1
|
Sajó R, Liliom K, Muskotál A, Klein A, Závodszky P, Vonderviszt F, Dobó J. Soluble components of the flagellar export apparatus, FliI, FliJ, and FliH, do not deliver flagellin, the major filament protein, from the cytosol to the export gate. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2414-23. [PMID: 25068520 DOI: 10.1016/j.bbamcr.2014.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/01/2014] [Accepted: 07/11/2014] [Indexed: 12/21/2022]
Abstract
Flagella, the locomotion organelles of bacteria, extend from the cytoplasm to the cell exterior. External flagellar proteins are synthesized in the cytoplasm and exported by the flagellar type III secretion system. Soluble components of the flagellar export apparatus, FliI, FliH, and FliJ, have been implicated to carry late export substrates in complex with their cognate chaperones from the cytoplasm to the export gate. The importance of the soluble components in the delivery of the three minor late substrates FlgK, FlgL (hook-filament junction) and FliD (filament-cap) has been convincingly demonstrated, but their role in the transport of the major filament component flagellin (FliC) is still unclear. We have used continuous ATPase activity measurements and quartz crystal microbalance (QCM) studies to characterize interactions between the soluble export components and flagellin or the FliC:FliS substrate-chaperone complex. As controls, interactions between soluble export component pairs were characterized providing Kd values. FliC or FliC:FliS did not influence the ATPase activity of FliI alone or in complex with FliH and/or FliJ suggesting lack of interaction in solution. Immobilized FliI, FliH, or FliJ did not interact with FliC or FliC:FliS detected by QCM. The lack of interaction in the fluid phase between FliC or FliC:FliS and the soluble export components, in particular with the ATPase FliI, suggests that cells use different mechanisms for the export of late minor substrates, and the major substrate, FliC. It seems that the abundantly produced flagellin does not require the assistance of the soluble export components to efficiently reach the export gate.
Collapse
Affiliation(s)
- Ráchel Sajó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
| | - Károly Liliom
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
| | - Adél Muskotál
- Bio-Nanosystems Laboratory, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| | - Agnes Klein
- Bio-Nanosystems Laboratory, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| | - Péter Závodszky
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
| | - Ferenc Vonderviszt
- Bio-Nanosystems Laboratory, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary.
| |
Collapse
|
2
|
Minamino T, Imada K, Namba K. Mechanisms of type III protein export for bacterial flagellar assembly. MOLECULAR BIOSYSTEMS 2008; 4:1105-15. [PMID: 18931786 DOI: 10.1039/b808065h] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Flagellar type III protein export is highly organized and well controlled in a timely manner by dynamic, specific and cooperative interactions among components of the export apparatus, allowing the huge and complex macromolecular assembly to be built efficiently. The bacterial flagellum, which is required for motility, consists of a rotary motor, a universal joint and a helical propeller. Most of the flagellar components are translocated to the distal, growing end of the flagellum for assembly through the central channel of the flagellum itself by the flagellar type III protein export apparatus, which is postulated to be located on the cytoplasmic side of the flagellar basal body. The export specificity switching machinery, which consists of at least two proteins that function as a molecular ruler and an export switch, respectively, monitors the state of hook-basal body assembly in the cell exterior and switches export specificity, thereby coupling sequential flagellar gene expression with the flagellar assembly process. The export ATPase complex composed of an ATPase and its regulator acts as a pilot to deliver its export substrate to the export gate and helps initial entry of the substrate N-terminal chain into a narrow pore of the export gate. The energy of ATP hydrolysis appears to be used to disassemble and release the ATPase complex from the protein about to be exported, and the rest of the successive unfolding/translocation process of the long polypeptide chain is driven solely by proton motive force (PMF), perhaps through biased one-dimensional Brownian diffusion. Interestingly, the subunits of the ATPase complex have significant sequence similarities to subunits of F(0)F(1)-ATP synthase, a rotary motor that drives the chemical reaction of ATP synthesis using PMF, and the entire crystal structure of the export ATPase is extremely similar to the alpha/beta subunits of F(0)F(1)-ATP synthase, suggesting that the flagellar export apparatus and F(0)F(1)-ATP synthase share the mechanism for their two distinct functions.
