1
|
Masson P, Lushchekina S. Conformational Stability and Denaturation Processes of Proteins Investigated by Electrophoresis under Extreme Conditions. Molecules 2022; 27:6861. [PMID: 36296453 PMCID: PMC9610776 DOI: 10.3390/molecules27206861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
The functional structure of proteins results from marginally stable folded conformations. Reversible unfolding, irreversible denaturation, and deterioration can be caused by chemical and physical agents due to changes in the physicochemical conditions of pH, ionic strength, temperature, pressure, and electric field or due to the presence of a cosolvent that perturbs the delicate balance between stabilizing and destabilizing interactions and eventually induces chemical modifications. For most proteins, denaturation is a complex process involving transient intermediates in several reversible and eventually irreversible steps. Knowledge of protein stability and denaturation processes is mandatory for the development of enzymes as industrial catalysts, biopharmaceuticals, analytical and medical bioreagents, and safe industrial food. Electrophoresis techniques operating under extreme conditions are convenient tools for analyzing unfolding transitions, trapping transient intermediates, and gaining insight into the mechanisms of denaturation processes. Moreover, quantitative analysis of electrophoretic mobility transition curves allows the estimation of the conformational stability of proteins. These approaches include polyacrylamide gel electrophoresis and capillary zone electrophoresis under cold, heat, and hydrostatic pressure and in the presence of non-ionic denaturing agents or stabilizers such as polyols and heavy water. Lastly, after exposure to extremes of physical conditions, electrophoresis under standard conditions provides information on irreversible processes, slow conformational drifts, and slow renaturation processes. The impressive developments of enzyme technology with multiple applications in fine chemistry, biopharmaceutics, and nanomedicine prompted us to revisit the potentialities of these electrophoretic approaches. This feature review is illustrated with published and unpublished results obtained by the authors on cholinesterases and paraoxonase, two physiologically and toxicologically important enzymes.
Collapse
Affiliation(s)
- Patrick Masson
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, Kremlievskaya Str. 18, 420111 Kazan, Russia
| | - Sofya Lushchekina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin Str. 4, 119334 Moscow, Russia
| |
Collapse
|
2
|
Isleroglu H, Turker I. Evaluation of Process Conditions for Ultrasonic Spray Freeze Drying of Transglutaminase. Food Technol Biotechnol 2020; 58:38-48. [PMID: 32684786 PMCID: PMC7365335 DOI: 10.17113/ftb.58.01.20.6544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/11/2020] [Indexed: 11/12/2022] Open
Abstract
In this study, a commercial transglutaminase enzyme was dried using an ultrasonic spray freeze drying method and the effects of the process conditions were optimized to maximize the final transglutaminase activity. Accordingly, process parameters affecting enzyme activity were selected, such as nozzle frequency (48 and 120 kHz), flow rate (2, 5 and 8 mL/min) and plate temperature for secondary drying (25, 35 and 45 °C). Moreover, the effects of different pH values (pH=2.0 and pH=9.0) and high temperature (80 °C) on enzyme activity, physical properties and particle morphology of transglutaminase were discussed. According to the results, transglutaminase preserved its activity despite ultrasonic spray freeze drying. Sonication enhanced the enzyme activity. Using the desirability function method, the optimum process conditions were determined to be flow rate 3.10 mL/min, plate temperature 45 °C and nozzle frequency 120 kHz. The predicted activity ratio was 1.17, and experimentally obtained ratio was 1.14±0.02. Furthermore, enzyme produced by ultrasonic spray freeze drying had low moisture values (2.92-4.36%) at 8 h of drying. When the morphological structure of the transglutaminase particles produced by ultrasonic spray freeze drying under the optimum conditions was examined, spherical particles with pores on their surfaces were observed. In addition, flow properties of the transglutaminase powders were considered as fair under most conditions according to the Carr index.
