1
|
Sulatskaya AI, Stepanenko OV, Sulatsky MI, Mikhailova EV, Kuznetsova IM, Turoverov KK, Stepanenko OV. Structural determinants of odorant-binding proteins affecting their ability to form amyloid fibrils. Int J Biol Macromol 2024; 264:130699. [PMID: 38460650 DOI: 10.1016/j.ijbiomac.2024.130699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
The formation of amyloid fibrils is associated with many severe pathologies as well as the execution of essential physiological functions by proteins. Despite the diversity, all amyloids share a similar morphology and consist of stacked β-strands, suggesting high amyloidogenicity of native proteins enriched with β-structure. Such proteins include those with a β-barrel-like structure with β-strands arranged into a cylindrical β-sheet. However, the mechanisms responsible for destabilization of the native state and triggering fibrillogenesis have not thoroughly explored yet. Here we analyze the structural determinants of fibrillogenesis in proteins with β-barrel structures on the example of odorant-binding protein (OBP), whose amyloidogenicity was recently demonstrated in vitro. We reveal a crucial role in the fibrillogenesis of OBPs for the "open" conformation of the molecule. This conformation is achieved by disrupting the interaction between the β-barrel and the C-terminus of protein monomers or dimers, which exposes "sticky" amyloidogenic sites for interaction. The data suggest that the "open" conformation of OBPs can be induced by destabilizing the native β-barrel structure through the disruption of: 1) intramolecular disulfide cross-linking and non-covalent contacts between the C-terminal fragment and β-barrel in the protein's monomeric form, or 2) intermolecular contacts involved in domain swapping in the protein's dimeric form.
Collapse
Affiliation(s)
- Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Ekaterina V Mikhailova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| |
Collapse
|
2
|
Calabrese A, Battistoni P, Ceylan S, Zeni L, Capo A, Varriale A, D’Auria S, Staiano M. An Impedimetric Biosensor for Detection of Volatile Organic Compounds in Food. BIOSENSORS 2023; 13:341. [PMID: 36979553 PMCID: PMC10046769 DOI: 10.3390/bios13030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The demand for a wide choice of food that is safe and palatable increases every day. Consumers do not accept off-flavors that have atypical odors resulting from internal deterioration or contamination by substances alien to the food. Odor response depends on the volatile organic compounds (VOCs), and their detection can provide information about food quality. Gas chromatography/mass spectrometry is the most powerful method available for the detection of VOC. However, it is laborious, costly, and requires the presence of a trained operator. To develop a faster analytic tool, we designed a non-Faradaic impedimetric biosensor for monitoring the presence of VOCs involved in food spoilage. The biosensor is based on the use of the pig odorant-binding protein (pOBP) as the molecular recognition element. We evaluated the affinity of pOBP for three different volatile organic compounds (1-octen-3-ol, trans-2-hexen-1-ol, and hexanal) related to food spoilage. We developed an electrochemical biosensor conducting impedimetric measurements in liquid and air samples. The impedance changes allowed us to detect each VOC sample at a minimum concentration of 0.1 μM.
Collapse
Affiliation(s)
- Alessia Calabrese
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy
- URT-ISA, CNR at Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
- Department of Engineering, University of Campania Luigi Vanvitelli, 81031 Aversa, Italy
| | | | | | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, 81031 Aversa, Italy
| | - Alessandro Capo
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy
- URT-ISA, CNR at Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Antonio Varriale
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy
- URT-ISA, CNR at Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Sabato D’Auria
- Department of Biology, Agriculture, and Food Science, National Research Council of Italy (CNR-DISBA), 00185 Rome, Italy
| | - Maria Staiano
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy
| |
Collapse
|
3
|
Janssen-Weets B, Kerff F, Swiontek K, Kler S, Czolk R, Revets D, Kuehn A, Bindslev-Jensen C, Ollert M, Hilger C. Mammalian derived lipocalin and secretoglobin respiratory allergens strongly bind ligands with potentially immune modulating properties. FRONTIERS IN ALLERGY 2022; 3:958711. [PMID: 35991307 PMCID: PMC9385959 DOI: 10.3389/falgy.2022.958711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Allergens from furry animals frequently cause sensitization and respiratory allergic diseases. Most relevant mammalian respiratory allergens belong either to the protein family of lipocalins or secretoglobins. Their mechanism of sensitization remains largely unresolved. Mammalian lipocalin and secretoglobin allergens are associated with a function in chemical communication that involves abundant secretion into the environment, high stability and the ability to transport small volatile compounds. These properties are likely to contribute concomitantly to their allergenic potential. In this study, we aim to further elucidate the physiological function of lipocalin and secretoglobin allergens and link it to their sensitizing capacity, by analyzing their ligand-binding characteristics. We produced eight major mammalian respiratory allergens from four pet species in E.coli and compared their ligand-binding affinities to forty-nine ligands of different chemical classes by using a fluorescence-quenching assay. Furthermore, we solved the crystal-structure of the major guinea pig allergen Cav p 1, a typical lipocalin. Recombinant lipocalin and secretoglobin allergens are of high thermal stability with melting temperatures ranging from 65 to 90°C and strongly bind ligands with dissociation constants in the low micromolar range, particularly fatty acids, fatty alcohols and the terpene alcohol farnesol, that are associated with potential semiochemical and/or immune-modulating functions. Through the systematic screening of respiratory mammalian lipocalin and secretoglobin allergens with a large panel of potential ligands, we observed that total amino acid composition, as well as cavity shape and volume direct affinities to ligands of different chemical classes. Therefore, we were able to categorize lipocalin allergens over their ligand-binding profile into three sub-groups of a lipocalin clade that is associated with functions in chemical communication, thus strengthening the function of major mammalian respiratory allergens as semiochemical carriers. The promiscuous binding capability of hydrophobic ligands from environmental sources warrants further investigation regarding their impact on a molecule's allergenicity.
Collapse
Affiliation(s)
- Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Frédéric Kerff
- Laboratory of Crystallography, Center for Protein Engineering-InBioS, University of Liège, Liège, Belgium
| | - Kyra Swiontek
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Stéphanie Kler
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dominique Revets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Carsten Bindslev-Jensen
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- *Correspondence: Christiane Hilger
| |
Collapse
|
4
|
Lucarelli V, Colbert D, Cumming M, Hamiaux C, Loxley G, Linklater W, Travas-Sejdic J, Kralicek A. Expression, purification and characterisation of the recombinant possum lipocalin vulpeculin. Biochim Biophys Acta Gen Subj 2022; 1866:130205. [PMID: 35908580 DOI: 10.1016/j.bbagen.2022.130205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Lipocalins are a large family of proteins, which possess a highly conserved eight-stranded antiparallel beta-barrel structure as distinctive trait. This family includes Major Urinary Proteins (MUPs) from rats and mouse, studied for their role in urinary protein-mediated chemosignalling. Vulpeculin has been identified as the most abundant protein in the urine of the common brushtail possum, Trichosurus vulpecula. On the basis of high similarity with other MUPS, we hypothesised that vulpeculin might have a role in possum chemosignalling and investigated its stability and binding ability. METHODS We expressed and purified vulpeculin using an E.coli-based system and confirmed correct folding by circular dichroism (CD) spectroscopy. Thermal stability was studied by CD and binding properties were investigated using two optical probes N-phenyl-naphthylamine (NPN) and 8-anilino-1-naphthalene sulphonic acid (ANS). RESULTS CD revealed a secondary structure typical of a predominantly β-sheet protein, consistent with the beta barrel structure of the lipocalin family. Vulpeculin showed a high level of thermostability, as assessed by CD, exhibiting a small shift in the secondary structure even at 95 °C. Binding assays indicated that vulpeculin cannot accommodate the NPN ligand but can bind ANS. CONCLUSION The urinary secretion, high degree of sequence similarity with other lipocalins, its beta sheet structure assessed by CD and potential to bind hydrophobic ligands in the hydrophobic cavity or an external hydrophobic pocket, suggest vulpeculin may be involved in possum chemosignalling. GENERAL SIGNIFICANCE This work represents a first step towards the further investigation of the newly discovered lipocalin and its role in possum chemosignalling.
