1
|
Setargie A, Wang C, Zhang L, Xu Y. Chromatographic and mass spectroscopic guided discovery of Trichoderma peptaibiotics and their bioactivity. ENGINEERING MICROBIOLOGY 2024; 4:100135. [PMID: 39629330 PMCID: PMC11611045 DOI: 10.1016/j.engmic.2023.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/07/2024]
Abstract
Peptaibiotics are linear or cyclic peptide antibiotics characterized by the non-proteinogenic amino acid, alpha-aminoisobutyric acid. They exhibit a wide range of bioactivity against various pathogens. This report presents a comprehensive review of analytical methods for Trichoderma cultivation, production, isolation, screening, purification, and characterization of peptaibiotics, along with their bioactivity. Numerous techniques are currently available for each step, and we focus on describing the most commonly used and recently developed chromatographic and spectroscopic techniques. Investigating peptaibiotics requires efficient culture media, growth conditions, and isolation and purification techniques. The combination of chromatographic and spectroscopic tools offers a better opportunity for characterizing and identifying peptaibiotics. The evaluation of the chemical and biological properties of this compound has also been explored concerning its potential application in pharmaceutical and other industries. This review aims to summarize available data on the techniques and tools used to screen and purify peptaibiotics from Trichoderma fungi and bioactivity against various pathogens.
Collapse
Affiliation(s)
- Adigo Setargie
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
- Institute of Biotechnology, Bahir Dar University, P.O. Box. 79, Bahir Dar, Ethiopia
| | - Chen Wang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|
2
|
van Bohemen AI, Ruiz N, Zalouk-Vergnoux A, Michaud A, Robiou du Pont T, Druzhinina I, Atanasova L, Prado S, Bodo B, Meslet-Cladiere L, Cochereau B, Bastide F, Maslard C, Marchi M, Guillemette T, Pouchus YF. Pentadecaibins I-V: 15-Residue Peptaibols Produced by a Marine-Derived Trichoderma sp. of the Harzianum Clade. JOURNAL OF NATURAL PRODUCTS 2021; 84:1271-1282. [PMID: 33600182 DOI: 10.1021/acs.jnatprod.0c01355] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the course of investigations on peptaibol chemodiversity from marine-derived Trichoderma spp., five new 15-residue peptaibols named pentadecaibins I-V (1-5) were isolated from the solid culture of the strain Trichoderma sp. MMS1255 belonging to the T. harzianum species complex. Phylogenetic analyses allowed precise positioning of the strain close to T. lentiforme lineage inside the Harzianum clade. Peptaibol sequences were elucidated on the basis of their MS/MS fragmentation and extensive 2D NMR experiments. Amino acid configurations were determined by Marfey's analyses. The pentadecaibins are based on the sequences Ac-Aib1-Gly2-Ala3-Leu4-Aib/Iva5-Gln6-Aib/Iva7-Val/Leu8-Aib9-Ala10-Aib11-Aib12-Aib13-Gln14-Pheol15. Characteristic of the pentadecaibin sequences is the lack of the Aib-Pro motif commonly present in peptaibols produced by Trichoderma spp. Genome sequencing of Trichoderma sp. MMS1255 allowed the detection of a 15-module NRPS-encoding gene closely associated with pentadecaibin biosynthesis. Pentadecaibins were assessed for their potential antiproliferative and antimicrobial activities.