Collapse
Affiliation(s)
- Hilal Isleroglu
- Tokat Gaziosmanpasa University, Faculty of Engineering and Architecture
- Food Engineering Department, Tasliciftlik Campus, 60150 Tokat, Turkey
| | - Izzet Turker
- Tokat Gaziosmanpasa University, Faculty of Engineering and Architecture
- Food Engineering Department, Tasliciftlik Campus, 60150 Tokat, Turkey
| |
Collapse
|
3
|
Boyko KM, Baymukhametov TN, Chesnokov YM, Hons M, Lushchekina SV, Konarev PV, Lipkin AV, Vasiliev AL, Masson P, Popov VO, Kovalchuk MV. 3D structure of the natural tetrameric form of human butyrylcholinesterase as revealed by cryoEM, SAXS and MD. Biochimie 2019; 156:196-205. [DOI: 10.1016/j.biochi.2018.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022]
|
4
|
Terefe NS, Buckow R, Versteeg C. Quality-related enzymes in plant-based products: effects of novel food-processing technologies part 3: ultrasonic processing. Crit Rev Food Sci Nutr 2015; 55:147-58. [PMID: 24915308 DOI: 10.1080/10408398.2011.586134] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
High-power ultrasound is a versatile technology which can potentially be used in many food processing applications including food preservation. This is part 2 of a series of review articles dealing with the effectiveness of nonthermal food processing technologies in food preservation focusing on their effect on enzymes. Typically, ultrasound treatment alone does not efficiently cause microbial or enzyme inactivation sufficient for food preservation. However, combined with mild heat with or without elevated pressure (P ≤ 500 kPa), ultrasound can effectively inactivate enzymes and microorganisms. Synergistic effects between ultrasound and mild heat have been reported for the inactivation of both enzymes and microorganisms. The application of ultrasound has been shown to enhance the rate of inactivation of quality degrading enzymes including pectin methylesterase (PME), polygalacturonase (PG), peroxidase (POD), polyphenol oxidase (PPO), and lipoxygenase (LOX) at mild temperature by up to 400 times. Moreover, ultrasound enables the inactivation of relatively heat-resistant enzymes such as tomato PG1 and thermostable orange PME at mild temperature conditions. The extent to which ultrasound enhances the inactivation rate depends on the type of enzyme, the medium in which the enzyme is suspended, and the processing condition including frequency, ultrasonic intensity, temperature, and pressure. The physical and chemical effects of cavitation are considered to be responsible for the ultrasound-induced inactivation of enzymes, although the dominant mechanism depends on the structure of the enzyme.
Collapse
|
5
|
Delgado-Povedano M, Luque de Castro M. A review on enzyme and ultrasound: A controversial but fruitful relationship. Anal Chim Acta 2015; 889:1-21. [DOI: 10.1016/j.aca.2015.05.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
|
6
|
|
7
|
Terefe NS, Gamage M, Vilkhu K, Simons L, Mawson R, Versteeg C. The kinetics of inactivation of pectin methylesterase and polygalacturonase in tomato juice by thermosonication. Food Chem 2009. [DOI: 10.1016/j.foodchem.2009.03.067] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
|
9
|
Gabel F, Weik M, Doctor BP, Saxena A, Fournier D, Brochier L, Renault F, Masson P, Silman I, Zaccai G. The influence of solvent composition on global dynamics of human butyrylcholinesterase powders: a neutron-scattering study. Biophys J 2004; 86:3152-65. [PMID: 15111428 PMCID: PMC1304180 DOI: 10.1016/s0006-3495(04)74363-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A major result of incoherent elastic neutron-scattering experiments on protein powders is the strong dependence of the intramolecular dynamics on the sample environment. We performed a series of incoherent elastic neutron-scattering experiments on lyophilized human butyrylcholinesterase (HuBChE) powders under different conditions (solvent composition and hydration degree) in the temperature range from 20 to 285 K to elucidate the effect of the environment on the enzyme atomic mean-square displacements. Comparing D(2)O- with H(2)O-hydrated samples, we were able to investigate protein as well as hydration water molecular dynamics. HuBChE lyophilized from three distinct buffers showed completely different atomic mean-square displacements at temperatures above approximately 200 K: a salt-free sample and a sample containing Tris-HCl showed identical small-amplitude motions. A third sample, containing sodium phosphate, displayed highly reduced mean-square displacements at ambient temperature with respect to the other two samples. Below 200 K, all samples displayed similar mean-square displacements. We draw the conclusion that the reduction of intramolecular protein mean-square displacements on an Angstrom-nanosecond scale by the solvent depends not only on the presence of salt ions but also on their type.
Collapse
Affiliation(s)
- F Gabel
- Laboratoire de Biophysique Moléculaire, Institut de Biologie Structurale, Grenoble, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Elamin B. Dibucaine inhibition of serum cholinesterase. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 36:149-53. [PMID: 12689511 DOI: 10.5483/bmbrep.2003.36.2.149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dibucaine number (DN) was determined for serum cholinesterase (EC 3.1.1.8, SChE) in plasma samples. The ones with a DN of 79-82 were used, because they had the "usual" SChE variant. The enzyme was assayed colorimetrically by the reaction of 5,5'-dithiobis-[2-nitrobenzoic acid] (DTNB) with the free sulfhydryl groups of thiocholine that were produced by the enzyme reaction with butrylthiocholine (BuTch) or acetylthiocholine (AcTch) substrates, and measured at 412 nm. Dibucaine, a quaternary ammonium compound, inhibited SChE to a minimum within 2 min in a reversible manner. The inhibition was very potent. It had an IC(50) of 5.3 microM with BuTch or 3.8 microM with AcTch. The inhibition was competitive with respect to BuTch with a K(i) of 1.3 microM and a linear-mixed type (competitive/noncompetitive) with respect to AcTch with inhibition constants, K(i) and K(I) of 0.66 and 2.5 microM, respectively. Dibucaine possesses a butoxy side chain that is similar to the butryl group of BuTch and longer by an ethylene group from AcTch. This may account for the difference in inhibition behavior. It may also suggest the existence of an additional binding site, other than the anionic binding site, and of a hydrophobic nature.