Collapse
Affiliation(s)
- Valentina Lucarelli
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand; Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1023, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Damon Colbert
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Mathew Cumming
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Cyril Hamiaux
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Grace Loxley
- Centre for Proteome Research, Institute of Systems and Integrative Biology, University of Liverpool, Crown Street, L697ZB Liverpool, United Kingdom
| | - Wayne Linklater
- Department of Environmental Studies, California State University, Sacramento, CA, USA
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1023, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand.
| | - Andrew Kralicek
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand.
| |
Collapse
|
5
|
Pelosi P, Knoll W. Odorant-binding proteins of mammals. Biol Rev Camb Philos Soc 2022; 97:20-44. [PMID: 34480392 DOI: 10.1111/brv.12787] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
Odorant-binding proteins (OBPs) of vertebrates belong to the lipocalin superfamily and perform a dual function: solubilizing and ferrying volatile pheromones to the olfactory receptors, and complexing the same molecules in specialized glands and assisting their release into the environment. Within vertebrates, to date they have been reported only in mammals, apart from two studies on amphibians. Based on the small number of OBPs expressed in each species, on their sites of production outside the olfactory area and their presence in biological fluids known to be pheromone carriers, such as urine, saliva and sexual secretions, we conclude that OBPs of mammals are specifically dedicated to pheromonal communication. This assumption is further supported by the observation that some OBPs present in biological secretions are endowed with their own pheromonal activity, adding renewed interest to these proteins. Another novel piece of evidence is the recent discovery that glycosylation and phosphorylation can modulate the binding activity of these proteins, improving their affinity to pheromones and narrowing their specificity. A comparison with insects and other arthropods shows a completely different scenario. While mammalian OBPs are specifically tuned to pheromones, those of insects, which are completely different in sequence and structure, include carriers for general odorants in addition to those dedicated to pheromones. Additionally, whereas mammals adopted a single family of carrier proteins for chemical communication, insects and other arthropods are endowed with several families of semiochemical-binding proteins. Here, we review the literature on the structural and functional properties of vertebrate OBPs, summarize the most interesting new findings and suggest possible exciting future developments.
Collapse
Affiliation(s)
- Paolo Pelosi
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße 24, Tulln, 3430, Austria
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße 24, Tulln, 3430, Austria
| |
Collapse
|
6
|
Scolari F, Valerio F, Benelli G, Papadopoulos NT, Vaníčková L. Tephritid Fruit Fly Semiochemicals: Current Knowledge and Future Perspectives. INSECTS 2021; 12:insects12050408. [PMID: 33946603 PMCID: PMC8147262 DOI: 10.3390/insects12050408] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
The Dipteran family Tephritidae (true fruit flies) comprises more than 5000 species classified in 500 genera distributed worldwide. Tephritidae include devastating agricultural pests and highly invasive species whose spread is currently facilitated by globalization, international trade and human mobility. The ability to identify and exploit a wide range of host plants for oviposition, as well as effective and diversified reproductive strategies, are among the key features supporting tephritid biological success. Intraspecific communication involves the exchange of a complex set of sensory cues that are species- and sex-specific. Chemical signals, which are standing out in tephritid communication, comprise long-distance pheromones emitted by one or both sexes, cuticular hydrocarbons with limited volatility deposited on the surrounding substrate or on the insect body regulating medium- to short-distance communication, and host-marking compounds deposited on the fruit after oviposition. In this review, the current knowledge on tephritid chemical communication was analysed with a special emphasis on fruit fly pest species belonging to the Anastrepha, Bactrocera, Ceratitis, and Rhagoletis genera. The multidisciplinary approaches adopted for characterising tephritid semiochemicals, and the real-world applications and challenges for Integrated Pest Management (IPM) and biological control strategies are critically discussed. Future perspectives for targeted research on fruit fly chemical communication are highlighted.
Collapse
Affiliation(s)
- Francesca Scolari
- Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, I-27100 Pavia, Italy
- Correspondence: (F.S.); (L.V.); Tel.: +39-0382-986421 (F.S.); +420-732-852-528 (L.V.)
| | - Federica Valerio
- Department of Biology and Biotechnology, University of Pavia, I-27100 Pavia, Italy;
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Nikos T. Papadopoulos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou st., N. Ionia, 38446 Volos, Greece;
| | - Lucie Vaníčková
- Department of Chemistry and Biochemistry, Faculty of AgriSciences Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Correspondence: (F.S.); (L.V.); Tel.: +39-0382-986421 (F.S.); +420-732-852-528 (L.V.)
| |
Collapse
|
7
|
Gonçalves F, Ribeiro A, Silva C, Cavaco-Paulo A. Biotechnological applications of mammalian odorant-binding proteins. Crit Rev Biotechnol 2021; 41:441-455. [PMID: 33541154 DOI: 10.1080/07388551.2020.1853672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The olfactory system of mammals allows the detection and discrimination of thousands of odors from the environment. In mammals, odorant-binding proteins (OBPs) are considered responsible to carry odorant molecules across the aqueous nasal mucus to the olfactory receptors (ORs). The three-dimensional structure of these proteins presents eight antiparallel β-sheets and a short α-helical segment close to the C terminus, typical of the lipocalins family. The great ability of OBPs to bind differentiated ligand molecules has driven the research to understand the mechanisms underlying the OBP function in nature and the development of advanced biotechnological applications. This review describes the role of mammalian OBPs in the olfactory perception, highlighting the influence of several key parameters (amino acids, temperature, ionic strength, and pH) in the formation of the OBP/ligand complex. The information from the literature regarding OBP structure, affinity, the strength of binding, and stability inspiring the development of several applications herein detailed.
Collapse
Affiliation(s)
- Filipa Gonçalves
- Centre of Biological Engineering, University of Minho - Campus de Gualtar, Braga, Portugal
| | - Artur Ribeiro
- Centre of Biological Engineering, University of Minho - Campus de Gualtar, Braga, Portugal
| | - Carla Silva
- Centre of Biological Engineering, University of Minho - Campus de Gualtar, Braga, Portugal
| | - Artur Cavaco-Paulo
- Centre of Biological Engineering, University of Minho - Campus de Gualtar, Braga, Portugal
| |
Collapse
|
8
|
Responses of the Pheromone-Binding Protein of the Silk Moth Bombyx mori on a Graphene Biosensor Match Binding Constants in Solution. SENSORS 2021; 21:s21020499. [PMID: 33445619 PMCID: PMC7827809 DOI: 10.3390/s21020499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/20/2022]
Abstract
An electronic biosensor for odors was assembled by immobilizing the silk moth Bombyx mori pheromone binding protein (BmorPBP1) on a reduced graphene oxide surface of a field-effect transistor. At physiological pH, the sensor detects the B. mori pheromones, bombykol and bombykal, with good affinity and specificity. Among the other odorants tested, only eugenol elicited a strong signal, while terpenoids and other odorants (linalool, geraniol, isoamyl acetate, and 2-isobutyl-3-methoxypyrazine) produced only very weak responses. Parallel binding assays were performed with the same protein and the same ligands, using the common fluorescence approach adopted for similar proteins. The results are in good agreement with the sensor’s responses: bombykol and bombykal, together with eugenol, proved to be strong ligands, while the other compounds showed only poor affinity. When tested at pH 4, the protein failed to bind bombykol both in solution and when immobilized on the sensor. This result further indicates that the BmorPBP1 retains its full activity when immobilized on a surface, including the conformational change observed in acidic conditions. The good agreement between fluorescence assays and sensor responses suggests that ligand-binding assays in solution can be used to screen mutants of a binding protein when selecting the best form to be immobilized on a biosensor.
Collapse
|
9
|
Bi D, Yang J, Hong JY, Parikh P, Hinds N, Infanti J, Lin H, Weiser BP. Substrate-Dependent Modulation of SIRT2 by a Fluorescent Probe, 1-Aminoanthracene. Biochemistry 2020; 59:3869-3878. [PMID: 32941003 PMCID: PMC7880049 DOI: 10.1021/acs.biochem.0c00564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sirtuin isoform 2 (SIRT2) is an enzyme that catalyzes the removal of acyl groups from lysine residues. SIRT2's catalytic domain has a hydrophobic tunnel where its substrate acyl groups bind. Here, we report that the fluorescent probe 1-aminoanthracene (AMA) binds within SIRT2's hydrophobic tunnel in a substrate-dependent manner. AMA's interaction with SIRT2 was characterized by its enhanced fluorescence upon protein binding (>10-fold). AMA interacted weakly with SIRT2 alone in solution (Kd = 37 μM). However, when SIRT2 was equilibrated with a decanoylated peptide substrate, AMA's affinity for SIRT2 was enhanced ∼10-fold (Kd = 4 μM). The peptide's decanoyl chain and AMA co-occupied SIRT2's hydrophobic tunnel when bound to the protein. In contrast, binding of AMA to SIRT2 was competitive with a myristoylated substrate whose longer acyl chain occluded the entire tunnel. AMA competitively inhibited SIRT2 demyristoylase activity with an IC50 of 21 μM, which was significantly more potent than its inhibition of other deacylase activities. Finally, binding and structural analysis suggests that the AMA binding site in SIRT2's hydrophobic tunnel was structurally stabilized when SIRT2 interacted with a decanoylated or 4-oxononanoylated substrate, but AMA's binding site was less stable when SIRT2 was bound to an acetylated substrate. Our use of AMA to explore changes in SIRT2's hydrophobic tunnel that are induced by interactions with specific acylated substrates has implications for developing ligands that modulate SIRT2's substrate specificity.
