1
|
Iqbal T, Das D. Biochemical Investigation of Membrane-Bound Cytochrome b5 and the Catalytic Domain of Cytochrome b5 Reductase from Arabidopsis thaliana. Biochemistry 2022; 61:909-921. [PMID: 35475372 DOI: 10.1021/acs.biochem.2c00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The endoplasmic reticulum (ER) membrane of plant cells contains several enzymes responsible for the biosynthesis of a diverse range of molecules essential for plant growth and holds potential for industrial applications. Many of these enzymes are dependent on electron transfer proteins to sustain their catalytic cycles. In plants, two crucial ER-bound electron transfer proteins are cytochrome b5 and cytochrome b5 reductase, which catalyze the stepwise transfer of electrons from NADH to redox enzymes such as fatty acid desaturases, cytochrome P450s, and plant aldehyde decarbonylase. Despite the high significance of plant cytochrome b5 and cytochrome b5 reductase, they have eluded detailed characterization to date. Here, we overexpressed the full-length membrane-bound cytochrome b5 isoform B from the model plant Arabidopsis thaliana in Escherichia coli, purified the protein employing detergents as well as styrene-maleic acid (SMA) copolymers, and biochemically characterized the protein. The SMA-encapsulated cytochrome b5 exhibits a discoidal shape and the characteristic features of the active heme-bound state. We also overexpressed and purified the soluble domain of cytochrome b5 reductase from A. thaliana, establishing its activity, stability, and kinetic parameters. Further, we demonstrated that the plant cytochrome b5, purified in detergents and styrene maleic acid lipid particles (SMALPs), readily accepts electrons from the cognate plant cytochrome b5 reductase and distant electron mediators such as plant NADPH-cytochrome P450 oxidoreductase and cyanobacterial NADPH-ferredoxin reductase. We also measured the kinetic parameters of cytochrome b5 reductase for cytochrome b5. Our studies are the first to report the purification and detailed biochemical characterization of the plant cytochrome b5 and cytochrome b5 reductase from the bacterial overexpression system.
Collapse
Affiliation(s)
- Tabish Iqbal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Debasis Das
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
2
|
Structural Features of Cytochrome b5–Cytochrome b5 Reductase Complex Formation and Implications for the Intramolecular Dynamics of Cytochrome b5 Reductase. Int J Mol Sci 2021; 23:ijms23010118. [PMID: 33918863 PMCID: PMC8745658 DOI: 10.3390/ijms23010118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
Membrane cytochrome b5 reductase is a pleiotropic oxidoreductase that uses primarily soluble reduced nicotinamide adenine dinucleotide (NADH) as an electron donor to reduce multiple biological acceptors localized in cellular membranes. Some of the biological acceptors of the reductase and coupled redox proteins might eventually transfer electrons to oxygen to form reactive oxygen species. Additionally, an inefficient electron transfer to redox acceptors can lead to electron uncoupling and superoxide anion formation by the reductase. Many efforts have been made to characterize the involved catalytic domains in the electron transfer from the reduced flavoprotein to its electron acceptors, such as cytochrome b5, through a detailed description of the flavin and NADH-binding sites. This information might help to understand better the processes and modifications involved in reactive oxygen formation by the cytochrome b5 reductase. Nevertheless, more than half a century since this enzyme was first purified, the one-electron transfer process toward potential electron acceptors of the reductase is still only partially understood. New advances in computational analysis of protein structures allow predicting the intramolecular protein dynamics, identifying potential functional sites, or evaluating the effects of microenvironment changes in protein structure and dynamics. We applied this approach to characterize further the roles of amino acid domains within cytochrome b5 reductase structure, part of the catalytic domain, and several sensors and structural domains involved in the interactions with cytochrome b5 and other electron acceptors. The computational analysis results allowed us to rationalize some of the available spectroscopic data regarding ligand-induced conformational changes leading to an increase in the flavin adenine dinucleotide (FAD) solvent-exposed surface, which has been previously correlated with the formation of complexes with electron acceptors.