Collapse
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
3
|
Enzymatic characterization of the enteropathogenic Escherichia coli type III secretion ATPase EscN. Arch Biochem Biophys 2007; 468:121-7. [PMID: 17964526 DOI: 10.1016/j.abb.2007.09.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 09/22/2007] [Accepted: 09/25/2007] [Indexed: 12/27/2022]
Abstract
Type III secretion is a transport mechanism by which bacteria secrete proteins across their cell envelope. This protein export pathway is used by two different bacterial nanomachines: the flagellum and the injectisome. An indispensable component of these secretion systems is an ATPase similar to the F1-ATPase beta subunit. Here we characterize EscN, an enteropathogenic Escherichia coli type III ATPase. A recombinant version of EscN, which was fully functional in complementation tests, was purified to homogeneity. Our results demonstrate that EscN is a Mg2+-dependent ATPase (kcat 0.35 s(-1)). We also define optimal conditions for the hydrolysis reaction. EscN displays protein concentration-dependent activity, suggesting that the specific activity changes with the oligomeric state of the protein. The presence of active oligomers was revealed by size exclusion chromatography and native gel electrophoresis.
Collapse
|
4
|
de la Mora J, Ballado T, González-Pedrajo B, Camarena L, Dreyfus G. The flagellar muramidase from the photosynthetic bacterium Rhodobacter sphaeroides. J Bacteriol 2007; 189:7998-8004. [PMID: 17873041 PMCID: PMC2168687 DOI: 10.1128/jb.01073-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized open reading frame RSP0072, which is located within the flgG operon in Rhodobacter sphaeroides. The amino acid sequence analysis of this gene product showed the presence of a soluble lytic transglycosylase domain. The deletion of the N-terminal region (90 amino acids) of the product of RSP0072 yields a leaky nonmotile phenotype, as determined by swarm assays in soft agar. Electron micrographs revealed the lack of flagella in mutant cells. The purified wild-type protein showed lytic activity on extracts of Micrococcus luteus. In contrast, no lytic activity was observed when the residues E57 or E83 were replaced by alanine. Affinity blotting suggests that the protein encoded by RSP0072 interacts with the flagellar rod-scaffolding protein FlgJ, which lacks the muramidase domain present in FlgJ of many bacteria. We propose that the product of RSP0072 is a flagellar muramidase that is exported to the periplasm via the Sec pathway, where it interacts with FlgJ to open a gap in the peptidoglycan layer for the subsequent penetration of the nascent flagellar structure.
Collapse
Affiliation(s)
- Javier de la Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apdo. Postal 70-243 Cd. Universitaria, México DF 04510, México
| | | | | | | | | |
Collapse
|
5
|
González-Pedrajo B, Minamino T, Kihara M, Namba K. Interactions between C ring proteins and export apparatus components: a possible mechanism for facilitating type III protein export. Mol Microbiol 2006; 60:984-98. [PMID: 16677309 DOI: 10.1111/j.1365-2958.2006.05149.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The flagellar switch proteins of Salmonella, FliG, FliM and FliN, participate in the switching of motor rotation, torque generation and flagellar assembly/export. FliN has been implicated in the flagellar export process. To address this possibility, we constructed 10-amino-acid scanning deletions and larger truncations over the C-terminal domain of FliN. Except for the last deletion variant, all other variants were unable to complement a fliN null strain or to restore the export of flagellar proteins. Most of the deletions showed strong negative dominance effects on wild-type cells. FliN was found to associate with FliH, a flagellar export component that regulates the ATPase activity of FliI. The binding of FliM to FliN does not interfere with this FliN-FliH interaction. Furthermore, a five-protein complex consisting of FliG, His-tagged FliM, FliN, FliH and FliI was purified by nickel-affinity chromatography. FliJ, a putative general chaperone, is bound to FliM even in the absence of FliH. The importance of the C ring as a possible docking site for export substrates, chaperones and FliI through FliH for their efficient delivery to membrane components of the export apparatus is discussed.