Collapse
Affiliation(s)
| | - Nicolas Ruiz
- Université de Nantes, MMS - EA2160, 44000 Nantes, France
| | | | - Aurore Michaud
- Université de Nantes, MMS - EA2160, 44000 Nantes, France
| | | | - Irina Druzhinina
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1040 Vienna, Austria
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095 Nanjing, China
| | - Lea Atanasova
- Department of Food Science and Technology, University of Natural Resources and Life Sciences - BOKU, 1190 Vienna, Austria
| | - Soizic Prado
- Muséum National d'Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-organismes, UMR 7245, CP 54, 57 Rue Cuvier, 75005 Paris, France
| | - Bernard Bodo
- Muséum National d'Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-organismes, UMR 7245, CP 54, 57 Rue Cuvier, 75005 Paris, France
| | - Laurence Meslet-Cladiere
- Université de Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, 29280 Plouzané, France
| | - Bastien Cochereau
- Université de Nantes, MMS - EA2160, 44000 Nantes, France
- Université de Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, 29280 Plouzané, France
| | - Franck Bastide
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | - Corentin Maslard
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | - Muriel Marchi
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | - Thomas Guillemette
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | | |
Collapse
|
3
|
Saravanakumar K, Yu C, Dou K, Wang M, Li Y, Chen J. Biodiversity of Trichoderma Community in the Tidal Flats and Wetland of Southeastern China. PLoS One 2016; 11:e0168020. [PMID: 28002436 PMCID: PMC5176281 DOI: 10.1371/journal.pone.0168020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/24/2016] [Indexed: 11/26/2022] Open
Abstract
To investigate the biodiversity of Trichoderma (Hypocreaceae) and their relation to sediment physical and chemical properties, we collected a total of 491 sediment samples from coastal wetlands (tidal flat and wetland) in Southeast China. Further, we applied two types of molecular approaches such as culture dependent and independent methods for identification of Trichoderma spp. A total of 254 isolates were obtained and identified to 13 species such as T. aureoviride, T. asperellum, T. harzianum, T. atroviride, T. koningiopsis, T. longibrachiatum, T. koningii. T. tawa, T. viridescens, T. virens, T. hamatum, T. viride, and T. velutinum by the culture-dependent (CD) method of these, T. tawa was newly described in China. Subsequently, the culture indepented method of 454 pyrosequencing analysis revealed a total of six species such as T. citrinoviride, T. virens, T. polysporum, T. harzianum/Hypocrea lixii and two unknown species. Notably, T. citrinoviride and T. polysporum were not found by the CD method. Therefore, this work revealed that the combination of these two methods could show the higher biodiversity of Trichoderma spp., than either of this method alone. Among the sampling sites, Hangzhou, Zhejiang Province, exhibited rich biodiversity and low in Fengxian. Correlation and Redundancy discriminant analysis (RDA) revealed that sediment properties of temperature, redox potential (Eh) and pH significantly influenced the biodiversity of Trichoderma spp.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P.R. China
| | - Chuanjin Yu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P.R. China
| | - Kai Dou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P.R. China
| | - Meng Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P.R. China
| | - Yaqian Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P.R. China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P.R. China
| |
Collapse
|
4
|
Mohamed-Benkada M, François Pouchus Y, Vérité P, Pagniez F, Caroff N, Ruiz N. Identification and Biological Activities of Long-Chain Peptaibols Produced by a Marine-Derived Strain ofTrichoderma longibrachiatum. Chem Biodivers 2016; 13:521-30. [DOI: 10.1002/cbdv.201500159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 12/11/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Mustapha Mohamed-Benkada
