1
|
Abstract
Magnetocardiography is a noninvasive contactless method to measure the magnetic field generated by the same ionic currents that create the electrocardiogram. The time course of magnetocardiographic and electrocardiographic signals are similar. However, compared with surface potential recordings, multichannel magnetocardiographic mapping (MMCG) is a faster and contactless method for 3D imaging and localization of cardiac electrophysiologic phenomena with higher spatial and temporal resolution. For more than a decade, MMCG has been mostly confined to magnetically shielded rooms and considered to be at most an interesting matter for research activity. Nevertheless, an increasing number of papers have documented that magnetocardiography can also be useful to improve diagnostic accuracy. Most recently, the development of standardized instrumentations for unshielded MMCG, and its ease of use and reliability even in emergency rooms has triggered a new interest from clinicians for magnetocardiography, leading to several new installations of unshielded systems worldwide. In this review, clinical applications of magnetocardiography are summarized, focusing on major milestones, recent results of multicenter clinical trials and indicators of future developments.
Collapse
Affiliation(s)
- Riccardo Fenici
- Clinical Physiology - Biomagnetism Center, Catholic University of Sacred Heart, Rome, Italy.
| | | | | |
Collapse
|
2
|
Lai D, Sun J, Li Y, He B. Usefulness of ventricular endocardial electric reconstruction from body surface potential maps to noninvasively localize ventricular ectopic activity in patients. Phys Med Biol 2013; 58:3897-909. [PMID: 23681281 DOI: 10.1088/0031-9155/58/11/3897] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As radio frequency (RF) catheter ablation becomes increasingly prevalent in the management of ventricular arrhythmia in patients, an accurate and rapid determination of the arrhythmogenic site is of important clinical interest. The aim of this study was to test the hypothesis that the inversely reconstructed ventricular endocardial current density distribution from body surface potential maps (BSPMs) can localize the regions critical for maintenance of a ventricular ectopic activity. Patients with isolated and monomorphic premature ventricular contractions (PVCs) were investigated by noninvasive BSPMs and subsequent invasive catheter mapping and ablation. Equivalent current density (CD) reconstruction (CDR) during symptomatic PVCs was obtained on the endocardial ventricular surface in six patients (four men, two women, years 23-77), and the origin of the spontaneous ectopic activity was localized at the location of the maximum CD value. Compared with the last (successful) ablation site (LAS), the mean and standard deviation of localization error of the CDR approach were 13.8 and 1.3 mm, respectively. In comparison, the distance between the LASs and the estimated locations of an equivalent single moving dipole in the heart was 25.5 ± 5.5 mm. The obtained CD distribution of activated sources extending from the catheter ablation site also showed a high consistency with the invasively recorded electroanatomical maps. The noninvasively reconstructed endocardial CD distribution is suitable to predict a region of interest containing or close to arrhythmia source, which may have the potential to guide RF catheter ablation.
Collapse
Affiliation(s)
- Dakun Lai
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | | | | |
Collapse
|
3
|
Kwong JSW, Leithäuser B, Park JW, Yu CM. Diagnostic value of magnetocardiography in coronary artery disease and cardiac arrhythmias: a review of clinical data. Int J Cardiol 2013; 167:1835-42. [PMID: 23336954 DOI: 10.1016/j.ijcard.2012.12.056] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/27/2012] [Accepted: 12/25/2012] [Indexed: 10/27/2022]
Abstract
Despite the availability of several advanced non-invasive diagnostic tests such as echocardiography and magnetic resonance imaging, electrocardiography (ECG) remains as the most widely used diagnostic technique in clinical cardiology. ECG detects electrical potentials that are generated by cardiac electrical activity. In addition to electrical potentials, the same electrical activity of the heart also induces magnetic fields. These extremely weak cardiac magnetic signals are detected by a non-invasive, contactless technique called magnetocardiography (MCG), which has been evaluated in a number of clinical studies for its usefulness in diagnosing heart diseases. We reviewed the basic principles, history and clinical data on the diagnostic role of MCG in coronary artery disease and cardiac arrhythmias.