Collapse
Affiliation(s)
- Bertha González-Pedrajo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.
| | | | | | | |
Collapse
|
6
|
Minamino T, Kazetani KI, Tahara A, Suzuki H, Furukawa Y, Kihara M, Namba K. Oligomerization of the bacterial flagellar ATPase FliI is controlled by its extreme N-terminal region. J Mol Biol 2006; 360:510-9. [PMID: 16780875 DOI: 10.1016/j.jmb.2006.05.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 05/02/2006] [Accepted: 05/03/2006] [Indexed: 01/03/2023]
Abstract
Salmonella FliI is the flagellar ATPase which converts the energy of ATP hydrolysis into the export of flagellar proteins. It forms a ring-shaped oligomer in the presence of ATP, its analogs, or phospholipids. The extreme N-terminal region of FliI has an unstable conformation and is responsible for the interaction with other components of the export apparatus and for regulation of the catalytic mechanism. To understand the role of this N-terminal region in more detail, we used multi-angle light-scattering, analytical ultracentrifugation, far-UV CD and biochemical methods to characterize a partially functional variant of FliI, missing its first seven amino acid residues (His-FliI(Delta1-7)), whose ATPase activity is about ten times lower than that of wild-type FliI. His-FliI(Delta1-7) is monomeric in solution. The deletion increased the content of alpha-helix, suggesting that the deletion stabilizes the unstable N-terminal region into an alpha-helical conformation. The deletion did not influence the K(m) value for ATP. However, unlike the wild-type, ATP and acidic phospholipids did not induce oligomerization of His-FliI(Delta1-7) or increase its ATPase activity. These results suggest that the deletion suppresses the oligomerization of FliI, and that a conformational change in the unstable N-terminal region is required for FliI oligomerization to effectively couple the energy of ATP hydrolysis to the translocation of flagellar proteins.
Collapse
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Saijo-Hamano Y, Minamino T, Macnab RM, Namba K. Structural and functional analysis of the C-terminal cytoplasmic domain of FlhA, an integral membrane component of the type III flagellar protein export apparatus in Salmonella. J Mol Biol 2004; 343:457-66. [PMID: 15451673 DOI: 10.1016/j.jmb.2004.08.067] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2004] [Revised: 08/17/2004] [Accepted: 08/20/2004] [Indexed: 11/24/2022]
Abstract
FlhA is an integral membrane component of the Salmonella type III flagellar protein export apparatus. It consists of 692 amino acid residues and has two domains: the N-terminal transmembrane domain consisting of the first 327 amino acid residues, and the C-terminal cytoplasmic domain (FlhAC) comprising the remainder. Here, we have investigated the structure and function of FlhAC. DNA sequence analysis revealed that temperature-sensitive flhA mutations, which abolish flagellar protein export at the restrictive temperature, lie in FlhAC, indicating that FlhAC plays an important role in the protein export process. Limited proteolysis of purified His-FlhAC by trypsin and V8 showed that only a small part of FlhAC near its N terminus (residues 328-351) is sensitive to proteolysis. FlhAC38K, the smallest fragment produced by V8 proteolysis, is monomeric and has a spherical shape as judged by analytical gel filtration chromatography and analytical ultracentrifugation. The far-UV CD spectrum of FlhAC38K showed that it contains considerable amounts of secondary structure. FlhA(Delta328-351) missing residues 328-351 failed to complement the flhA mutant, indicating that the proteolytically sensitive region of FlhA is important for its function. FlhA(Delta328-351) was inserted into the cytoplasmic membrane, and exerted a strong dominant negative effect on wild-type cells, suggesting that it retains the ability to interact with other export components within the cytoplasmic membrane. Overproduced FlhAC38K inhibited both motility and flagellar protein export of wild-type cells to some degree, suggesting that FlhAC38K is directly involved in the translocation reaction. Amino acid residues 328-351 of FlhA appear to be a relatively flexible linker between the transmembrane domain and FlhAC38K.