Collapse
Affiliation(s)
- Babiker Elamin
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
11
|
Cléry-Barraud C, Ordentlich A, Grosfeld H, Shafferman A, Masson P. Pressure and heat inactivation of recombinant human acetylcholinesterase. Importance of residue E202 for enzyme stability. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4297-307. [PMID: 12199708 DOI: 10.1046/j.1432-1033.2002.03122.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of pressure on structure and activity of recombinant human acetylcholinesterase (rHuAChE) were investigated up to a pressure of 300 MPa using gel electrophoresis under elevated hydrostatic pressure, fluorescence of bound 8-anilinonaphthalene-1-sulfonate (ANS) and activity measurements following exposure to high pressure. Study of wild-type enzyme and three single mutants (D74N, E202Q, E450A) and one sextuple mutant (E84Q/E292A/D349N/E358Q/E389Q/D390N) showed that pressure exerts a differential action on wild-type rHuAChE and its mutants, allowing estimation of the contribution of carboxylic amino acid side-chains to enzyme stability. Mutation of negatively charged residues D74 and E202 by polar side-chains strengthened heat or pressure stability. The mutation E450A and the sextuple mutation caused destabilization of the enzyme to pressure. Thermal inactivation data on mutants showed that all of them were stabilized against temperature. In conclusion, pressure and thermal stability of mutants provided evidence that the residue E202 is a determinant of structural and functional stability of HuAChE.
Collapse
Affiliation(s)
- Cécile Cléry-Barraud
- Centre de Recherches du Service de Santé des Armées, Unité d'enzymologie, France.
| | | | | | | | | |
Collapse
|
12
|
Masson P, Froment MT, Fort S, Ribes F, Bec N, Balny C, Schopfer LM. Butyrylcholinesterase-catalyzed hydrolysis of N-methylindoxyl acetate: analysis of volume changes upon reaction and hysteretic behavior. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1597:229-43. [PMID: 12044901 DOI: 10.1016/s0167-4838(02)00265-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hydrolysis of the neutral substrate N-methylindoxyl acetate (NMIA) by wild-type human butyrylcholinesterase (BuChE) and peripheral site mutants (D70G, Y332A, D70G/Y332A) was found to follow the Michaelis-Menten kinetics. K(m) was 0.14 mM for wild-type, and 0.07-0.16 mM for D70G, Y332A and D70G/Y332A, indicating that the peripheral site is not involved in NMIA binding. The values of k(cat) were of the same order for all enzymes: 12,000-18,000 min(-1). Volume changes upon substrate binding (-DeltaV(K(m))) and the activation volumes (DeltaV++(k(cat)) associated with hydrolysis of NMIA were calculated from the pressure dependence of the catalytic constants. Values of -DeltaV(K(m)) indicate that NMIA binds to an aromatic residue, presumed to be W82, the active site binding locus. Binding is accompanied by a release of water molecules from the gorge. Residue 70 controls the number of water molecules that are released upon substrate binding. The values of DeltaV++(k(cat)), which are positive for wild-type and faintly positive for D70G, clearly indicate that the catalytic steps are accompanied by re-entry of water into the gorge. Results support the premise that residue D70 is involved in the conformational stabilization of the active site gorge and in control of its hydration. A slow transient, preceding the steady state, was seen on a time scale of several minutes. The induction time rapidly increased with NMIA concentration to reach a limit at substrate saturation. Much shorter induction times (<1 min) were seen for hydrolysis of benzoylcholine (BzCh) by wild-type BuChE and for hydrolysis of butyrylthiocholine (BuSCh) by the active site mutants E197Q and E197Q/G117H. This slow transient was interpreted in terms of hysteresis without kinetic cooperativity. The hysteretic behavior of BuChE results from a slow conformational equilibrium between two enzyme states E and E'. NMIA binds only to the primed form E'. Kosmotropic salts and hydrostatic pressure were found to shift the equilibrium toward E'. The E-->E' transition is accompanied by a negative activation volume (DeltaV++(0)= -45+/-10 ml/mol), and the E' form is more compact than E. Hydration water in the gorge of E' appears to be more structured than in the unprimed form.