Collapse
Affiliation(s)
- Joey S W Kwong
- Division of Cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR
| | | | | | | |
Collapse
|
4
|
Lai D, Liu C, Eggen MD, Iaizzo PA, He B. Localization of endocardial ectopic activity by means of noninvasive endocardial surface current density reconstruction. Phys Med Biol 2011; 56:4161-76. [PMID: 21693786 DOI: 10.1088/0031-9155/56/13/027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Localization of the source of cardiac ectopic activity has direct clinical benefits for determining the location of the corresponding ectopic focus. In this study, a recently developed current-density (CD)-based localization approach was experimentally evaluated in noninvasively localizing the origin of the cardiac ectopic activity from body-surface potential maps (BSPMs) in a well-controlled experimental setting. The cardiac ectopic activities were induced in four well-controlled intact pigs by single-site pacing at various sites within the left ventricle (LV). In each pacing study, the origin of the induced ectopic activity was localized by reconstructing the CD distribution on the endocardial surface of the LV from the measured BSPMs and compared with the estimated single moving dipole (SMD) solution and precise pacing site (PS). Over the 60 analyzed beats corresponding to ten pacing sites (six for each), the mean and standard deviation of the distance between the locations of maximum CD value and the corresponding PSs were 16.9 mm and 4.6 mm, respectively. In comparison, the averaged distance between the SMD locations and the corresponding PSs was slightly larger (18.4 ± 3.4 mm). The obtained CD distribution of activated sources extending from the stimulus site also showed high consistency with the endocardial potential maps estimated by a minimally invasive endocardial mapping system. The present experimental results suggest that the CD method is able to locate the approximate site of the origin of a cardiac ectopic activity, and that the distribution of the CD can portray the propagation of early activation of an ectopic beat.
Collapse
Affiliation(s)
- Dakun Lai
- Department of Biomedical Engineering, University of Minnesota, MN, USA
| | | | | | | | | |
Collapse
|
5
|
Gapelyuk A, Schirdewan A, Fischer R, Wessel N. Cardiac magnetic field mapping quantified by Kullback-Leibler entropy detects patients with coronary artery disease. Physiol Meas 2010; 31:1345-54. [PMID: 20720289 DOI: 10.1088/0967-3334/31/10/004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiac magnetic field mapping (CMFM) is a noninvasive method to determine cardiac electrical activity. We analysed the utility of CMFM for the detection of patients with coronary artery disease (CAD) without subjecting them to stress. We studied 59 healthy control subjects and 101 patients with CAD without previous myocardial infarction (MI). The heart's magnetic field was recorded over the anterior chest wall using a multichannel magnetic measurement system with axial second-order gradiometers. The evaluation of CMFM was based on comparison of the 'ideal' group mean maps of young healthy subjects and maps of examined individuals. Three measures of similarity were considered: Kullback-Leibler (KL) entropy, normalized residual magnetic field strength and deviations in the magnetic field map orientation. The mean values of these parameters during the depolarization and repolarization were used for further classification with the help of logistic regression. The feature set based on the KL-entropy demonstrated the best classification results (sensitivity/specificity of 85/80%), followed by the residual feature (85/75%) and the magnetic field orientation feature (80/73%) sets. The forward stepwise technique was applied to select the best set of features from the combined feature set. Two parameters were selected, namely the KL-entropy for the repolarization period and the residual parameter for the depolarization period. The classification based on these parameters demonstrated a sensitivity of 88% and a specificity of 88% for the distinction of CAD patients from the control subjects. The area under the receiver operator curve was 94%. Hence, we suggest that CMFM evaluation based on KL-entropy is a promising technique to identify patients with CAD.
Collapse
Affiliation(s)
- A Gapelyuk
- Department of Physics, Humboldt-Universität zu Berlin, Robert-Koch-Platz 4, D-10115 Berlin, Germany
| | | | | | | |
Collapse
|
6
|
Gapelyuk A, Wessel N, Fischer R, Zacharzowsky U, Koch L, Selbig D, Schütt H, Sawitzki B, Luft FC, Dietz R, Schirdewan A. Detection of patients with coronary artery disease using cardiac magnetic field mapping at rest. J Electrocardiol 2007; 40:401-7. [PMID: 17531250 DOI: 10.1016/j.jelectrocard.2007.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2006] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
We studied the use of cardiac magnetic field mapping to detect patients with CAD without subjecting them to stress. Fifty-nine healthy control subjects and 101 patients with CAD without previous MI were included. The optimal positions for detecting CAD were located in the left superior parasternal and in the inferior midsternal area. Values for ST slope, ST shift, T peak amplitude, ST-T integral, and magnetic field map orientation differed significantly between the 2 groups. Three parameters together in a multivariate analysis yielded a sensitivity of 84% and a specificity of 83% in distinguishing patients with CAD from control subjects. We suggest that cardiac magnetic field mapping is a promising technique to identify patients with CAD.