Collapse
Affiliation(s)
- Yumiko Saijo-Hamano
- Dynamic NanoMachine Project, ICORP, JST, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
8
|
Gauthier A, Finlay BB. Translocated intimin receptor and its chaperone interact with ATPase of the type III secretion apparatus of enteropathogenic Escherichia coli. J Bacteriol 2004; 185:6747-55. [PMID: 14617638 PMCID: PMC262708 DOI: 10.1128/jb.185.23.6747-6755.2003] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Few interactions have been reported between effectors and components of the type III secretion apparatus, although many interactions have been demonstrated between type III effectors and their cognate chaperones. It is thought that chaperones may play a role in directing effectors to the type III secretion apparatus. The ATPase FliI in the flagellar assembly apparatus plays a pivotal role in interacting with other components of the apparatus and with substrates of the flagellar system. We performed experiments to determine if there were any interactions between the effector Tir and its chaperone CesT and the type III secretion apparatus of enteropathogenic Escherichia coli (EPEC). Specifically, based on analogies with the flagella system, we examined Tir-CesT interactions with the putative ATPase EscN. We showed by affinity chromatography that EscN and Tir bind CesT specifically. Tir is not necessary for CesT and EscN interactions, and EscN binds Tir specifically without its chaperone CesT. Moreover, Tir directly binds EscN, as shown via gel overlay and enzyme-linked immunosorbent assay, and coimmunoprecipitation experiments revealed that Tir interacts with EscN inside EPEC. These data provide evidence for direct interactions between a chaperone, effector, and type III component in the pathogenic type III secretion system and suggest a model for Tir translocation whereby its chaperone, CesT, brings Tir to the type III secretion apparatus by specifically interacting with the type III ATPase EscN.
Collapse
Affiliation(s)
- Annick Gauthier
- Biotechnology Laboratory and Department of Biochemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
9
|
Minamino T, González-Pedrajo B, Kihara M, Namba K, Macnab RM. The ATPase FliI can interact with the type III flagellar protein export apparatus in the absence of its regulator, FliH. J Bacteriol 2003; 185:3983-8. [PMID: 12813095 PMCID: PMC161568 DOI: 10.1128/jb.185.13.3983-3988.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella FliI is the ATPase that drives flagellar protein export. It normally exists as a complex together with the regulatory protein FliH. A fliH null mutant was slightly motile, with overproduction of FliI resulting in substantial improvement of its motility. Mutations in the cytoplasmic domains of FlhA and FlhB, which are integral membrane components of the type III flagellar export apparatus, also resulted in substantially improved motility, even at normal FliI levels. Thus, FliH, though undoubtedly important, is not essential.
Collapse
Affiliation(s)
- Tohru Minamino
- Protonic NanoMachine Project, ERATO and Dynamic NanoMachine Project, ICORP, JST, Seika, Kyoto 619-0237, Japan
| | | | | | | | | |
Collapse
|
10
|
Gauthier A, Puente JL, Finlay BB. Secretin of the enteropathogenic Escherichia coli type III secretion system requires components of the type III apparatus for assembly and localization. Infect Immun 2003; 71:3310-9. [PMID: 12761113 PMCID: PMC155723 DOI: 10.1128/iai.71.6.3310-3319.2003] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
At least 16 proteins are thought to be involved in forming the enteropathogenic Escherichia coli (EPEC) type III translocation apparatus which delivers virulence factors into host cells, yet their function and location have not been determined. A biochemical analysis was performed on three components: EscN, a predicted cytoplasmic ATPase; EscV, a predicted inner membrane protein; and EscC, a predicted outer membrane secretin. Wild-type EPEC and mutants constructed in these genes were fractionated by lysozyme treatment, ultracentrifugation, and selective detergent extraction. Fractionation revealed that the type III effectors Tir and EspB required a complete type III apparatus for any degree of export by EPEC, suggesting a continuous channel. Epitope-tagged EscC, EscV, and EscN were localized by fractionation, confirming computer modeling predictions for their location. Transcomplementation experiments revealed that localization of EscV and EscN was unaffected by mutations in other examined type III components. Remarkably, localization of EscC was altered in escV or escN mutants, where EscC accumulated in the periplasm. EscC was correctly localized in the escF needle component mutant, indicating that secretin localization is independent of needle formation. These data indicate that, contrary to previous indications, correct insertion and function of EscC secretin in the outer membrane depends not only on the sec-dependent secretion pathway but also on other type III apparatus components.