Collapse
|
3
|
Amdahl MB, Petersen EE, Bocian K, Kaliszuk SJ, DeMartino AW, Tiwari S, Sparacino-Watkins CE, Corti P, Rose JJ, Gladwin MT, Fago A, Tejero J. The Zebrafish Cytochrome b5/Cytochrome b5 Reductase/NADH System Efficiently Reduces Cytoglobins 1 and 2: Conserved Activity of Cytochrome b5/Cytochrome b5 Reductases during Vertebrate Evolution. Biochemistry 2019; 58:3212-3223. [PMID: 31257865 DOI: 10.1021/acs.biochem.9b00406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cytoglobin is a heme protein evolutionarily related to hemoglobin and myoglobin. Cytoglobin is expressed ubiquitously in mammalian tissues; however, its physiological functions are yet unclear. Phylogenetic analyses indicate that the cytoglobin gene is highly conserved in vertebrate clades, from fish to reptiles, amphibians, birds, and mammals. Most proposed roles for cytoglobin require the maintenance of a pool of reduced cytoglobin (FeII). We have shown previously that the human cytochrome b5/cytochrome b5 reductase system, considered a quintessential hemoglobin/myoglobin reductant, can reduce human and zebrafish cytoglobins ≤250-fold faster than human hemoglobin or myoglobin. It was unclear whether this reduction of zebrafish cytoglobins by mammalian proteins indicates a conserved pathway through vertebrate evolution. Here, we report the reduction of zebrafish cytoglobins 1 and 2 by the zebrafish cytochrome b5 reductase and the two zebrafish cytochrome b5 isoforms. In addition, the reducing system also supports reduction of Globin X, a conserved globin in fish and amphibians. Indeed, the zebrafish reducing system can maintain a fully reduced pool for both cytoglobins, and both cytochrome b5 isoforms can support this process. We determined the P50 for oxygen to be 0.5 Torr for cytoglobin 1 and 4.4 Torr for cytoglobin 2 at 25 °C. Thus, even at low oxygen tensions, the reduced cytoglobins may exist in a predominant oxygen-bound form. Under these conditions, the cytochrome b5/cytochrome b5 reductase system can support a conserved role for cytoglobins through evolution, providing electrons for redox signaling reactions such as nitric oxide dioxygenation, nitrite reduction, and phospholipid oxidation.
Collapse
Affiliation(s)
- Matthew B Amdahl
- Heart, Lung, Blood, and Vascular Medicine Institute , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States.,Department of Bioengineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Elin E Petersen
- Department of Bioscience , Aarhus University , DK-8000 Aarhus C, Denmark
| | - Kaitlin Bocian
- Heart, Lung, Blood, and Vascular Medicine Institute , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Stefan J Kaliszuk
- Heart, Lung, Blood, and Vascular Medicine Institute , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine Institute , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Sagarika Tiwari
- Heart, Lung, Blood, and Vascular Medicine Institute , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Courtney E Sparacino-Watkins
- Heart, Lung, Blood, and Vascular Medicine Institute , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Paola Corti
- Heart, Lung, Blood, and Vascular Medicine Institute , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Jason J Rose
- Heart, Lung, Blood, and Vascular Medicine Institute , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States.,Department of Bioengineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States.,Division of Pulmonary, Allergy and Critical Care Medicine , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States.,Department of Bioengineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States.,Division of Pulmonary, Allergy and Critical Care Medicine , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Angela Fago
- Department of Bioscience , Aarhus University , DK-8000 Aarhus C, Denmark