Collapse
Affiliation(s)
- Andrej Gapelyuk
- Medical Faculty of the Charité, Franz Volhard Klinik, Helios Klinikum-Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Van Leeuwen P, Hailer B, Lange S, Grönemeyer DHW. Identification of patients with coronary artery disease using magnetocardiographic signal analysis / Identifizierung von Patienten mit koronarer Herzkrankheit anhand magnetokardiographischer Signalanalyse. BIOMED ENG-BIOMED TE 2006; 51:83-8. [PMID: 16915770 DOI: 10.1515/bmt.2006.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Magnetocardiography (MCG), which measures the magnetic component of the heart's electrical activity, offers an alternative approach for analyzing changes induced by coronary artery disease (CAD). This study examines several parameters that quantify spatial and temporal aspects of cardiac magnetic signals in CAD. MATERIALS AND METHODS MCGs were registered at rest in 144 subjects, aged 58.3 +/- 9.8 years: 50 healthy subjects, 43 CAD patients without myocardial infarction (MI), 36 with MI, and 15 with spontaneous episodes of ventricular tachycardia (VT). Spatial characteristics of magnetic field maps (MFM), quantified using their centers of gravity, included MFM orientation and trajectory plots. Spatio-temporal analysis was performed by determining the spatial distribution of the QT interval. RESULTS In CAD patients, MFM orientation during the QT interval deviated from normal in 67% of patients without MI and in 85% of patients with MI. Trajectory plots deviated from those of the normal group, with deviation increasing with disease severity. Quantifying the distribution of QT interval duration using a smoothness index demonstrated a significant difference between the values for healthy subjects and non-MI patients, as well as MI patients with and without VT (p < 0.001). CONCLUSION The results reported demonstrate that disturbances in cardiac electrogenesis resulting from CAD may be assessed using MCG signal analysis.
Collapse
Affiliation(s)
- Peter Van Leeuwen
- Department of Biomagnetism, Grönemeyer Institute of Microtherapy, Bochum, Germany.
| | | | | | | |
Collapse
|
8
|
Komssi S, Huttunen J, Aronen HJ, Ilmoniemi RJ. EEG minimum-norm estimation compared with MEG dipole fitting in the localization of somatosensory sources at S1. Clin Neurophysiol 2004; 115:534-42. [PMID: 15036048 DOI: 10.1016/j.clinph.2003.10.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2003] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Dipole models, which are frequently used in attempts to solve the electromagnetic inverse problem, require explicit a priori assumptions about the cerebral current sources. This is not the case for solutions based on minimum-norm estimates. In the present study, we evaluated the spatial accuracy of the L2 minimum-norm estimate (MNE) in realistic noise conditions by assessing its ability to localize sources of evoked responses at the primary somatosensory cortex (SI). METHODS Multichannel somatosensory evoked potentials (SEPs) and magnetic fields (SEFs) were recorded in 5 subjects while stimulating the median and ulnar nerves at the left wrist. A Tikhonov-regularized L2-MNE, constructed on a spherical surface from the SEP signals, was compared with an equivalent current dipole (ECD) solution obtained from the SEFs. RESULTS Primarily tangential current sources accounted for both SEP and SEF distributions at around 20 ms (N20/N20m) and 70 ms (P70/P70m), which deflections were chosen for comparative analysis. The distances between the locations of the maximum current densities obtained from MNE and the locations of ECDs were on the average 12-13 mm for both deflections and nerves stimulated. In accordance with the somatotopical order of SI, both the MNE and ECD tended to localize median nerve activation more laterally than ulnar nerve activation for the N20/N20m deflection. Simulation experiments further indicated that, with a proper estimate of the source depth and with a good fit of the head model, the MNE can reach a mean accuracy of 5 mm in 0.2-microV root-mean-square noise. CONCLUSIONS When compared with previously reported localizations based on dipole modelling of SEPs, it appears that equally accurate localization of S1 can be obtained with the MNE. SIGNIFICANCE MNE can be used to verify parametric source modelling results. Having a relatively good localization accuracy and requiring minimal assumptions, the MNE may be useful for the localization of poorly known activity distributions and for tracking activity changes between brain areas as a function of time.