Collapse
Affiliation(s)
- Annick Gauthier
- Biotechnology Laboratory and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada V6T 1Z3
| | | | | |
Collapse
|
11
|
Hirano T, Minamino T, Namba K, Macnab RM. Substrate specificity classes and the recognition signal for Salmonella type III flagellar export. J Bacteriol 2003; 185:2485-92. [PMID: 12670972 PMCID: PMC152621 DOI: 10.1128/jb.185.8.2485-2492.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most flagellar proteins of Salmonella are exported to their assembly destination via a specialized apparatus. This apparatus is a member of the type III superfamily, which is widely used for secretion of virulence factors by pathogenic bacteria. Extensive studies have been carried out on the export of several of the flagellar proteins, most notably the hook protein (FlgE), the hook-capping protein (FlgD), and the filament protein flagellin (FliC). This has led to the concept of two export specificity classes, the rod/hook type and the filament type. However, little direct experimental evidence has been available on the export properties of the basal-body rod proteins (FlgB, FlgC, FlgF, and FlgG), the putative MS ring-rod junction protein (FliE), or the muramidase and putative rod-capping protein (FlgJ). In this study, we have measured the amounts of these proteins exported before and after hook completion. Their amounts in the culture supernatant from a flgE mutant (which is still at the hook-type specificity stage) were much higher than those from a flgK mutant (which has advanced to the filament-type specificity stage), placing them in the same class as the hook-type proteins. Overproduction of FliE, FlgB, FlgC, FlgF, FlgG, or FlgJ caused inhibition of the motility of wild-type cells and inhibition of the export of the hook-capping protein FlgD. We also examined the question of whether export and translation are linked and found that all substrates tested could be exported after protein synthesis had been blocked by spectinomycin or chloramphenicol. We conclude that the amino acid sequence of these proteins suffices to mediate their recognition and export.
Collapse
Affiliation(s)
- Takanori Hirano
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | |
Collapse
|
12
|
Minamino T, González-Pedrajo B, Oosawa K, Namba K, Macnab RM. Structural properties of FliH, an ATPase regulatory component of the Salmonella type III flagellar export apparatus. J Mol Biol 2002; 322:281-90. [PMID: 12217691 DOI: 10.1016/s0022-2836(02)00754-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
FliH is a regulatory component for FliI, the ATPase that is responsible for driving flagellar protein export in Salmonella. FliH consists of 235 amino acid residues, has a quite elongated shape, exists as a homodimer and together with FliI forms a heterotrimer. Here, we have investigated the structural properties of the FliH homodimer in further detail. Like intact His-tagged FliH homodimer, fragment His-FliH(N2) (consisting of the first 102 amino acid residues of FliH), exhibited anomalous elution behavior in gel filtration chromatography; the same was true of His-FliH(C1) (consisting of amino acid residues 119-235), but to a much lesser degree. Thus the elongated shape of FliH appears to derive primarily from its N-terminal region. A deletion version of N-His-FliH, lacking amino acid residues 101-140, does not dimerize and so we were able to establish the gel filtration properties of an almost full-size monomeric form; it also exhibited anomalous elution behavior. We performed trypsin proteolysis of the FliH homodimer and subjected the cleavage products to gel filtration chromatography. FliH was degraded by trypsin and a contaminating protease into two stable fragments: FliH(Prt1) (missing both the first ten and the last 12 amino acid residues), and FliH(Prt2) (missing both the first ten and the last 63 amino acid residues); however, substantial amounts remained undigested even after 24 hours. Under native conditions, both FliH(Prt1) and FliH(Prt2) co-eluted with undigested His-FliH from the gel filtration column, indicating that the fragments exist as a hybrid dimer with intact FliH. These results suggest that the two subunits within the dimer differ in their proteolytic susceptibility. No heterotrimer was observed by gel filtration chromatography when His-FliI was mixed with either His-FliH/FliH(Prt1) or His-FliH/FliH(Prt2) hybrid dimers. A hybrid dimer of FliH and His-FliHDelta1 (lacking the first ten amino acid residues) retained the ability to form a complex with His-FliI. In contrast, hybrid dimers consisting of FliH and either His-FliH(W223ochre) or His-FliH(V172ochre) failed to complex to His-FliI, demonstrating that the C-terminal region of both FliH monomers within the FliH dimer are required for heterotrimer formation.