Collapse
Affiliation(s)
- David Bi
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| | - Jie Yang
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| | - Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Prashit Parikh
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| | - Nicole Hinds
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| | - Joseph Infanti
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Howard Hughes Medical Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian P Weiser
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| |
Collapse
|
10
|
Brito NF, Oliveira DS, Santos TC, Moreira MF, Melo ACA. Current and potential biotechnological applications of odorant-binding proteins. Appl Microbiol Biotechnol 2020; 104:8631-8648. [PMID: 32888038 DOI: 10.1007/s00253-020-10860-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Odorant-binding proteins (OBPs) are small soluble proteins whose biological function is believed to be facilitating olfaction by assisting the transport of volatile chemicals in both vertebrate and insect sensory organs, where they are secreted. Their capability to interact with a broad range of hydrophobic compounds combined with interesting features such as being small, stable, and easy to produce and modify, makes them suitable targets for applied research in various industrial segments, including textile, cosmetic, pesticide, and pharmaceutical, as well as for military, environmental, health, and security field applications. In addition to reviewing already established biotechnological applications of OBPs, this paper also discusses their potential use in prospecting of new technologies. The development of new products for insect population management is currently the most prevailing use for OBPs, followed by biosensor technology, an area that has recently seen a significant increase in studies evaluating their incorporation into sensing devices. Finally, less typical approaches include applications in anchorage systems and analytical tools. KEY POINTS: • Odorant-binding proteins (OBPs) present desired characteristics for applied research. • OBPs are mainly used for developing new products for insect population control. • Incorporation of OBPs into chemosensory devices is a growing area of study. • Less conventional uses for OBPs include anchorage systems and analytical purposes. Graphical Abstract.
Collapse
Affiliation(s)
- Nathália F Brito
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Daniele S Oliveira
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Thaisa C Santos
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Monica F Moreira
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Claudia A Melo
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Abstract
Odorant binding proteins (OBPs) are small proteins, some of which bind odorants with high specificity. OBPs are relatively easy to produce and show a pronounced stability toward thermal and chemical denaturation. This high stability renders OBPs attractive candidates for the development of odorant detections systems. Unfortunately, binding of odorants is not easy to quantify due to lack of spectroscopic signals upon binding. Therefore, a possible approach to detect binding is to employ the shift in thermal or chemical stability upon ligand-protein interaction. Being a rather indirect approach, the experimental setup should be done with care. Here, the experimental results on stability of OBPs are summarized and issues which should be considered when performing stability experiments are discussed.
Collapse
Affiliation(s)
- Nadja Hellmann
- Department of Chemistry/Biochemistry, Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
12
|
Zhu J, Zaremska V, D'Onofrio C, Knoll W, Pelosi P. Site-directed mutagenesis of odorant-binding proteins. Methods Enzymol 2020; 642:301-324. [PMID: 32828258 DOI: 10.1016/bs.mie.2020.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Modifying the affinity of odorant-binding proteins (OBPs) to small ligands by replacement of specific residues in the binding pocket may lead to several technological applications. Thanks to their compact and stable structures, OBPs are currently regarded as the best candidates to be used in biosensing elements for odorants and volatiles detection. The wide and rich information on the structure of these proteins both in their apo-forms and in complexes with specific ligands provides guidelines to design reliable mutants to monitor specific targets. The same engineered proteins may also find applications in the slow release of pheromones and other chemicals in the environment, as well as in the fine purification of drugs, including the resolution of racemates. Apart from such useful applications, site-directed mutagenesis represents an interesting approach to dissect the specific interactions between small chemicals and amino acid residues in the binding pocket. These studies can lead to design of better ligands, such as pheromone analogues with desired physico-chemical characteristics. In this chapter we examine the different uses of mutagenesis applied to OBPs and report a couple of protocols that have been successful in our hands.
Collapse
Affiliation(s)
- Jiao Zhu
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria; Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-Universität, Mainz, Germany
| | - Valeriia Zaremska
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria; Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Chiara D'Onofrio
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria; Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria; CEST Competence Center for Electrochemical Surface Technology, Tulln, Austria
| | - Paolo Pelosi
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria.
| |
Collapse
|
13
|
D'Onofrio C, Zaremska V, Zhu J, Knoll W, Pelosi P. Ligand-binding assays with OBPs and CSPs. Methods Enzymol 2020; 642:229-258. [PMID: 32828255 DOI: 10.1016/bs.mie.2020.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Assessing the ligand-binding properties of OBPs and CSPs is essential for understanding their physiological function. It also provides basic information when these proteins are used as biosensing elements for instrumental measurement of odors. Although different approaches have been applied in the past to evaluate the affinity of receptors and soluble binding proteins to their ligands, using a fluorescent reporter represents the method of choice for OBPs and CSPs. It offers the advantages of working at the equilibrium, being simple, fast and inexpensive, without requiring the use of radioactive tracers. However, as an indirect method, the fluorescence competitive binding approach presents drawbacks and sometimes requires an elaborate analysis to explain unexpected results. Here, after a brief survey of the different approaches to evaluate affinity constants, we focus on the fluorescence binding assay as applied to OBPs and CSPs, discussing situations that may require closer inspection of the results.
Collapse
Affiliation(s)
- Chiara D'Onofrio
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria
| | - Valeriia Zaremska
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria
| | - Jiao Zhu
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria; Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-Universität, Mainz, Germany
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria; CEST Competence Center for Electrochemical Surface Technology, Tulln, Austria
| | - Paolo Pelosi
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria.
| |
Collapse
|
14
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
15
|
Tan J, Zaremska V, Lim S, Knoll W, Pelosi P. Probe-dependence of competitive fluorescent ligand binding assays to odorant-binding proteins. Anal Bioanal Chem 2019; 412:547-554. [PMID: 31853607 DOI: 10.1007/s00216-019-02309-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 01/15/2023]
Abstract
Ligand binding experiments between small chemicals and proteins and the evaluation of dissociation constants of their complexes in competitive binding assays often rely on displacement of reporter probes by the tested ligand. The most widely adopted protocol uses a fluorescent ligand which changes its emission spectrum when bound to a protein. A decrease of fluorescence, caused by the addition of a second ligand to the complex is generally interpreted as displacement of the fluorescent probe by the ligand, and therefore as a measure of the affinity of the ligand for the protein. Working with an odorant-binding protein (OBP), we found drastic differences in the calculated affinities when using 1-aminoanthracene or N-phenyl-1-naphthylamine as the fluorescent reporter. This fact was quite unexpected, as OBPs are small compact proteins with a single binding pocket without allosteric sites. Such observation raises doubts on the reliability of the fluorescent binding assay, perhaps the most widely used approach to evaluate affinities of small organic compounds to OBPs and other binding proteins. We recommend that the results of fluorescent binding experiments with OBPs should be confirmed by using two different probes or alternative methods. The reliability of current protocols for ligand binding assays is rather limited, while we still wait for a label-free approach that could be simple, fast and free from the use of radioactive tracers.
Collapse
Affiliation(s)
- Jiajun Tan
- Biosensor Technologies, Austrian Institute of Technology GmbH, Konrad-Lorenz Straße, 24, 3430, Tulln, Austria.,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Valeriia Zaremska
- Biosensor Technologies, Austrian Institute of Technology GmbH, Konrad-Lorenz Straße, 24, 3430, Tulln, Austria
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Wolfgang Knoll
- Biosensor Technologies, Austrian Institute of Technology GmbH, Konrad-Lorenz Straße, 24, 3430, Tulln, Austria
| | - Paolo Pelosi
- Biosensor Technologies, Austrian Institute of Technology GmbH, Konrad-Lorenz Straße, 24, 3430, Tulln, Austria.
| |
Collapse
|
16
|
Zhao X, Ju Y, Wei X, Dong S, Sun X, Fang Y. Significance and Transformation of 3-Alkyl-2-Methoxypyrazines Through Grapes to Wine: Olfactory Properties, Metabolism, Biochemical Regulation, and the HP-MP Cycle. Molecules 2019; 24:E4598. [PMID: 31888183 PMCID: PMC6943733 DOI: 10.3390/molecules24244598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022] Open
Abstract
3-Alkyl-2-methoxypyrazines (MPs) contribute to the herbaceous flavor characteristics of wine and are generally considered associated with poor-quality wine. To control the MPs in grapes and wine, an accurate understanding of MP metabolism is needed. This review covers factors affecting people in the perception of MPs. Also, the history of O-methyltransferases is revisited, and the present review discusses the MP biosynthesis, degradation, and biochemical regulation. We propose the existence of a cycle between MPs and 3-alkyl-2-hydropyrazines (HPs), which proceeds via O-(de)methylation steps. This cycle governs the MP contents of wines, which make the cycle the key participant in MP regulation by genes, environmental stimuli, and microbes. In conclusion, a comprehensive metabolic pathway on which the HP-MP cycle is centered is proposed after gaining insight into their metabolism and regulation. Some directions for future studies on MPs are also proposed in this paper.
Collapse
Affiliation(s)
- Xianfang Zhao
- College of Enology, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China; (X.Z.); (Y.J.); (X.W.); (S.D.)