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States.,Department of Bioengineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States.,Division of Pulmonary, Allergy and Critical Care Medicine , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States.,Department of Pharmacology and Chemical Biology , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| |
Collapse
|
4
|
Molecular mechanism of metabolic NAD(P)H-dependent electron-transfer systems: The role of redox cofactors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:233-258. [PMID: 30419202 DOI: 10.1016/j.bbabio.2018.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
Abstract
NAD(P)H-dependent electron-transfer (ET) systems require three functional components: a flavin-containing NAD(P)H-dehydrogenase, one-electron carrier and metal-containing redox center. In principle, these ET systems consist of one-, two- and three-components, and the electron flux from pyridine nucleotide cofactors, NADPH or NADH to final electron acceptor follows a linear pathway: NAD(P)H → flavin → one-electron carrier → metal containing redox center. In each step ET is primarily controlled by one- and two-electron midpoint reduction potentials of protein-bound redox cofactors in which the redox-linked conformational changes during the catalytic cycle are required for the domain-domain interactions. These interactions play an effective ET reactions in the multi-component ET systems. The microsomal and mitochondrial cytochrome P450 (cyt P450) ET systems, nitric oxide synthase (NOS) isozymes, cytochrome b5 (cyt b5) ET systems and methionine synthase (MS) ET system include a combination of multi-domain, and their organizations display similarities as well as differences in their components. However, these ET systems are sharing of a similar mechanism. More recent structural information obtained by X-ray and cryo-electron microscopy (cryo-EM) analysis provides more detail for the mechanisms associated with multi-domain ET systems. Therefore, this review summarizes the roles of redox cofactors in the metabolic ET systems on the basis of one-electron redox potentials. In final Section, evolutionary aspects of NAD(P)H-dependent multi-domain ET systems will be discussed.
Collapse
|
5
|
Takaba K, Takeda K, Kosugi M, Tamada T, Miki K. Distribution of valence electrons of the flavin cofactor in NADH-cytochrome b 5 reductase. Sci Rep 2017; 7:43162. [PMID: 28225078 PMCID: PMC5320556 DOI: 10.1038/srep43162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/11/2017] [Indexed: 12/03/2022] Open
Abstract
Flavin compounds such as flavin adenine dinucleotide (FAD), flavin mononucleotide and riboflavin make up the active centers in flavoproteins that facilitate various oxidoreductive processes. The fine structural features of the hydrogens and valence electrons of the flavin molecules in the protein environment are critical to the functions of the flavoproteins. However, information on these features cannot be obtained from conventional protein X-ray analyses at ordinary resolution. Here we report the charge density analysis of a flavoenzyme, NADH-cytochrome b5 reductase (b5R), at an ultra-high resolution of 0.78 Å. Valence electrons on the FAD cofactor as well as the peptide portion, which are clearly visualized even after the conventional refinement, are analyzed by the multipolar atomic model refinement. The topological analysis for the determined electron density reveals the valence electronic structure of the isoalloxazine ring of FAD and hydrogen-bonding interactions with the protein environment. The tetrahedral electronic distribution around the N5 atom of FAD in b5R is stabilized by hydrogen bonding with CαH of Tyr65 and amide-H of Thr66. The hydrogen bonding network leads to His49 composing the cytochrome b5-binding site via non-classical hydrogen bonds between N5 of FAD and CαH of Tyr65 and O of Tyr65 and CβH of His49.