Collapse
Affiliation(s)
- Tohru Minamino
- Protonic NanoMachine Project, ERATO, JST, 1-7 Hikaridai, Seika, Kyoto, Japan
| | | | | | | | | |
Collapse
|
13
|
González-Pedrajo B, Fraser GM, Minamino T, Macnab RM. Molecular dissection of Salmonella FliH, a regulator of the ATPase FliI and the type III flagellar protein export pathway. Mol Microbiol 2002; 45:967-82. [PMID: 12180917 DOI: 10.1046/j.1365-2958.2002.03047.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
FliH is a soluble component of the flagellar export apparatus that binds to the ATPase FliI, and negatively regulates its activity. The 235-amino-acid FliH dimerizes and interacts with FliI to form a hetero-trimeric (FliH)2FliI complex. In the present work, the importance of different regions of FliH was examined. A set of 24 scanning deletions of 10 amino acids was constructed over the entire FliH sequence, along with several combined deletions of 40 amino acids and truncations of both N- and C-termini. The mutant proteins were examined with respect to (i) complementation; (ii) dominance and multicopy effects; (iii) interaction with wild-type FliH; (iv) interaction with FliI; (v) inhibition of the ATPase activity of FliI; and (vi) interaction with the putative general chaperone FliJ. Analysis of the deletion mutants revealed a clear functional demarcation between the FliH N- and C-terminal regions. The 10-amino-acid deletions throughout most of the N-terminal half of the sequence complemented and were not dominant, whereas those throughout most of the C-terminal half did not complement and were dominant. FliI binding was disrupted by C-terminal deletions from residue 101 onwards, indicating that the C-terminal domain of FliH is essential for interaction with FliI. FliH dimerization was abolished by deletion of residues 101-140 in the centre of the sequence, as were complementation, dominance and interaction with FliI and FliJ. The importance of this region was confirmed by the fact that fragment FliHC2 (residues 99-235) interacted with FliH and FliI, whereas fragment FliHC1 (residues 119-235) did not. FliHC2 formed a relatively unstable complex with FliI and showed biphasic regulation of ATPase activity, suggesting that the FliH N-terminus stabilizes the (FliH)2FliI complex. Several of the N-terminal deletions tested permitted close to normal ATPase activity of FliI. Deletion of the last five residues of FliH caused a fivefold activation of ATPase activity, suggesting that this region of FliH governs a switch between repression and activation of FliI. Deletion of the first 10 residues of FliH abolished complementation, severely reduced its interaction with FliJ and uncoupled its role as a FliI repressor from its other export functions. Based on these data, a model is presented for the domain construction and function of FliH in complex with FliI and FliJ.
Collapse
Affiliation(s)
- Bertha González-Pedrajo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
14
|
Ji WS, Hu JL, Qiu JW, Pan BR, Peng DR, Shi BL, Zhou SJ, Wu KC, Fan DM. Relationship between genotype and phenotype of flagellin C in Salmonella. World J Gastroenterol 2001; 7:864-7. [PMID: 11854918 PMCID: PMC4695611 DOI: 10.3748/wjg.v7.i6.864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To discover the relationship between the genotype and antigen serotype of flagellin C among Salmonella strains.