- Département de Biotechnologie; Faculté des Sciences de la Nature et de la Vie; Université des Sciences et de la Technologie d'Oran-Mohamed Boudiaf (USTO-MB); El Mnaouar, B.P. 1505 Bir El Djir 31000 Oran Algeria
| | | | - Philippe Vérité
- Laboratoire de Chimie Analytique; Faculté de Médecine et Pharmacie; Université de Rouen; FR-76000 Rouen
| | - Fabrice Pagniez
- Laboratoire de Parasitologie et Mycologie Médicale, IICiMed; Faculté de Pharmacie; Université de Nantes; FR-44000 Nantes
| | - Nathalie Caroff
- Laboratoire Thérapeutiques Cliniques et Expérimentales des Infections; Faculté de Médecine; Université de Nantes; FR-44000 Nantes
| | - Nicolas Ruiz
- Faculté de Pharmacie, MMS; Université de Nantes; FR-44000 Nantes
| |
Collapse
|
5
|
Carroux A, Van Bohemen AI, Roullier C, Robiou du Pont T, Vansteelandt M, Bondon A, Zalouk-Vergnoux A, Pouchus YF, Ruiz N. Unprecedented 17-residue peptaibiotics produced by marine-derived Trichoderma atroviride. Chem Biodivers 2013; 10:772-86. [PMID: 23681725 DOI: 10.1002/cbdv.201200398] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Indexed: 11/07/2022]
Abstract
In the course of investigations on marine-derived toxigenic fungi, five strains of Trichoderma atroviride were studied for their production of peptaibiotics. While these five strains were found to produce classical 19-residue peptaibols, three of them exhibited unusual peptidic sodium-adduct [M + 2 Na](2+) ion peaks at m/z between 824 and 854. The sequencing of these peptides led to two series of unprecedented 17-residue peptaibiotics based on the model Ac-XXX-Ala-Ala-XXX-XXX-Gln-Aib-Aib-Aib-Ala/Ser-Lxx-Aib-Pro-XXX-Aib-Lxx-[C(129) ]. The C-terminus of these new peptides was common to all of them, and its elemental formula C5 H9 N2 O2 was established by HR-MS. It could correspond to the cyclized form of N(δ) -hydroxyornithine which has already been observed at the C-terminus of various peptidic siderophores. The comparison of the sequences of 17- and 19-residue peptides showed similarities for positions 1-16. This observation seems to indicate a common biosynthesis pathway. Both new 17-residue peptaibiotics and 19-residue peptaibols exhibited weak in vitro cytotoxicities against KB cells.
Collapse
Affiliation(s)
- Angélique Carroux
- University of Nantes, LUNAM, Faculty of Pharmacy, MMS, F-44000 Nantes
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhang Y, Mu J, Feng Y, Li H, Dong X. Biological and chemical diversity of cytotoxin-producing symbiotic marine fungi in intertidal zone of Dalian. CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-012-5442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Kerzaon I, Pouchus YF, Monteau F, Le Bizec B, Nourrisson MR, Biard JF, Grovel O. Structural investigation and elucidation of new communesins from a marine-derived Penicillium expansum Link by liquid chromatography/electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:3928-3938. [PMID: 19918940 DOI: 10.1002/rcm.4330] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Penicillium expansum is a ubiquitous species for which there are only few reports for chemical investigation in marine environments. Among the numerous secondary metabolites produced by this species, communesins represent a new class of cytotoxic and insecticidal indole alkaloids. In this study, we investigated a marine P. expansum strain exhibiting neuroactivity on a Diptera larvae bioassay. Bio-guided purification led to the isolation and the identification of communesin B as the main active compound by HRMS and 1H and 13C NMR. Liquid chromatography analyses with detection by electrospray ionization coupled with tandem mass spectrometry (LC/ESI-MS/MS) and high-resolution tandem mass spectrometry (LC/HRMS/MS) allowed the identification and characterization of four other known communesins (A, D, E and F) in the crude extract. A fragmentation model for dimethyl epoxide communesins was proposed after detailed interpretation of their MS/MS spectra. Further analyses of the extract using the modelled fragmentations led to the detection of seven new communesins found as minor compounds. Chemical structural elucidation of these new derivatives is discussed based on their fragmentation characteristics.