- Life School of Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yanlun Ju
- College of Enology, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China; (X.Z.); (Y.J.); (X.W.); (S.D.)
| | - Xiaofeng Wei
- College of Enology, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China; (X.Z.); (Y.J.); (X.W.); (S.D.)
| | - Shuo Dong
- College of Enology, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China; (X.Z.); (Y.J.); (X.W.); (S.D.)
| | - Xiangyu Sun
- College of Enology, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China; (X.Z.); (Y.J.); (X.W.); (S.D.)
| | - Yulin Fang
- College of Enology, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China; (X.Z.); (Y.J.); (X.W.); (S.D.)
| |
Collapse
|
17
|
Gonçalves F, Castro TG, Azoia NG, Ribeiro A, Silva C, Cavaco-Paulo A. Two Engineered OBPs with opposite temperature-dependent affinities towards 1-aminoanthracene. Sci Rep 2018; 8:14844. [PMID: 30287882 PMCID: PMC6172251 DOI: 10.1038/s41598-018-33085-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/13/2018] [Indexed: 11/10/2022] Open
Abstract
Engineered odorant-binding proteins (OBPs) display tunable binding affinities triggered by temperature alterations. We designed and produced two engineered proteins based on OBP-I sequence: truncated OBP (tOBP) and OBP::GQ20::SP-DS3. The binding affinity of 1-aminoanthracene (1-AMA) to these proteins revealed that tOBP presents higher affinity at 25 °C (kd = 0.45 μM) than at 37 °C (kd = 1.72 μM). OBP::GQ20::SP-DS3 showed an opposite behavior, revealing higher affinity at 37 °C (kd = 0.58 μM) than at 25 °C (kd = 1.17 μM). We set-up a system containing both proteins to evaluate their temperature-dependent binding. Our data proved the 1-AMA differential and reversible affinity towards OBPs, triggered by temperature changes. The variations of the binding pocket size with temperature, confirmed by molecular modelling studies, were determinant for the differential binding of the engineered OBPs. Herein we described for the first time a competitive temperature-dependent mechanism for this class of proteins.
Collapse
Affiliation(s)
- Filipa Gonçalves
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Tarsila G Castro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Nuno G Azoia
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Artur Ribeiro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Carla Silva
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Artur Cavaco-Paulo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
18
|
Pelosi P, Zhu J, Knoll W. Odorant-Binding Proteins as Sensing Elements for Odour Monitoring. SENSORS 2018; 18:s18103248. [PMID: 30262737 PMCID: PMC6210013 DOI: 10.3390/s18103248] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 11/16/2022]
Abstract
Odour perception has been the object of fast growing research interest in the last three decades. Parallel to the study of the corresponding biological systems, attempts are being made to model the olfactory system with electronic devices. Such projects range from the fabrication of individual sensors, tuned to specific chemicals of interest, to the design of multipurpose smell detectors using arrays of sensors assembled in a sort of artificial nose. Recently, proteins have attracted increasing interest as sensing elements. In particular, soluble olfaction proteins, including odorant-binding proteins (OBPs) of vertebrates and insects, chemosensory proteins (CSPs) and Niemann-Pick type C2 (NPC2) proteins possess interesting characteristics for their use in sensing devices for odours. In fact, thanks to their compact structure, their soluble nature and small size, they are extremely stable to high temperature, refractory to proteolysis and resistant to organic solvents. Moreover, thanks to the availability of many structures solved both as apo-proteins and in complexes with some ligands, it is feasible to design mutants by replacing residues in the binding sites with the aim of synthesising proteins with better selectivity and improved physical properties, as demonstrated in a number of cases.
Collapse
Affiliation(s)
- Paolo Pelosi
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 24, 3430 Tulln, Austria.
| | - Jiao Zhu
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 24, 3430 Tulln, Austria.
| | - Wolfgang Knoll
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 24, 3430 Tulln, Austria.
| |
Collapse
|
19
|
Barbosa AJM, Oliveira AR, Roque ACA. Protein- and Peptide-Based Biosensors in Artificial Olfaction. Trends Biotechnol 2018; 36:1244-1258. [PMID: 30213453 DOI: 10.1016/j.tibtech.2018.07.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022]
Abstract
Animals' olfactory systems rely on proteins, olfactory receptors (ORs) and odorant-binding proteins (OBPs), as their native sensing units to detect odours. Recent advances demonstrate that these proteins can also be employed as molecular recognition units in gas-phase biosensors. In addition, the interactions between odorant molecules and ORs or OBPs are a source of inspiration for designing peptides with tunable odorant selectivity. We review recent progress in gas biosensors employing biological units (ORs, OBPs, and peptides) in light of future developments in artificial olfaction, emphasizing examples where biological components have been employed to detect gas-phase analytes.
Collapse
Affiliation(s)
- Arménio J M Barbosa
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Rita Oliveira
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana C A Roque
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
20
|
Capo A, Pennacchio A, Varriale A, D'Auria S, Staiano M. The porcine odorant-binding protein as molecular probe for benzene detection. PLoS One 2018; 13:e0202630. [PMID: 30183769 PMCID: PMC6124761 DOI: 10.1371/journal.pone.0202630] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/06/2018] [Indexed: 11/19/2022] Open
Abstract
In recent years, air pollution has been a subject of great scientific and public interests for the strong impact on human health. Air pollution is due to the presence in the atmosphere of polluting substances, such as carbon monoxide, sulfur and nitrogen oxides, particulates and volatile organic compounds (VOCs), derived predominantly from various combustion processes. Benzene is a VOC belonging to group-I carcinogens with a toxicity widely demonstrated. The emission limit values and the daily exposure time to benzene (TLV-TWA) are 5μg/m3 (0.00157 ppm) and 1.6mg/m3 (0.5 ppm), respectively. Currently, expensive and time-consuming analytical methods are used for detection of benzene. These methods require to perform a few preliminary steps such as sampling, and matrices pre-treatments. In addition, it is also needed the support of specialized personnel. Recently, single-walled carbon nanotube (SWNTs) gas sensors with a limit detection (LOD) of 20 ppm were developed for benzene detection. Other innovative bioassay, called bio-report systems, were proposed. They use a whole cell (Pseudomona putida or Escherichia coli) as molecular recognition element and exhibit a LOD of about 10 μM. Here, we report on the design of a highly sensitive fluorescence assay for monitoring atmospheric level of benzene. For this purpose, we used as molecular recognition element the porcine odorant-binding protein (pOBP). 1-Aminoanthracene was selected as extrinsic fluorescence probe for designing a competitive fluorescence resonance energy transfer (FRET) assay for benzene detection. The detection limit of our assay was 3.9μg/m3, a value lower than the actual emission limit value of benzene as regulated by European law.
Collapse
Affiliation(s)
- Alessandro Capo
- Institute of Food Science, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | - Angela Pennacchio
- Institute of Food Science, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | - Antonio Varriale
- Institute of Food Science, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | - Sabato D'Auria
- Institute of Food Science, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | - Maria Staiano
- Institute of Food Science, Consiglio Nazionale delle Ricerche, Avellino, Italy
| |
Collapse
|
21
|
Gonçalves F, Silva C, Ribeiro A, Cavaco-Paulo A. 1-Aminoanthracene Transduction into Liposomes Driven by Odorant-Binding Protein Proximity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27531-27539. [PMID: 30040883 DOI: 10.1021/acsami.8b10158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, the anchorage of pig odorant binding protein (OBP-I) into liposomal membrane was promoted by the fusion of OBP-I with the anchor SP-DS3 peptide and with the (GQ)20 spacer. The presence of the (GQ)20 spacer in the construct confers flexibility to the protein and increases the distance between the OBP binding site and the liposomal surface. The engineered proteins, OBP::SP-DS3 and OBP::(GQ)20::SP-DS3, were produced in Escherichia coli BL21(DE3) and characterized by circular dichroism spectroscopy and MALDI-TOF. The functionalization of liposomes with the OBP proteins was performed through ethanol injection, and similar liposomal anchorage (∼92-97%) was found for both OBP constructs. The effect of OBPs' proximity to the liposomes membrane on 1-aminoanthracene (1-AMA, model ligand) transduction was evaluated by measuring the amount of 1-AMA transduced into liposomes by fluorescence spectroscopy. While protein flexibility, given by the presence of the (GQ)20 spacer, seems to influence the binding efficiency, ∼45% for OBP::(GQ)20::SP-DS3 and ∼29% for OBP::SP-DS3, the distance between the proteins' binding site and the liposomal membrane determines their ability to transduce the 1-AMA into the liposomes (∼23% for OBP::SP-DS3 and ∼19% for OBP::(GQ)20::SP-DS3). The anchorage capacity and proximity effect were confirmed by an experimental control where the wild-type (wt) OBP was added to the liposomes, resulting in low 1-AMA transduction (∼3.5%) and low binding to OBPwt (∼9%). These findings evidence the effect of anchorage, carrier protein's flexibility, and proximity as key features for the entrapment of molecules into the liposomal membrane. The developed OBP-based devices are thus promising anchorage systems for the capture and storage of odors with potential applications in textile and cosmetic industries.
