the synthesis of nucleotides and other essential cell components (CA II and CA V). Optimization of these derivatives from the SAR point of view, might lead to the development of effective novel types of anticancer agents.
Collapse
Affiliation(s)
- C T Supuran
- Università degli Studi, Laboratorio di Chimica Inorganica e Bioinorgainica, Florence, Italy.
| | | | | | | | | |
Collapse
|
15
|
Supuran CT, Scozzafava A, Ilies MA, Briganti F. Carbonic anhydrase inhibitors: synthesis of sulfonamides incorporating 2,4,6-trisubstituted-pyridinium-ethylcarboxamido moieties possessing membrane-impermeability and in vivo selectivity for the membrane-bound (CA IV) versus the cytosolic (CA I and CA II) isozymes. JOURNAL OF ENZYME INHIBITION 2001; 15:381-401. [PMID: 10995069 DOI: 10.1080/14756360009040695] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A new approach is proposed for the selective in vivo inhibition of membrane-bound versus cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isozymes with a class of positively-charged, membrane-impermeant sulfonamides. Aromatic/heterocyclic sulfonamides acting as strong (but unselective) inhibitors of this zinc enzyme were derivatized by the attachment of trisubstituted-pyridinium-ethylcarboxy moieties (obtained from 2,4,6-trisubstituted-pyrylium salts and beta-alanine) to the amino, imino, hydrazino or hydroxyl groups present in their molecules. Efficient in vitro inhibition (in the nanomolar range) was observed with some of the new derivatives against three investigated CA isozymes, i.e., hCA I, hCA II (cytosolic forms) and bCA IV (membrane-bound isozyme; h = human; b = bovine isozyme). Due to their salt-like character, the new type of inhibitors reported here, unlike the classical, clinically used compounds (such as acetazolamide, methazolamide, ethoxzolamide), are unable to penetrate biological membranes, as shown by ex vivo and in vivo perfusion experiments in rats. The level of bicarbonate excreted into the urine of the experimental animals perfused with solutions of the new and classical inhibitors suggest that: (i) when using the new type of positively-charged sulfonamides, only the membrane-bound enzyme (CA IV) was inhibited, whereas the cytosolic isozymes (CA I and II) were not affected, (ii) in the experiments in which the classical compounds (acetazolamide, benzolamide, etc.) were used, unselective inhibition of all CA isozymes (I, II and IV) occurred.
Collapse
Affiliation(s)
- C T Supuran
- Laboratorio di Chimica Inorganica e Bioinorganica, Università degli Studi, Florence, Italy.
| | | | | | | |
Collapse
|
16
|
Elleby B, Sjöblom B, Tu C, Silverman DN, Lindskog S. Enhancement of catalytic efficiency by the combination of site-specific mutations in a carbonic anhydrase-related protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5908-15. [PMID: 10998050 DOI: 10.1046/j.1432-1327.2000.01644.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A single mutation, involving the replacement of an arginine residue with histidine to reconstruct a zinc-binding site, suffices to change a catalytically inactive murine carbonic anhydrase-related protein (CARP) to an active carbonic anhydrase with a CO2-hydration turnover number of 1.2 x 104 s-1. Further mutations, leading to a more 'carbonic anhydrase-like' active-site cavity, results in increased activity. A quintuple mutant having His94, Gln92, Val121, Val143, and Thr200 (human carbonic anhydrase I numbering system) shows kcat = 4 x 104 s-1 and kcat/Km = 2 x 107 M-1.s-1, greatly exceeding the corresponding values for carbonic anhydrase isozyme III and approaching those characterizing carbonic anhydrase I. In addition, a buffer change from 50 mM Taps/NaOH to 50 mM 1, 2-dimethylimidazole/H2SO4 at pH 9 results in a 14-fold increase in kcat for this quintuple mutant. The CO2-hydrating activity of a double mutant with His94 and Gln92 shows complex pH-dependence, but the other mutants investigated behave as if the activity (kcat/Km) is controlled by the basic form of a single group with pKa near 7.7. In a similar way to human carbonic anhydrase II, the buffer behaves formally as a second substrate in a ping-pong pattern, suggesting that proton transfer between a zinc-bound water molecule and buffer limits the maximal rate of catalysis in both systems at low buffer concentrations. However, the results of isotope-exchange kinetic studies suggest that proton shuttling via His64 is insignificant in the CARP mutant in contrast with carbonic anhydrase II. The replacement of Ile residues with Val in positions 121 or 143 results in measurable 4-nitrophenyl acetate hydrolase activity. The pH-rate profile for this activity has a similar shape to those of carbonic anhydrase I and II. CD spectra of the double mutant with His94 and Gln92 are variable, indicating an equilibrium between a compact form of the protein and a 'molten globule'-like form. The introduction of Thr200 seems to stabilize the protein.
Collapse
Affiliation(s)
- B Elleby
- Department of Biochemistry, Umeå University, Sweden
| | | | | | | | | |
Collapse
|
17
|
Supuran CT, Scozzafava A. Carbonic anhydrase inhibitors: aromatic sulfonamides and disulfonamides act as efficient tumor growth inhibitors. JOURNAL OF ENZYME INHIBITION 2000; 15:597-610. [PMID: 11140614 DOI: 10.3109/14756360009040713] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aromatic/heterocyclic sulfonamides generally act as strong inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1). Here we report the unexpected finding that potent aromatic sulfonamide inhibitors of CA, possessing inhibition constants in the range of 10(-8)-10(-9) M (against all the isozymes), also act as efficient in vitro tumor cell growth inhibitors, with GI50 (molarity of inhibitor producing a 50% inhibition of tumor cell growth) values of 10 nM-35 microM against several leukemia, non-small cell lung cancer, ovarian, melanoma, colon, CNS, renal, prostate and breast cancer cell lines. The investigated compounds were sulfanilyl-sulfanilamide-, 4-thioureido-benzenesulfonamide- and benzene-1,3-disulfonamide-derivatives. The mechanism of antitumor action with these sulfonamides is unknown, but it might involve either inhibition of several CA isozymes (such as CA IX, CA XII, CA XIV) predominantly present in tumor cells, a reduced provision of bicarbonate for the nucleotide synthesis (mediated by carbamoyl phosphate synthetase II), the acidification of the intracellular milieu as a consequence of CA inhibition or uncoupling of mitochondria and potent CA V inhibition among others. A combination of several such mechanisms is also plausible. Optimization of such derivatives from the SAR point of view, might lead to the development of effective novel types of anticancer agents/therapies.
Collapse
Affiliation(s)
- C T Supuran
- Università degli Studi, Laboratorio di Chimica Inorganica e Bioinorganica, Florence, Italy.
| | | |
Collapse
|