Collapse
Affiliation(s)
- Patrick Masson
- Centre de Recherches du Service de Santé des Armées, Unité d'Enzymologie, BP 87, 24 Av. Maquis du Gresivaudan, 38702 La Tronche Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
13
|
Weingand-Ziade A, Ribes F, Renault F, Masson P. Pressure- and heat-induced inactivation of butyrylcholinesterase: evidence for multiple intermediates and the remnant inactivation process. Biochem J 2001; 356:487-93. [PMID: 11368776 PMCID: PMC1221860 DOI: 10.1042/0264-6021:3560487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inactivation process of native (N) human butyrylcholinesterase (BuChE) by pressure and/or heat was found to be multi-step. It led to irreversible formation of an active intermediate (I) state and a denatured state. This series-inactivation process was described by expanding the Lumry-Eyring [Lumry, R. and Eyring, H. (1954) J. Phys. Chem. 58, 110-120] model. The intermediate state (I) was found to have a K(m) identical with that of the native state and a turnover rate (k(cat)) twofold higher than that of the native state with butyrylthiocholine as the substrate. The increased catalytic efficiency (k(cat)/K(m)) of I can be explained by a conformational change in the active-site gorge and/or restructuring of the water-molecule network in the active-site pocket, making the catalytic steps faster. However, a pressure/heat-induced covalent modification of native BuChE, affecting the catalytic machinery, cannot be ruled out. The inactivation process of BuChE induced by the combined action of pressure and heat was found to continue after interruption of pressure/temperature treatment. This secondary inactivation process was termed 'remnant inactivation'. We hypothesized that N and I were in equilibrium with populated metastable N' and I' states. The N' and I' states can either return to the active forms, N and I, or develop into inactive forms, N(')(in) and I(')(in). Both active N' and I' intermediate states displayed different rates of remnant inactivation depending on the pressure and temperature pretreatments and on the storage temperature. A first-order deactivation model describing the kinetics of the remnant inactivation of BuChE is proposed.
Collapse
Affiliation(s)
- A Weingand-Ziade
- Centre de Recherches du Service de Santé des Armées, Unité d'Enzymologie, BP 87, 38702 La Tronche Cédex, France
| | | | | | | |
Collapse
|
14
|
Altamirano CV, Lockridge O. Conserved aromatic residues of the C-terminus of human butyrylcholinesterase mediate the association of tetramers. Biochemistry 1999; 38:13414-22. [PMID: 10529218 DOI: 10.1021/bi991475+] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human butyrylcholinesterase (BChE) in serum is composed predominantly of tetramers. The tetramerization domain of each subunit is contained within 40 C-terminal residues. To identify key residues within this domain participating in tetramer stabilization, the interaction between C-terminal 46 residue peptides was quantitated in the yeast two-hybrid system. The wild-type peptide interacted strongly with another wild-type peptide in the yeast two-hybrid system. The C571A mutant peptides interacted to a similar degree as the wild-type. However, the mutant in which seven conserved aromatic residues (Trp 543, Phe 547, Trp 550, Tyr 553, Trp 557, Phe 561, and Tyr 564) and C571 were altered to alanines showed only 12% of the interaction seen with the wild-type peptide. The seven mutations (aromatics-off) were incorporated into the complete BChE molecule, with or without the C571A mutation, and expressed in 293T and CHO-K1 cells. Expression of wild-type BChE in these cell lines yielded 10% tetramers. The aromatics-off mutant formed dimers and monomers but no tetramers. The aromatics-off/C571A mutant yielded only monomers. Addition of poly-L-proline to culture medium, or coexpression with the N-terminus of COLQ including the proline-rich attachment domain (Q(N)PRAD), increased the amount of tetrameric wild-type BChE from 10 to 70%, but had no effect on the G534stop (lacking 41 C-terminal residues) and the aromatics-off mutants. Recombinant BChE produced by coexpression with Q(N)PRAD was purified by column chromatography. The purified tetramers contained the FLAG-tagged Q(N)PRAD peptide. These observations suggest that the stabilization of BChE tetramers is mediated through the interaction of the seven conserved aromatic residues and that poly-L-proline and PRAD act through these aromatic residues to induce tetramerization.
Collapse
Affiliation(s)
- C V Altamirano
- Department of Biochemistry and Molecular Biology, Eppley Institute, University of Nebraska Medical Center, Omaha 68198-6805, USA
| | | |
Collapse
|