Collapse
Affiliation(s)
- Filipa Gonçalves
- Centre of Biological Engineering , University of Minho , Campus de Gualtar, 4710-057 Braga , Portugal
| | - Carla Silva
- Centre of Biological Engineering , University of Minho , Campus de Gualtar, 4710-057 Braga , Portugal
| | - Artur Ribeiro
- Centre of Biological Engineering , University of Minho , Campus de Gualtar, 4710-057 Braga , Portugal
| | - Artur Cavaco-Paulo
- Centre of Biological Engineering , University of Minho , Campus de Gualtar, 4710-057 Braga , Portugal
| |
Collapse
|
22
|
Abstract
Since the first attempts to mimic the human nose with artificial devices, a variety of sensors have been developed, ranging from simple inorganic and organic gas detectors to biosensing elements incorporating proteins of the biological olfactory system. In order to design a device able to mimic the human nose, two major issues still need to be addressed regarding the complexity of olfactory coding and the extreme sensitivity of the biological system. So far, only 50 of the approximately 300–400 functioning olfactory receptors have been de-orphanized, still a long way from breaking the human olfactory code. On the other hand, the exceptional sensitivity of the human nose is based on amplification mechanisms difficult to reproduce with electronic circuits, and perhaps novel approaches are required to address this issue. Here, we review the recent literature on chemical sensing both in biological systems and artificial devices, and try to establish the state-of-the-art towards the design of an electronic nose.
Collapse
|
23
|
Pelosi P, Zhu J, Knoll W. From radioactive ligands to biosensors: binding methods with olfactory proteins. Appl Microbiol Biotechnol 2018; 102:8213-8227. [PMID: 30054700 DOI: 10.1007/s00253-018-9253-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 11/26/2022]
Abstract
In this paper, we critically review the binding protocols currently reported in the literature to measure the affinity of odorants and pheromones to soluble olfactory proteins, such as odorant-binding proteins (OBPs), chemosensory proteins (CSPs) and Niemann-Pick class C2 (NPC2) proteins. The first part contains a brief introduction on the principles of binding and a comparison of the techniques adopted or proposed so far, discussing advantages and problems of each technique, as well as their suitable application to soluble olfactory proteins. In the second part, we focus on the fluorescent binding assay, currently the most widely used approach. We analyse advantages and drawbacks, trying to identify the causes of anomalous behaviours that have been occasionally observed, and suggest how to interpret the experimental data when such events occur. In the last part, we describe the state of the art of biosensors for odorants, using soluble olfactory proteins immobilised on biochips, and discuss the possibility of using such approach as an alternative way to measure binding events and dissociation constants.
Collapse
Affiliation(s)
- Paolo Pelosi
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 24, 3430, Tulln, Austria.
| | - Jiao Zhu
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 24, 3430, Tulln, Austria
| | - Wolfgang Knoll
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 24, 3430, Tulln, Austria
| |
Collapse
|
24
|
Gonçalves F, Silva C, Ribeiro A, Cavaco-Paulo A. Withdrawn: Spacer (GQ)20 increases the binding of 1-aminoanthracene into liposomes by anchored odorant-binding proteins. J Colloid Interface Sci 2018. [DOI: 10.1016/j.jcis.2018.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Nagnan-Le Meillour P, Joly A, Le Danvic C, Marie A, Zirah S, Cornard JP. Binding Specificity of Native Odorant-Binding Protein Isoforms Is Driven by Phosphorylation and O-N-Acetylglucosaminylation in the Pig Sus scrofa. Front Endocrinol (Lausanne) 2018; 9:816. [PMID: 30740091 PMCID: PMC6355697 DOI: 10.3389/fendo.2018.00816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/27/2018] [Indexed: 11/16/2022] Open
Abstract
Odorant-binding proteins (OBP) are secreted in the nasal mucus at the vicinity of olfactory receptors (ORs). They act, at least, as an interface between hydrophobic and volatile odorant molecules and the hydrophilic medium bathing the ORs. They have also been hypothesized to be part of the molecular coding of odors and pheromones, by forming specific complexes with odorant molecules that could ultimately stimulate ORs to trigger the olfactory transduction cascade. In a previous study, we have evidenced that pig olfactory secretome was composed of numerous olfactory binding protein isoforms, generated by O-GlcNAcylation and phosphorylation. In addition, we have shown that recombinant OBP (stricto sensu) produced in yeast is made up of a mixture of isoforms that differ in their phosphorylation pattern, which in turn determines binding specificity. Taking advantage of the high amount of OBP secreted by a single animal, we performed a similar study, under exactly the same experimental conditions, on native isoforms isolated from pig, Sus scrofa, nasal tissue. Four fractions were obtained by using strong anion exchange HPLC. Mapping of phosphorylation and O-GlcNAcylation sites by CID-nanoLC-MS/MS allowed unambiguous localization of phosphosites at S13 and T122 and HexNAc sites at S13 and S19. T112 or T115 could also be phosphorylated. BEMAD analysis suggested extra phosphosites located at S23, S24, S41, S49, S57, S67, and T71. Due to the very low stoichiometry of GlcNAc-peptides and phosphopeptides, these sites were identified on total mixture of OBP isoforms instead of HPLC-purified OBP isoforms. Nevertheless, binding properties of native OBP isoforms to specific ligands in S. scrofa were monitored by fluorescence spectroscopy. Recombinant phosphorylated OBP-Pichia isoforms bind steroids and fatty acids with slight differences. Native isoforms, that are phosphorylated but also O-GlcNAcylated show radically different binding affinities for the same compounds, which strongly suggests that O-GlcNAcylation increases the binding specificity of OBP isoforms. These findings extend the role of O-GlcNAc in regulating the function of proteins involved in many mechanisms of metabolic homeostasis, including extracellular signaling in olfaction. Data is available via ProteomeXChange with identifier PXD011371.
Collapse
Affiliation(s)
- Patricia Nagnan-Le Meillour
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576, USC-UGSF INRA 1409, CNRS-Université de Lille, Lille, France
- *Correspondence: Patricia Nagnan-Le Meillour
| | - Alexandre Joly
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576, USC-UGSF INRA 1409, CNRS-Université de Lille, Lille, France
| | - Chrystelle Le Danvic
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576, USC-UGSF INRA 1409, CNRS-Université de Lille, Lille, France
- ALLICE R&D, Paris, France
| | - Arul Marie
- Unité Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, UMR 7245 CNRS/MNHN, Paris, France
| | - Séverine Zirah
- Unité Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, UMR 7245 CNRS/MNHN, Paris, France
| | - Jean-Paul Cornard
- Laboratoire de Spectroscopie Infrarouge et Raman, UMR8516 CNRS-Université de Lille, Lille, France
| |
Collapse
|
26
|
Gonçalves F, Castro TG, Nogueira E, Pires R, Silva C, Ribeiro A, Cavaco-Paulo A. OBP fused with cell-penetrating peptides promotes liposomal transduction. Colloids Surf B Biointerfaces 2017; 161:645-653. [PMID: 29169119 DOI: 10.1016/j.colsurfb.2017.11.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/02/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023]
Abstract
Cell-penetrating peptides (CPPs) have been applied as novel transport systems with the ability to facilitate the delivery of peptides, proteins, and oligonucleotides into cells. Herein, we designed different fusion proteins composed by pig odorant binding protein (OBP-I) and three CPPs, namely Tat, pVEC and Pep-1. A new methodology using liposomes as reservoirs and OBP:CPPs as carriers was developed as an advanced system to capture odorant molecules. 1-aminoanthracene (1-AMA) was used as a model molecule to evaluate the transduction ability of OBP:CPPs into the reservoirs. The transduction efficiency was dependent on the initial capacity of OBP:CPPs to bind 1-AMA and on the penetration of liposomes promoted by the CPPs. An encapsulation efficiency of 42% was obtained with OBP:Tat fusion protein. The presence of Tat peptide increased the 1-AMA transduction of 1.3 and 2.5 fold compared with Pep-1 and pVEC, respectively. This work expands the application of OBPs and CPPs on the design of promising capture and delivery systems for textile and cosmetic applications.
Collapse
Affiliation(s)
- Filipa Gonçalves
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Tarsila G Castro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Eugénia Nogueira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ricardo Pires
- 3B́s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Ave Park, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Carla Silva
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Artur Ribeiro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Artur Cavaco-Paulo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
27
|
Ahmed T, Zhang T, Wang Z, He K, Bai S. Molecular cloning, expression profile, odorant affinity, and stability of two odorant-binding proteins in Macrocentrus cingulum Brischke (Hymenoptera: Braconidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 94:e21374. [PMID: 28134484 DOI: 10.1002/arch.21374] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The polyembryonic endoparasitoid wasp Macrocentrus cingulum Brischke (Hymenoptera: Braconidae) is deployed successfully as a biocontrol agent for corn pest insects from the Lepidopteran genus Ostrinia in Europe and throughout Asia, including Japan, Korea, and China. The odorants are recognized, bound, and solubilized by odorant-binding protein (OBP) in the initial biochemical recognition steps in olfaction that transport them across the sensillum lymph to initiate behavioral response. In the present study, we examine the odorant-binding effects on thermal stability of McinOBP2, McinOBP3, and their mutant form that lacks the third disulfide bonds. Real-time PCR experiments indicate that these two are expressed mainly in adult antennae, with expression levels differing by sex. Odorant-binding affinities of aldehydes, terpenoids, and aliphatic alcohols were measured with circular dichroism spectroscopy based on changes in the thermal stability of the proteins upon their affinities to odorants. The obtained results reveal higher affinity of trans-caryophelle, farnesene, and cis-3-Hexen-1-ol exhibits to both wild and mutant McinOBP2 and McinOBP3. Although conformational flexibility of the mutants and shape of binding cavity make differences in odorant affinity between the wild-type and mutant, it suggested that lacking the third disulfide bond in mutant proteins may have chance to incorrect folded structures that reduced the affinity to these odorants. In addition, CD spectra clearly indicate proteins enriched with α-helical content.