Collapse
Affiliation(s)
- Isabelle Kerzaon
- Université de Nantes, MMS-EA2160, Faculté de Pharmacie, F-44035 Nantes, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Ruiz N, Petit K, Vansteelandt M, Kerzaon I, Baudet J, Amzil Z, Biard JF, Grovel O, Pouchus YF. Enhancement of domoic acid neurotoxicity on Diptera larvae bioassay by marine fungal metabolites. Toxicon 2009; 55:805-10. [PMID: 19941880 DOI: 10.1016/j.toxicon.2009.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/16/2009] [Accepted: 11/16/2009] [Indexed: 11/25/2022]
Abstract
Peptaibols are small linear fungal peptides which are produced in the marine environment. They exhibit neurotoxicity by forming pores in neuronal membranes. This work describes their combine effect with domoic acid, a neurotoxic phycotoxin, on Diptera larvae. The Acute toxicity bioassay on this biological model was tested with a panel of different toxins (microbial, algal or fungal). It allowed the discrimination of neurotoxins and non-neurotoxic toxins, and an evaluation of the toxicity level (MED and ED(50)) which were correlated with published LD(50) in mice for neurotoxins tested. The highest activities on this test were found for Na(+) channel blockers tetrodotoxin (ED(50) = 0.026 mg/kg) and saxitoxin (ED(50) = 0.18 mg/kg). Domoic acid was less active with an ED(50) = 7.6 mg/kg. For synergism study, longibrachin-A-I, a 20-mer peptaibol isolated from cultures of a marine-derived strain of Trichoderma longibrachiatum Rifai was chosen. Bioassay results confirmed its neuroactivity. Its level of toxicity (ED(50) = 270 mg/kg) was lower than those of phycotoxins tested but higher than mycotoxin ones. Injected together, longibrachin-A-I and domoic acid exhibited an increase of their activities. With doses of longibrachin-A-I below its Minimal Effective Dose (MED), the synergism factor which expresses the enhancement of domoic acid toxicity could reach 34.5. Both domoic acid and longibrachin-A-I are acting on ion channels and pores in neuronal membranes which contribute to the intake of Ca(2+) into cells.
Collapse
Affiliation(s)
- Nicolas Ruiz
- University of Nantes, Faculty of Pharmacy, MMS - EA 2160, F-44000 Nantes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Degenkolb T, Brückner H. Peptaibiomics: Towards a Myriad of Bioactive Peptides Containing Cα-Dialkylamino Acids? Chem Biodivers 2008; 5:1817-43. [DOI: 10.1002/cbdv.200890171] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and mycotoxins. Mycol Prog 2008. [DOI: 10.1007/s11557-008-0563-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Stoppacher N, Zeilinger S, Omann M, Lassahn PG, Roitinger A, Krska R, Schuhmacher R. Characterisation of the peptaibiome of the biocontrol fungus Trichoderma atroviride by liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:1889-1898. [PMID: 18470867 DOI: 10.1002/rcm.3568] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The present study describes the liquid chromatography/tandem mass spectrometry (LC/MS/MS)-based screening and characterisation of linear antibiotic alpha-aminoisobutyric acid (Aib)-containing non-ribosomal peptides (NRP) in culture samples of the filamentous fungus Trichoderma atroviride ATCC 74058. Fungal culture filtrates were enriched by solid-phase extraction (SPE) and separated by reversed-phase high-performance liquid chromatography (HPLC), prior to mass spectrometric (MS) and tandem mass spectrometric (MS/MS) analysis on a triple quadrupole-linear ion trap tandem mass spectrometer. A workflow consisting of two alternative screening strategies was applied to search for NRP. Various MS full scan and MS/MS measurement modes led to the identification of 16 trichorzianines and diagnostic in-source fragment ions of another four trichorzianines. Furthermore, we detected 15 novel Aib-containing peptides with putative molecular weights ranging from 951.7 to 1043.7 g/mol (monoisotopic masses), composed of up to 9 amino acids. While the amino acid sequences of the novel peptaibiotics showed typical microheterogeneity and consisted of the amino acids Leu/Ile, Aib, Ser, Val/Iva, Gly, Ac-Aib, Tyr and Phe, the mass increments at the C-termini of the peptides were not assignable to any residues described in the literature. The amino acid sequences were confirmed and structure proposals made for both molecule termini by high-resolution MS and MS/MS analysis. We propose the group name 'trichoatrokontins' for the newly identified peptaibiotics. As no other peptaibiotics were found in the culture samples, the peptaibiome of the investigated strain of T. atroviride consists of at least 20 trichorzianines and 15 trichoatrokontins.