METHODS: Fragment of Salmonella flagellin C in plasmid pLS408 was cloned, sequenced and compared with the corresponding sequence in other strains. Salmonella strains including two typhi strains, one paratyphoid strain, one enteritidis and one typhimurium strain were isolated from outpatients. Genome DNA was purified respectively from these clinical isolates, then the corresponding flagellin C fragment was amplified by polymerase chain reaction, and the amplification products were analyzed by agarose gel electrophoresis.
RESULTS: The cloned fragment includes 582 nucleotides encoding the variable region and partial conservative region of Salmonella flagellin C in plasmid pLS408. With comparison to the corresponding sequences reported previously, there is only a little difference from other strains with the same flagellar serotype in both nucleotide and amino acid level. Specific PCR products were amplified in Salmonella strains with flagellar serotype H-1-d including S. muenchen, typhi and typhimurium, but not in S. paratyphoid C or S. enteritidis strains.
CONCLUSION: In this experiment, the specificity of nucleotide sequence could be found in flagellin C central variable regions as it exists in flagellar serotypes in Salmonella. It may be helpful to developing a rapid, sensitive, accurate and PCR-based method to detect Salmonella strains with serotype H-1-d.
Collapse
Affiliation(s)
- W S Ji
- Chinese PLA Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Minamino T, Tame JR, Namba K, Macnab RM. Proteolytic analysis of the FliH/FliI complex, the ATPase component of the type III flagellar export apparatus of Salmonella. J Mol Biol 2001; 312:1027-36. [PMID: 11580247 DOI: 10.1006/jmbi.2001.5000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ATPase FliI of the Salmonella type III flagellar protein export apparatus is a 456 amino acid residue cytoplasmic protein consisting of two regions, an N-terminal flagellum-specific region and a C-terminal ATPase region. It forms a complex with a regulatory protein FliH in the cytoplasm. Multi-angle light-scattering studies indicate that FliH forms a homodimer, (FliH)2, and that FliH and FliI together form a heterotrimer, (FliH)2FliI. Mobility upon gel-filtration chromatography gives much higher apparent molecular masses for both species, whereas the mobility of FliI is normal. Sedimentation velocity measurements indicate that both (FliH)2 and the FliH/FliI complex are quite elongated. We have analyzed FliH, FliI and the FliH/FliI complex for proteolytic sensitivity. FliI was degraded by clostripain into two stable fragments, one of 48 kDa (FliI(CL48), missing the first seven amino acid residues) and the other of 46 kDa (FliI(CL46), missing the first 26 residues). Small amounts of two closely spaced 38 kDa fragments (FliI(CL38), missing the first 93 and 97 residues, respectively) were also detected. The FliH homodimer was insensitive to clostripain proteolysis and provided protection to FliI within the FliH/FliI complex. Neither FliI(CL48) nor FliI(CL46) could form a complex with FliH, demonstrating that the N terminus of FliI is essential for the interaction. ATP, AMP-PNP, and ADP bound forms of FliI within the FliH/FliI complex regained sensitivity to clostripain cleavage. Also, the sensitivity of the two FliI(CL38) cleavage sites was much greater in the ATP and AMP-PNP bound forms than in either the ADP bound form or nucleotide-free FliI. The ATPase domain itself was insensitive to clostripain cleavage. We suggest that the N-terminal flagellum-specific region of FliI is flexible and changes its conformation during the ATP hydrolysis cycle.