Collapse
Affiliation(s)
- Kiyofumi Takaba
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuki Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masayuki Kosugi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Taro Tamada
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Tokai-mura, Ibaraki 319-1106, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Yamada M, Tamada T, Takeda K, Matsumoto F, Ohno H, Kosugi M, Takaba K, Shoyama Y, Kimura S, Kuroki R, Miki K. Elucidations of the catalytic cycle of NADH-cytochrome b5 reductase by X-ray crystallography: new insights into regulation of efficient electron transfer. J Mol Biol 2013; 425:4295-306. [PMID: 23831226 DOI: 10.1016/j.jmb.2013.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/18/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
NADH-Cytochrome b5 reductase (b5R), a flavoprotein consisting of NADH and flavin adenine dinucleotide (FAD) binding domains, catalyzes electron transfer from the two-electron carrier NADH to the one-electron carrier cytochrome b5 (Cb5). The crystal structures of both the fully reduced form and the oxidized form of porcine liver b5R were determined. In the reduced b5R structure determined at 1.68Å resolution, the relative configuration of the two domains was slightly shifted in comparison with that of the oxidized form. This shift resulted in an increase in the solvent-accessible surface area of FAD and created a new hydrogen-bonding interaction between the N5 atom of the isoalloxazine ring of FAD and the hydroxyl oxygen atom of Thr66, which is considered to be a key residue in the release of a proton from the N5 atom. The isoalloxazine ring of FAD in the reduced form is flat as in the oxidized form and stacked together with the nicotinamide ring of NAD(+). Determination of the oxidized b5R structure, including the hydrogen atoms, determined at 0.78Å resolution revealed the details of a hydrogen-bonding network from the N5 atom of FAD to His49 via Thr66. Both of the reduced and oxidized b5R structures explain how backflow in this catalytic cycle is prevented and the transfer of electrons to one-electron acceptors such as Cb5 is accelerated. Furthermore, crystallographic analysis by the cryo-trapping method suggests that re-oxidation follows a two-step mechanism. These results provide structural insights into the catalytic cycle of b5R.
Collapse
Affiliation(s)
- Mitsugu Yamada
- Molecular Biology Research Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Nishimura Y, Shibuya M, Muraki A, Takeuchi F, Park SY, Tsubaki M. Structural and mechanistic roles of three consecutive Pro residues of porcine NADH-cytochrome b(5) reductase for the binding of beta-NADH. J Biosci Bioeng 2010; 108:286-92. [PMID: 19716516 DOI: 10.1016/j.jbiosc.2009.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/09/2009] [Accepted: 04/09/2009] [Indexed: 11/18/2022]
Abstract
Well-conserved three consecutive Pro residues (Pro247-249) in the NADH-binding subdomain of NADH-cytochrome b(5) reductase were proposed to form a basal part of the NADH-binding site. To investigate the structural and mechanistic roles of these residues, we expressed site-directed mutants for a soluble domain of the porcine enzyme where each of the residues was replaced with either Ala or Leu residue, respectively, using a heterologous expression system in Escherichia coli. Six mutants (P247A, P247L, P248A, P248L, P249A, and P249L) were produced as a fusion protein containing a 6xHis-tag sequence at the NH(2)-terminus and were purified to homogeneity with a stoichiometric amount of bound FAD. Mutations were each confirmed for the purified proteins by MALDI-TOF mass spectrometry. Steady-state kinetic analyses for NADH:ferricyanide reductase and NADH:cytochrome b(5) reductase acitivities were conducted for all the mutants. Substitution of Pro247 with Leu residue was found to significantly decrease k(cat) with slight increase in K(m) for the physiological electron donor NADH. However, K(m) values for the electron acceptors (both cytochrome b(5) and ferricyanide) of P247L were found to be decreased significantly. Such changes were not observed for P247A or other four mutants. These results suggested that Pro247 among the three consecutive Pro residues has the most important role for the formation of a binding site cavity and that only a slight change in the side-chain volume at this residue from Ala to Leu residue affected the electron transfer reaction from NADH and, further, on the recognition of ferricytochrome b(5).