Collapse
Affiliation(s)
- Tofael Ahmed
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Bangladesh Sugar Crop Research Institute, Ishurdi, Pabna, Bangladesh
| | - Tiantao Zhang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenying Wang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kanglai He
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuxiong Bai
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
Larisika M, Kotlowski C, Steininger C, Mastrogiacomo R, Pelosi P, Schütz S, Peteu SF, Kleber C, Reiner-Rozman C, Nowak C, Knoll W. Electronic Olfactory Sensor Based on A. mellifera Odorant-Binding Protein 14 on a Reduced Graphene Oxide Field-Effect Transistor. Angew Chem Int Ed Engl 2015; 54:13245-8. [PMID: 26364873 PMCID: PMC4768645 DOI: 10.1002/anie.201505712] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Indexed: 11/11/2022]
Abstract
An olfactory biosensor based on a reduced graphene oxide (rGO) field-effect transistor (FET), functionalized by the odorant-binding protein 14 (OBP14) from the honey bee (Apis mellifera) has been designed for the in situ and real-time monitoring of a broad spectrum of odorants in aqueous solutions known to be attractants for bees. The electrical measurements of the binding of all tested odorants are shown to follow the Langmuir model for ligand-receptor interactions. The results demonstrate that OBP14 is able to bind odorants even after immobilization on rGO and can discriminate between ligands binding within a range of dissociation constants from K(d)=4 μM to K(d)=3.3 mM. The strongest ligands, such as homovanillic acid, eugenol, and methyl vanillate all contain a hydroxy group which is apparently important for the strong interaction with the protein.
Collapse
Affiliation(s)
- Melanie Larisika
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637371 (Singapore)
| | - Caroline Kotlowski
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | | | - Rosa Mastrogiacomo
- Department of Biology of Agriculture, Food and Environment, University of Pisa (Italy)
| | - Paolo Pelosi
- Department of Biology of Agriculture, Food and Environment, University of Pisa (Italy)
| | - Stefan Schütz
- Buesgen-Institute, Dept. of Forest Zoology and Forest Conservation, Goettingen (Germany)
| | - Serban F Peteu
- Michigan State University, Chemical Engineering & Materials Science (USA)
| | - Christoph Kleber
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | - Ciril Reiner-Rozman
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | - Christoph Nowak
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637371 (Singapore)
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | - Wolfgang Knoll
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria).
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637371 (Singapore).
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria).
| |
Collapse
|
29
|
Larisika M, Kotlowski C, Steininger C, Mastrogiacomo R, Pelosi P, Schütz S, Peteu SF, Kleber C, Reiner‐Rozman C, Nowak C, Knoll W. Electronic Olfactory Sensor Based on
A. mellifera
Odorant‐Binding Protein 14 on a Reduced Graphene Oxide Field‐Effect Transistor. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Melanie Larisika
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637371 (Singapore)
| | - Caroline Kotlowski
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | | | - Rosa Mastrogiacomo
- Department of Biology of Agriculture, Food and Environment, University of Pisa (Italy)
| | - Paolo Pelosi
- Department of Biology of Agriculture, Food and Environment, University of Pisa (Italy)
| | - Stefan Schütz
- Buesgen‐Institute, Dept. of Forest Zoology and Forest Conservation, Goettingen (Germany)
| | - Serban F. Peteu
- Michigan State University, Chemical Engineering & Materials Science (USA)
| | - Christoph Kleber
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | - Ciril Reiner‐Rozman
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | - Christoph Nowak
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637371 (Singapore)
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | - Wolfgang Knoll
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637371 (Singapore)
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| |
Collapse
|
30
|
Energy Transfer Studies between Trp Residues of Three Lipocalin Proteins Family, α1-Acid Glycoprotein, (Orosomucoid), β-Lactoglobulin and Porcine Odorant Binding Protein and the Fluorescent Probe, 1-Aminoanthracene (1-AMA). J Fluoresc 2015; 25:167-72. [DOI: 10.1007/s10895-014-1493-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/02/2014] [Indexed: 11/30/2022]
|
31
|
Pelosi P, Iovinella I, Felicioli A, Dani FR. Soluble proteins of chemical communication: an overview across arthropods. Front Physiol 2014; 5:320. [PMID: 25221516 PMCID: PMC4145409 DOI: 10.3389/fphys.2014.00320] [Citation(s) in RCA: 299] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/04/2014] [Indexed: 11/30/2022] Open
Abstract
Detection of chemical signals both in insects and in vertebrates is mediated by soluble proteins, highly concentrated in olfactory organs, which bind semiochemicals and activate, with still largely unknown mechanisms, specific chemoreceptors. The same proteins are often found in structures where pheromones are synthesized and released, where they likely perform a second role in solubilizing and delivering chemical messengers in the environment. A single class of soluble polypeptides, called Odorant-Binding Proteins (OBPs) is known in vertebrates, while two have been identified in insects, OBPs and CSPs (Chemosensory Proteins). Despite their common name, OBPs of vertebrates bear no structural similarity with those of insects. We observed that in arthropods OBPs are strictly limited to insects, while a few members of the CSP family have been found in crustacean and other arthropods, where however, based on their very limited numbers, a function in chemical communication seems unlikely. The question we address in this review is whether another class of soluble proteins may have been adopted by other arthropods to perform the role of OBPs and CSPs in insects. We propose that lipid-transporter proteins of the Niemann-Pick type C2 family could represent likely candidates and report the results of an analysis of their sequences in representative species of different arthropods.
Collapse
Affiliation(s)
- Paolo Pelosi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | | | | | - Francesca R Dani
- Biology Department, University of Firenze Firenze, Italy ; CISM, Mass Spectrometry Centre, University of Firenze Firenze, Italy
| |
Collapse
|
32
|
Bovine α1-acid glycoprotein, a thermostable version of its human counterpart: Insights from Fourier transform infrared spectroscopy and in silico modelling. Biochimie 2014; 102:19-28. [DOI: 10.1016/j.biochi.2014.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 02/04/2014] [Indexed: 11/19/2022]
|
33
|
Schwaighofer A, Pechlaner M, Oostenbrink C, Kotlowski C, Araman C, Mastrogiacomo R, Pelosi P, Knoll W, Nowak C, Larisika M. Insights into structural features determining odorant affinities to honey bee odorant binding protein 14. Biochem Biophys Res Commun 2014; 446:1042-6. [PMID: 24661875 DOI: 10.1016/j.bbrc.2014.03.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/14/2014] [Indexed: 11/28/2022]
Abstract
Molecular interactions between odorants and odorant binding proteins (OBPs) are of major importance for understanding the principles of selectivity of OBPs towards the wide range of semiochemicals. It is largely unknown on a structural basis, how an OBP binds and discriminates between odorant molecules. Here we examine this aspect in greater detail by comparing the C-minus OBP14 of the honey bee (Apis mellifera L.) to a mutant form of the protein that comprises the third disulfide bond lacking in C-minus OBPs. Affinities of structurally analogous odorants featuring an aromatic phenol group with different side chains were assessed based on changes of the thermal stability of the protein upon odorant binding monitored by circular dichroism spectroscopy. Our results indicate a tendency that odorants show higher affinity to the wild-type OBP suggesting that the introduced rigidity in the mutant protein has a negative effect on odorant binding. Furthermore, we show that OBP14 stability is very sensitive to the position and type of functional groups in the odorant.