Collapse
Affiliation(s)
- S Komssi
- Helsinki Brain Research Center, Helsinki, Finland.
| | | | | | | |
Collapse
|
9
|
|
10
|
First 36-Channel Magnetocardiographic Study of CAD Patients in an Unshielded Laboratory for Interventional and Intensive Cardiac Care. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/3-540-44883-7_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
11
|
Ohyu S, Okamoto Y, Kuriki S. Use of the ventricular propagated excitation model in the magnetocardiographic inverse problem for reconstruction of electrophysiological properties. IEEE Trans Biomed Eng 2002; 49:509-19. [PMID: 12046695 DOI: 10.1109/tbme.2002.1001964] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A novel magnetocardiographic inverse method for reconstructing the action potential amplitude (APA) and the activation time (AT) on the ventricular myocardium is proposed. This method is based on the propagated excitation model, in which the excitation is propagated through the ventricle with nonuniform height of action potential. Assumption of stepwise waveform on the transmembrane potential was introduced in the model. Spatial gradient of transmembrane potential, which is defined by APA and AT distributed in the ventricular wall, is used for the computation of a current source distribution. Based on this source model, the distributions of APA and AT are inversely reconstructed from the QRS interval of magnetocardiogram (MCG) utilizing a maximum a posteriori approach. The proposed reconstruction method was tested through computer simulations. Stability of the methods with respect to measurement noise was demonstrated. When reference APA was provided as a uniform distribution, root-mean-square errors of estimated APA were below 10 mV for MCG signal-to-noise ratios greater than, or equal to, 20 dB. Low-amplitude regions located at several sites in reference APA distributions were correctly reproduced in reconstructed APA distributions. The goal of our study is to develop a method for detecting myocardial ischemia through the depression of reconstructed APA distributions.
Collapse
Affiliation(s)
- Shigeharu Ohyu
- Medical Systems Research and Development Center, Toshiba Corporation, Tochigi, Japan.
| | | | | |
Collapse
|
12
|
Fenici R, Brisinda D, Nenonen J, Morana G, Fenici P. First MCG multichannel instrumentation operating in an unshielded hospital laboratory for multi-modal cardiac electrophysiology: Preliminary experience. BIOMED ENG-BIOMED TE 2001. [DOI: 10.1515/bmte.2001.46.s2.219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Nenonen J, Pesola K, Feneici R, Lauerma K, Mäkijärvi M, Katila T. Current Density Imaging of Focal Cardiac Sources. BIOMED ENG-BIOMED TE 2001. [DOI: 10.1515/bmte.2001.46.s2.50] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Kandori A, Kanzaki H, Miyatake K, Hashimoto S, Itoh S, Tanaka N, Miyashita T, Tsukada K. A method for detecting myocardial abnormality by using a total current-vector calculated from ST-segment deviation of a magnetocardiogram signal. Med Biol Eng Comput 2001; 39:21-8. [PMID: 11214269 DOI: 10.1007/bf02345262] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A simple method to determine the state of ischaemia or fibrosis of myocardial cells has been developed. This method uses the ST wave of 64-channel magnetocardiogram (MCG) signals to calculate three parameters from the current-arrow map of the normal component signal of the MCG. One parameter is a total current vector that is obtained through summation of all current arrows. Another is a variance current vector calculated from the differential vector of two total current vectors at different times. The third is a flatness factor between the magnitude of the total current vector and the variance current vector. The three parameters are independent of the distance between the heart and the gradiometers. We measured the MCG signals of 29 healthy subjects, twenty patients with coronary artery disease (ten with previous myocardial infarction (MI) and ten with angina pectoris (AP)), and eight patients with cardiomyopathy (four with hypertrophic cardiomyopathy (HCM), three with dilated cardiomyopathy (DCM), and one with restrictive cardiomyopathy (RCM)). With our method, none of the healthy subjects tested positive for myocardial abnormalities, while 80% of the MI patients, 50% of the AP patients, and 100% of the cardiomyopathy patients tested positive. Although further testing is needed, we feel this simple technique enables easy diagnosis of myocardial damage.
Collapse
Affiliation(s)
- A Kandori
- Hitachi Ltd, Central Research Laboratory, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Nowak H, Leder U, Pohl P, Brauer H, Tenner U, Haueisen J. Diagnosis of Myocardial Viability Based on Magnetocardiographic Recordings 5 Biomagnetic Centre, University of Jena, Jena, Germany. BIOMED ENG-BIOMED TE 1999. [DOI: 10.1515/bmte.1999.44.s2.174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|