Collapse
Affiliation(s)
- Yuka Nishimura
- Department of Molecular Science and Material Engineering, Kobe University, Rokkodai-cho, Nada-ku, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Kimura S, Kikuchi A, Senda T, Shiro Y, Fukuda M. Tolerance of the Rieske-type [2Fe-2S] cluster in recombinant ferredoxin BphA3 from Pseudomonas sp. KKS102 to histidine ligand mutations. Biochem J 2005; 388:869-78. [PMID: 15733056 PMCID: PMC1183467 DOI: 10.1042/bj20042077] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 02/24/2005] [Accepted: 02/25/2005] [Indexed: 11/17/2022]
Abstract
BphA3 from Pseudomonas sp. KKS102 is a Rieske-type [2Fe-2S] ferredoxin that transfers electrons from an NADH-dependent oxidoreductase, BphA4, to a biphenyl dioxygenase complex. A high-level expression and purification system for the recombinant BphA3 in Escherichia coli was constructed. Two histidine ligands of the Rieske-type cluster in BphA3, were each replaced with serine, cysteine, asparagine and tyrosine. The single mutants, in which either His44 or His65 was replaced with a cysteine residue (CH and HC mutants respectively), and the double mutant, in which both histidine residues were replaced with cysteine residue (CC mutant), accumulated to high levels in the E. coli cells, while the other single mutants did not. The purified WT (wild-type) protein showed characteristic near-UV and visible absorption and CD spectra of Rieske-type clusters. The X-ray absorption spectra were suggestive of the existence of [2Fe-2S] clusters, with one histidine and three cysteine ligands in the CH and HC mutants, and an [2Fe-2S] cluster with four cysteine ligands in the CC mutant. The BphA4-dependent cytochrome c reductase activities of the mutants were less than 0.3% of that of the WT protein. The redox potential of the WT protein determined by cyclic voltammetry was -180+/-5 mV compared with the standard hydrogen electrode, and that of the CH mutant was approx. 175 mV lower. The changes in the near-UV and visible absorption spectra of the mutants showed that the reduced iron-sulphur clusters in the mutants were unstable. His44 and His65 in BphA3 can be replaced with cysteine residues, but are required for the stabilization of the reduced form of the cluster.
Collapse
Key Words
- electron transfer
- ferredoxin
- histidine ligand
- mutation
- rieske-type [2fe-2s] cluster
- arf, archaeal rieske-type ferredoxin from sulfolobus solfataricus strain p-1
- bphf, the ferredoxin component encoded by the bphf gene from burkholderia sp. strain lb400
- bis, n,n′-methylenebisacrylamide
- cbb, coomassie brilliant blue
- dtt, dithiothreitol
- exafs, extended x-ray absorption fine structure
- ft, fourier transform
- iptg, isopropyl β-d-thiogalactoside
- psb5r, solubilized domain of porcine liver nadh-cytochrome b5 reductase
- rbs, ribosome-binding site
- she, standard hydrogen electrode
- wt, wild-type
Collapse
Affiliation(s)
- Shigenobu Kimura
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan.
| | | | | | | | | |
Collapse
|
9
|
Kimura S, Kawamura M, Iyanagi T. Role of Thr(66) in porcine NADH-cytochrome b5 reductase in catalysis and control of the rate-limiting step in electron transfer. J Biol Chem 2003; 278:3580-9. [PMID: 12459552 DOI: 10.1074/jbc.m209838200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Site-directed mutagenesis of Thr(66) in porcine liver NADH-cytochrome b(5) reductase demonstrated that this residue modulates the semiquinone form of FAD and the rate-limiting step in the catalytic sequence of electron transfer. The absorption spectrum of the T66V mutant showed a typical neutral blue semiquinone intermediate during turnover in the electron transfer from NADH to ferricyanide but showed an anionic red semiquinone form during anaerobic photoreduction. The apparent k(cat) values of this mutant were approximately 10% of that of the wild type enzyme (WT). These data suggest that the T66V mutation stabilizes the neutral blue semiquinone and that the conversion of the neutral blue to the anionic red semiquinone form is the rate-limiting step. In the WT, the value of the rate constant of FAD reduction (k(red)) was consistent with the k(cat) values, and the oxidized enzyme-NADH complex was observed during the turnover with ferricyanide. This indicates that the reduction of FAD by NADH in the WT-NADH complex is the rate-limiting step. In the T66A mutant, the k(red) value was larger than the k(cat) values, but the k(red) value in the presence of NAD(+) was consistent with the k(cat) values. The spectral shape of this mutant observed during turnover was similar to that during the reduction with NADH in the presence of NAD(+). These data suggest that the oxidized T66A-NADH-NAD(+) ternary complex is a major intermediate in the turnover and that the release of NAD(+) from this complex is the rate-limiting step. These results substantiate the important role of Thr(66) in the one-electron transfer reaction catalyzed by this enzyme. On the basis of these data, we present a new kinetic scheme to explain the mechanism of electron transfer from NADH to one-electron acceptors including cytochrome b(5).