Collapse
Affiliation(s)
- Andreas Schwaighofer
- Austrian Institute of Technology GmbH, AIT, Donau-City Str. 1, 1220 Vienna, Austria
| | - Maria Pechlaner
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Caroline Kotlowski
- Center of Electrochemical Surface Technology, CEST, Viktor-Kaplan-Straße 2, 2700 Wiener Neustadt, Austria
| | - Can Araman
- Institut für Biologische Chemie, Universität Wien, Währinger Straße 38, 1090 Wien, Austria
| | - Rosa Mastrogiacomo
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Paolo Pelosi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Wolfgang Knoll
- Austrian Institute of Technology GmbH, AIT, Donau-City Str. 1, 1220 Vienna, Austria
| | - Christoph Nowak
- Austrian Institute of Technology GmbH, AIT, Donau-City Str. 1, 1220 Vienna, Austria; Center of Electrochemical Surface Technology, CEST, Viktor-Kaplan-Straße 2, 2700 Wiener Neustadt, Austria.
| | - Melanie Larisika
- Austrian Institute of Technology GmbH, AIT, Donau-City Str. 1, 1220 Vienna, Austria.
| |
Collapse
|
34
|
Mastrogiacomo R, Iovinella I, Napolitano E. New fluorescent probes for ligand-binding assays of odorant-binding proteins. Biochem Biophys Res Commun 2014; 446:137-42. [DOI: 10.1016/j.bbrc.2014.02.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/15/2014] [Indexed: 10/25/2022]
|
35
|
Schwaighofer A, Kotlowski C, Araman C, Chu N, Mastrogiacomo R, Becker C, Pelosi P, Knoll W, Larisika M, Nowak C. Honey bee odorant-binding protein 14: effects on thermal stability upon odorant binding revealed by FT-IR spectroscopy and CD measurements. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 43:105-12. [PMID: 24362824 DOI: 10.1007/s00249-013-0939-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/18/2013] [Accepted: 12/06/2013] [Indexed: 12/26/2022]
Abstract
In the present work, we study the effect of odorant binding on the thermal stability of honey bee (Apis mellifera L.) odorant-binding protein 14. Thermal denaturation of the protein in the absence and presence of different odorant molecules was monitored by Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD). FT-IR spectra show characteristic bands for intermolecular aggregation through the formation of intermolecular β-sheets during the heating process. Transition temperatures in the FT-IR spectra were evaluated using moving-window 2D correlation maps and confirmed by CD measurements. The obtained results reveal an increase of the denaturation temperature of the protein when bound to an odorant molecule. We could also discriminate between high- and low-affinity odorants by determining transition temperatures, as demonstrated independently by the two applied methodologies. The increased thermal stability in the presence of ligands is attributed to a stabilizing effect of non-covalent interactions between odorant-binding protein 14 and the odorant molecule.
Collapse
Affiliation(s)
- Andreas Schwaighofer
- Austrian Institute of Technology GmbH, AIT, Donau-City Str. 1, 1220, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pelosi P, Mastrogiacomo R, Iovinella I, Tuccori E, Persaud KC. Structure and biotechnological applications of odorant-binding proteins. Appl Microbiol Biotechnol 2013; 98:61-70. [PMID: 24265030 DOI: 10.1007/s00253-013-5383-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/04/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
Odorant-binding proteins (OBPs) are small soluble polypeptides found in sensory organs of vertebrates and insects as well as in secretory glands and are dedicated to detection and release of chemical stimuli. OBPs of vertebrates belong to the family of lipocalin proteins, while those of insects are folded into α-helical domains. Both types of architectures are extremely stable to temperature, organic solvents and proteolytic digestion. These characteristics make OBPs suitable elements for fabricating biosensors to be used in the environment, as well as for other biotechnological applications. The affinity of OBPs for small volatile organic compounds is in the micromolar range, and they have broad specificity to a range of ligands. For biotechnological applications, OBPs can be expressed in bacterial systems at low cost and are easily purified. The large amount of information available on their structures and affinities to different molecules should allow the design of specific mutants with desired characteristics and represent a solid base for tailoring OBPs for different applications.
Collapse
Affiliation(s)
- Paolo Pelosi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy,
| | | | | | | | | |
Collapse
|
37
|
Silva C, Matamá T, Azoia NG, Mansilha C, Casal M, Cavaco-Paulo A. Odorant binding proteins: a biotechnological tool for odour control. Appl Microbiol Biotechnol 2013; 98:3629-38. [PMID: 24092006 DOI: 10.1007/s00253-013-5243-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 11/26/2022]
Abstract
The application of an odorant binding protein for odour control and fragrance delayed release from a textile surface was first explored in this work. Pig OBP-1 gene was cloned and expressed in Escherichia coli, and the purified protein was biochemically characterized. The IC₅₀ values (concentrations of competitor that caused a decay of fluorescence to half-maximal intensity) were determined for four distinct fragrances, namely, citronellol, benzyl benzoate, citronellyl valerate and ethyl valerate. The results showed a strong binding of citronellyl valerate, citronellol and benzyl benzoate to the recombinant protein, while ethyl valerate displayed weaker binding. Cationized cotton substrates were coated with porcine odorant binding protein and tested for their capacity to retain citronellol and to mask the smell of cigarette smoke. The immobilized protein delayed the release of citronellol when compared to the untreated cotton. According to a blind evaluation of 30 assessors, the smell of cigarette smoke, trapped onto the fabrics' surface, was successfully attenuated by porcine odorant binding protein (more than 60 % identified the weakest smell intensity after protein exposure compared to β-cyclodextrin-treated and untreated cotton fabrics). This work demonstrated that porcine odorant binding protein can be an efficient solution to prevent and/or remove unpleasant odours trapped on the large surface of textiles. Its intrinsic properties make odorant binding proteins excellent candidates for controlled release systems which constitute a new application for this class of proteins.
Collapse
Affiliation(s)
- Carla Silva
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | | | | | | | | | | |
Collapse
|
38
|
Gu Y, Liu Q, Chen P, Guo C, Liu Y, Zhao Y, Zhang Y, Lin D. Characterization of the oligomerization and ligand-binding properties of recombinant rat lipocalin 11. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1-7. [PMID: 23451353 DOI: 10.1016/j.bbapap.2012.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Lipocalin 11 (Lcn11), a recently identified member of the lipocalin family, potentially plays crucial physiological roles in male reproduction. In this present work, we cloned, expressed and purified the rat Lcn11 (rLcn11) protein Escherichia coli. A C59A/C156A substitution was introduced to ameliorate the misfolding and aggregation problem associated with the wild-type protein. From circular dichroism and non-reducing SDS-PAGE, we characterized the conformational properties of rLcn11 as a typical lipocalin scaffold with the conserved disulfide bridge. The results obtained from size-exclusion chromatography, cross-linking experiment and dynamic light scattering analysis indicate that the recombinant rLcn11 protein forms dimer in neutral solution. By using fluorescent probe-anilino-1 napthahlene sulfonic acid (ANS), we found rLcn might contain multiple hydrophobic binding sites for ligand binding. Similarly to the odorant-binding protein, rLcn11 processes a moderate affinity for binding 1-aminoanthracene (AMA), implying that Lcn11 might work as a dimeric chemoreception protein in male reproductive.
Collapse
|
39
|
Bianchi F, Basini G, Grolli S, Conti V, Bianchi F, Grasselli F, Careri M, Ramoni R. An innovative bovine odorant binding protein-based filtering cartridge for the removal of triazine herbicides from water. Anal Bioanal Chem 2012; 405:1067-75. [PMID: 23104315 DOI: 10.1007/s00216-012-6499-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 11/26/2022]
Abstract
Odorant binding protein (OBP) is a multi-functional scavenger for small hydrophobic molecules dissolved in the mucus lining the nasal epithelia of mammals, characterized by broad ligand binding specificity towards a large number of structurally unrelated natural and synthetic molecules of different chemical classes. Here, we demonstrate for the first time the application of OBP as the active element of an innovative filtering matrix for the removal of environmental pollutants such as triazine herbicides from water samples. The filtering device, obtained by coupling histidine-tagged bovine OBP to a nickel nitrilotriacetic acid (Ni-NTA) agarose resin, was characterized in terms of retention capacity for the herbicides atrazine, simazine, and propazine. Analysis of these herbicides at trace levels with solid-phase microextraction followed by gas chromatography-mass spectrometry using the selected ion monitoring mode proved the capabilities of the proposed device for the decontamination of surface and groundwater samples in the 0.2-2,300 μg/L concentration range, obtaining a reduction in the triazine content greater than 97 %, thus suggesting its possible use for the potabilization of water.
Collapse
Affiliation(s)
- Federica Bianchi
- Dipartimento di Chimica, Università degli Studi di Parma, Parma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Scirè A, Baldassarre M, Lupidi G, Tanfani F. Importance of pH and disulfide bridges on the structural and binding properties of human α₁-acid glycoprotein. Biochimie 2011; 93:1529-36. [PMID: 21621584 DOI: 10.1016/j.biochi.2011.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/10/2011] [Indexed: 11/16/2022]
Abstract
Human α(1)-acid glycoprotein (AGP) is an acute phase plasma glycoprotein containing two disulfide bridges. As a member of the lipocalin superfamily, it binds and transports several basic and neutral ligands, but a number of other activities have also been described. Thanks to its binding properties, AGP is also a good candidate for the development of biosensors and affinity chromatography media, and in this context detailed structural information is needed. The structural properties of AGP at different p(2)Hs and under reducing conditions were analysed by FT-IR spectroscopy. The obtained data indicate that AGP, when denatured, does not aggregate at neutral or basic p(2)Hs whilst it does at acidic p(2)Hs. Under reducing conditions the protein is remarkably less thermostable than its oxidized counterpart and presents an enhanced tendency to aggregate, even at neutral p(2)H. A heat-induced molten globule-like state (MG) was detected at 55 °C at p(2)H 7.4 and 5.5. At p(2)H 4.5 the MG occurred at 45 °C with an onset of formation at 40 °C. The MG was not observed under reducing conditions. A lower affinity of chlorpromazine and progesterone for the MG formed at p(2)H 4.5 and 40 °C was observed, suggesting that ligand(s) may be released near the negative surfaces of biological membranes. Furthermore, the reduced AGP displays an enhanced affinity for progesterone, indicating the importance of disulfide bonds for the binding capacity of AGP.