Collapse
Affiliation(s)
- T Minamino
- Protonic Nanomachine Project ERATO, JST, 3-4 Hikaridai, Seika, Kyoto 619-0237, Japan
| | | | | | | |
Collapse
|
16
|
Abstract
Gram-negative bacteria use type III secretion (TTS) systems to translocate proteins into the extracellular environment or directly into eukaryotic cells. These complex secretory systems are assembled from over 20 different structural proteins, including 10 that have counterparts in the flagellar export pathway. Secretion substrates are directed to the TTS machinery via mRNA and/or amino acid secretion signals. TTS chaperones bind to select secretion substrates and assist in the export process. Recent progress in the understanding of TTS is reviewed.
Collapse
Affiliation(s)
- G V Plano
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL 33136, USA.
| | | | | |
Collapse
|
17
|
Lloyd SA, Norman M, Rosqvist R, Wolf-Watz H. Yersinia YopE is targeted for type III secretion by N-terminal, not mRNA, signals. Mol Microbiol 2001; 39:520-31. [PMID: 11136471 DOI: 10.1046/j.1365-2958.2001.02271.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pathogenic Yersinia species inject virulence proteins, known as Yops, into the cytosol of eukaryotic cells. The injection of Yops is mediated via a type III secretion system. Previous studies have suggested that YopE is targeted for secretion by two signals. One is mediated by its cognate chaperone YerA, whereas the other consists of either the 5' end of yopE mRNA or the N-terminus of YopE. In order to characterize the YopE N-terminal/5' mRNA secretion signal, the first 11 codons of yopE were systematically mutagenized. Frameshift mutations, which completely alter the amino acid sequence of residues 2-11 but leave the mRNA sequence essentially intact, drastically reduce the secretion of YopE in a yerA mutant. In contrast, a mutation that alters the yopE mRNA sequence, while leaving the amino acid sequence of YopE unchanged, does not impair the secretion of YopE. Therefore, the N-terminus of YopE, and not the 5' end of yopE mRNA, serves as a targeting signal for type III secretion. In addition, the chaperone YerA can target YopE for type III secretion in the absence of a functional N-terminal signal. Mutational analysis of the YopE N-terminus revealed that a synthetic amphipathic sequence of eight residues is sufficient to serve as a targeting signal. YopE is also secreted rapidly upon a shift to secretion-permissive conditions. This 'rapid secretion' of YopE does not require de novo protein synthesis and is dependent upon YerA. Furthermore, this burst of YopE secretion can induce a cytotoxic response in infected HeLa cells.
Collapse
Affiliation(s)
- S A Lloyd
- Department of Cell and Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
18
|
Minamino T, MacNab RM. FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its ATPase activity. Mol Microbiol 2000; 37:1494-503. [PMID: 10998179 DOI: 10.1046/j.1365-2958.2000.02106.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Both FliH and the ATPase FliI are cytoplasmic components of the Salmonella type III flagellar export apparatus. Dominance and inhibition data have suggested that the N-terminus of FliI interacts with FliH and that this interaction is important for the ATPase function of the C-terminal domain of FliI. N-terminally histidine-tagged, wild-type FliI retarded untagged FliH in a Ni-NTA affinity chromatography assay, as did N-His-tagged versions of FliI carrying catalytic mutations. In contrast, N-His-tagged FliI carrying the double mutation R7C/L12P did not, further indicating that the N-terminus of FliI is responsible for interaction with FliH. Native agarose gel electrophoresis confirmed that FliH and FliI form a complex. Analytical gel filtration with in-line multiangle light scattering indicated that FliH alone forms a dimer, FliI alone remains as a monomer, and FliH and FliI together form a (FliH)2FliI complex. Ni-NTA affinity chromatography using N-His-tagged FliH and a large excess of untagged FliH confirmed that FliH forms a homodimer. The ATPase activity of the FliH-FliI complex was about 10-fold lower than that of FliI alone; the presence or absence of ATP did not affect the formation of the complex. We propose that FliH functions as a negative regulator to prevent FliI from hydrolysing ATP until the flagellar export apparatus is competent to link this hydrolysis to the translocation of export substrates across the plane of the cytoplasmic membrane into the lumen of the nascent flagellar structure.
Collapse
Affiliation(s)
- T Minamino
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520 8114, USA
| | | |
Collapse
|