Collapse
Affiliation(s)
- Shigenobu Kimura
- Department of Life Science, Graduate School of Science, Himeji Institute of Technology, Kouto 3-2-1, Kamigori, Hyogo 678-1297, Japan.
| | | | | |
Collapse
|
10
|
Britz-McKibbin P, Markuszewski MJ, Iyanagi T, Matsuda K, Nishioka T, Terabe S. Picomolar analysis of flavins in biological samples by dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection. Anal Biochem 2003; 313:89-96. [PMID: 12576063 DOI: 10.1016/s0003-2697(02)00510-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sensitive capillary electrophoresis (CE) methods are required for emerging areas of biochemical research such as the metabolome. In this report, dynamic pH junction-sweeping CE with laser-induced fluorescence (LIF) detection is applied as a robust single method to analyze trace amounts of three flavin derivatives, riboflavin, flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD), from several types of samples including bacterial cell extracts, recombinant protein, and biological fluids. Submicromolar amounts of flavin coenzymes were measured directly from formic acid cell extracts of Bacillus subtilis. Significant differences in flavin concentration were measured in cell extracts derived from either glucose or malate as the carbon source in the culture media. Quantitative assessment of FAD and FMN content from selected flavoenzymes was demonstrated after heat denaturation to release noncovalently bound coenzymes and deproteinization. This method was also applied to the analysis of free flavins in pooled human plasma and urine without the need for laborious off-line sample preconcentration. Picomolar detectability of flavins by CE-LIF detection was realized with on-line preconcentration (up to 15% capillary length used for injection) by dynamic pH junction-sweeping, resulting in a limit of detection (S/N = 3) of about 4.0 pM for FAD and FMN. This represents over a 60-fold improvement in concentration sensitivity compared to those of previous techniques using conventional injections. The method was validated in terms of reproducibility, sensitivity, linearity, and specificity. Flavin analysis by dynamic pH junction-sweeping CE-LIF offers a simple, yet sensitive way to analyze trace levels of flavin metabolites from complex biological samples.
Collapse
Affiliation(s)
- Philip Britz-McKibbin
- Department of Material Sciences, Graduate School of Science, Himeji Institute of Technology, Kamigori, Hyogo 678-1297, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Certik M, Sakuradani E, Kobayashi M, Shimizu S. Characterization of the second form of NADH-Cytochrome b5 reductase gene from arachidonic acid-producing fungus Mortierella alpina 1S-4. J Biosci Bioeng 1999; 88:667-71. [PMID: 16232682 DOI: 10.1016/s1389-1723(00)87098-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/1999] [Accepted: 08/31/1999] [Indexed: 11/30/2022]
Abstract
The second type of cytochrome b5 reductase (Cb5R-II) gene was characterized in the arachidonic acid-producing fungus Mortierella alpina 1S-4. Its cDNA (897 bp) and predicted amino acid (298 aa) sequences show more than 70% similarity to the previously isolated first type of Cb5R. Highly conserved exon-intron organization suggests that the two genes evolved from the duplication of a common ancestral gene. Cb5R-II has a flavin-binding domain at its highly hydrophobic N-terminal and an NADH-binding domain at the C-terminal. In comparison with Cb5R genes from other sources, high homology (46-54%) was found for yeast and plant genes. Phylogenetic analysis revealed that microbial and plant Cb5R genes represent a gene family evolved from one prototype and are different from mammalian Cb5R genes.
Collapse
Affiliation(s)
- M Certik
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|