Collapse
Affiliation(s)
- Andrea Scirè
- Dipartimento di Biochimica Biologia e Genetica, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | |
Collapse
|
41
|
Characterization of a deswapped triple mutant bovine odorant binding protein. Int J Mol Sci 2011; 12:2294-314. [PMID: 21731442 PMCID: PMC3127118 DOI: 10.3390/ijms12042294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/16/2011] [Accepted: 03/29/2011] [Indexed: 01/13/2023] Open
Abstract
The stability and functionality of GCC-bOBP, a monomeric triple mutant of bovine odorant binding protein, was investigated, in the presence of denaturant and in acidic pH conditions, by both protein and 1-aminoanthracene ligand fluorescence measurements, and compared to that of both bovine and porcine wild type homologues. Complete reversibility of unfolding was observed, though refolding was characterized by hysteresis. Molecular dynamics simulations, performed to detect possible structural changes of the monomeric scaffold related to the presence of the ligand, pointed out the stability of the β-barrel lipocalin scaffold.
Collapse
|
42
|
Staiano M, Baldassarre M, Esposito M, Apicella E, Vitale R, Aurilia V, D'Auria S. New trends in bio/nanotechnology: stable proteins as advanced molecular tools for health and environment. ENVIRONMENTAL TECHNOLOGY 2010; 31:935-942. [PMID: 20662382 DOI: 10.1080/09593331003639575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this work the thermophilic trehalose/maltose-binding protein from Thermococcus litoralis is presented as a probe for the design of a high stable fluorescence biosensor for glucose. In particular, we show the possibility of modulating the protein specificity by changing temperature. In addition to glucose sensing, we also report on the possibility of utilizing odorant-binding proteins as a probe for the development of optical sensors for analytes of environmental interests.
Collapse
Affiliation(s)
- M Staiano
- Laboratory for Molecular Sensing, Institute of Protein Biochemistry, CNR, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
Brimau F, Cornard JP, Le Danvic C, Lagant P, Vergoten G, Grebert D, Pajot E, Nagnan-Le Meillour P. Binding specificity of recombinant odorant-binding protein isoforms is driven by phosphorylation. J Chem Ecol 2010; 36:801-13. [PMID: 20589419 DOI: 10.1007/s10886-010-9820-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/04/2010] [Accepted: 06/11/2010] [Indexed: 01/20/2023]
Abstract
Native porcine odorant-binding protein (OBP) bears eleven sites of phosphorylation, which are not always occupied in the molecular population, suggesting that different isoforms could co-exist in animal tissues. As phosphorylation is a dynamic process resulting in temporary conformational changes that regulate the function of target proteins, we investigated the possibility that OBP isoforms could display different binding affinities to biologically relevant ligands. The availability of recombinant proteins is of particular interest for the study of protein/ligand structure-function relationships, but prokaryotic expression systems do not perform eukaryotic post-translational modifications. To investigate the role of phosphorylation in the binding capacities of OBP isoforms, we produced recombinant porcine OBP in two eukaryotic systems, the yeast, Pichia pastoris, and the mammalian CHO cell line. Isoforms were separated by anion exchange HPLC, and their phosphorylation sites were mapped by MALDI-TOF mass spectrometry and compared to those of the native protein. Binding experiments with ligands of biological relevance in the pig, Sus scrofa, were performed by fluorescence spectroscopy on two isoforms of recombinant OBP expressed in the yeast. The two isoforms, differing only by their phosphorylation pattern, displayed different binding properties, suggesting that binding specificity is driven by phosphorylation.
Collapse
Affiliation(s)
- Fanny Brimau
- INRA, UMR8576 CNRS/USTL, UGSF, 59655, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Kmiecik D, Albani JR. Effect of 1-Aminoanthracene (1-AMA) Binding on the Structure of Three Lipocalin Proteins, the Dimeric β Lactoglobulin, the Dimeric Odorant Binding Protein and the Monomeric α1-Acid Glycoprotein. Fluorescence Spectra and Lifetimes Studies. J Fluoresc 2010; 20:973-83. [DOI: 10.1007/s10895-010-0643-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 03/16/2010] [Indexed: 11/28/2022]
|
46
|
Scirè A, Marabotti A, Staiano M, Briand L, Varriale A, Bertoli E, Tanfani F, D'Auria S. Structure and stability of a rat odorant-binding protein: another brick in the wall. J Proteome Res 2009; 8:4005-13. [PMID: 19537758 DOI: 10.1021/pr900346z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effect of temperature on the structure of the rat odorant-binding protein was investigated by spectroscopic and in silico methodologies. In particular, in this work, we examined the structural features of the rat OBP-1F by Fourier-transform infrared spectroscopy and molecular dynamics investigations. The obtained spectroscopic results were analyzed using the following three different methods based on the unexchanged amide hydrogens of the protein sample: (1) the analysis of difference spectra; (2) the generalized 2D-IR correlation spectroscopy; (3) the phase diagram method. The three methods indicated that at high temperatures the rOBP-1F structure undergoes a relaxation process involving the protein tertiary organization before undergoing the denaturation and aggregation processes, suggesting the presence of an intermediate state such as a molten globule-like state. Importantly, the proposed analyses represent a general approach that could be applied to the study of protein stability.
Collapse
Affiliation(s)
- Andrea Scirè
- Department of Biochemistry, Biology, and Genetics, Universita Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Katre UV, Mazumder S, Prusti RK, Mohanty S. Ligand binding turns moth pheromone-binding protein into a pH sensor: effect on the Antheraea polyphemus PBP1 conformation. J Biol Chem 2009; 284:32167-77. [PMID: 19758993 DOI: 10.1074/jbc.m109.013383] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In moths, pheromone-binding proteins (PBPs) are responsible for the transport of the hydrophobic pheromones to the membrane-bound receptors across the aqueous sensillar lymph. We report here that recombinant Antheraea polyphemus PBP1 (ApolPBP1) picks up hydrophobic molecule(s) endogenous to the Escherichia coli expression host that keeps the protein in the "open" (bound) conformation at high pH but switches to the "closed" (free) conformation at low pH. This finding has bearing on the solution structures of undelipidated lepidopteran moth PBPs determined thus far. Picking up a hydrophobic molecule from the host expression system could be a common feature for lipid-binding proteins. Thus, delipidation is critical for bacterially expressed lipid-binding proteins. We have shown for the first time that the delipidated ApolPBP1 exists primarily in the closed form at all pH levels. Thus, current views on the pH-induced conformational switch of PBPs hold true only for the ligand-bound open conformation of the protein. Binding of various ligands to delipidated ApolPBP1 studied by solution NMR revealed that the protein in the closed conformation switches to the open conformation only at or above pH 6.0 with a protein to ligand stoichiometry of approximately 1:1. Mutation of His(70) and His(95) to alanine drives the equilibrium toward the open conformation even at low pH for the ligand-bound protein by eliminating the histidine-dependent pH-induced conformational switch. Thus, the delipidated double mutant can bind ligand even at low pH in contrast to the wild type protein as revealed by fluorescence competitive displacement assay using 1-aminoanthracene and solution NMR.
Collapse
Affiliation(s)
- Uma V Katre
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA
| | | | | | | |
Collapse
|
48
|
Phenylalanine 35 and tyrosine 82 are involved in the uptake and release of ligand by porcine odorant-binding protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1142-50. [DOI: 10.1016/j.bbapap.2009.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 04/07/2009] [Accepted: 04/15/2009] [Indexed: 11/21/2022]
|
49
|
Specificity of odorant-binding proteins: a factor influencing the sensitivity of olfactory receptor-based biosensors. Bioprocess Biosyst Eng 2009; 33:55-62. [DOI: 10.1007/s00449-009-0348-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
|
50
|
Identification of a fluorescent general anesthetic, 1-aminoanthracene. Proc Natl Acad Sci U S A 2009; 106:6501-6. [PMID: 19346473 DOI: 10.1073/pnas.0810590106] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We identified a fluorophore, 1-aminoanthracene (1-AMA), that is anesthetic, potentiates GABAergic transmission, and gives an appropriate dissociation constant, K(d) approximately 0.1 mM, for binding to the general anesthetic site in horse spleen apoferritin (HSAF). 1-AMA fluorescence is enhanced when bound to HSAF. Thus, displacement of 1-AMA from HSAF by other anesthetics attenuates the fluorescence signal and allows determination of K(d), as validated by isothermal titration calorimetry. This provides a unique fluorescence assay for compound screening and anesthetic discovery. Additional electrophysiology experiments in isolated cells indicate that 1-AMA potentiates chloride currents elicited by GABA, similar to many general anesthetics. Furthermore, 1-AMA reversibly immobilizes stage 45-50 Xenopus laevis tadpoles (EC(50) = 16 microM) and fluorescence micrographs show 1-AMA localized to brain and olfactory regions. Thus, 1-AMA provides an unprecedented opportunity for studying general anesthetic distribution in vivo at the cellular and subcellular levels.
Collapse
|