Collapse
Affiliation(s)
- Norbert Stoppacher
- Department for Agrobiotechnology , University of Natural Resources and Applied Life Sciences, Vienna, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Since the 1990s, interest in natural product research has increased considerably. Following several outstanding developments in the areas of separation methods, spectroscopic techniques, and sensitive bioassays, natural product research has gained new attention for providing novel chemical entities. This updated review deals with sample preparation and purification, recent extraction techniques used for natural product separation, liquid-solid and liquid-liquid isolation techniques, as well as multi-step chromatographic operations. It covers examples of papers published since the NPR review 'Modern separation methods' by Marston and Hostettmann,1 with major emphasis on methods developed and the research undertaken since 2000.
Collapse
Affiliation(s)
- Otto Sticher
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich 8093, Switzerland
| |
Collapse
|
13
|
|
14
|
Neuhof T, Dieckmann R, Druzhinina IS, Kubicek CP, von Döhren H. Intact-cell MALDI-TOF mass spectrometry analysis of peptaibol formation by the genus Trichoderma/Hypocrea: can molecular phylogeny of species predict peptaibol structures? Microbiology (Reading) 2007; 153:3417-3437. [PMID: 17906141 DOI: 10.1099/mic.0.2007/006692-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peptaibols are characteristic linear alpha-aminoisobutyrate-containing peptides produced by certain Ascomycetes, especially of the genus Hypocrea/Trichoderma [Hypocrea and Trichoderma are the names for the teleo- and anamorph forms of the same taxon; where known to occur in nature, the teleomorph is used to name the species. To aid the inexperienced reader, both names (the less well known one in parentheses) are given at the first mention of each species.] Here we have investigated whether phylogenetic relationships within Trichoderma permit a prediction of the peptaibol production profiles. To this end, representative strains from a third (28) of the known species of Trichoderma, identified by the sequences of diagnostic genes and covering most clades of the established multilocus phylogeny of Trichoderma/Hypocrea, were investigated by intact-cell MALDI-TOF mass spectrometry. Peptaibols were detected in all strains, and some strains were found to produce up to five peptide families of different sizes. Comparison of the data with phylogenies derived from rRNA spacer regions (ITS1 and 2) and RNA polymerase subunit B (rpb2) gene sequences did not show a strict correlation with the types and sequences of the peptaibols produced, but the production of some groups of peptaibols appears to be found only in some clades or sections of the genus, which could be used for more targeted screening of novel compounds of this type. In an analysis of peptaibol structures, we have defined conserved key positions and have further identified and compared sequences of the corresponding adenylate domains within non-ribosomal peptide synthetases producing trichovirins, paracelsins and atroviridins. These phylogenies are not concordant with those of their producers Hypocrea virens, Hypocrea jecorina and Hypocrea atroviridis as obtained from ITS1 and 2, and rpb2, respectively, and therefore hint at a complex history of peptaibol diversity.
Collapse
Affiliation(s)
- Torsten Neuhof
- TU Berlin, Institut für Chemie, FG Biochemie und Molekulare Biologie, Franklinstr. 29, 10587 Berlin, Germany
| | - Ralf Dieckmann
- TU Berlin, Institut für Chemie, FG Biochemie und Molekulare Biologie, Franklinstr. 29, 10587 Berlin, Germany
| | - Irina S Druzhinina
- Forschungsbereich Gentechnik und Angewandte Biochemie, Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften, TU Wien, Getreidemarkt 9-166, 1060 Wien, Austria
| | - Christian P Kubicek
- Forschungsbereich Gentechnik und Angewandte Biochemie, Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften, TU Wien, Getreidemarkt 9-166, 1060 Wien, Austria
| | - Hans von Döhren
- TU Berlin, Institut für Chemie, FG Biochemie und Molekulare Biologie, Franklinstr. 29, 10587 Berlin, Germany
| |
Collapse
|
15
|
Poirier L, Amiard JC, Mondeguer F, Quiniou F, Ruiz N, Pouchus YF, Montagu M. Determination of peptaibol trace amounts in marine sediments by liquid chromatography/electrospray ionization-ion trap-mass spectrometry. J Chromatogr A 2007; 1160:106-13. [PMID: 17459402 DOI: 10.1016/j.chroma.2007.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 04/02/2007] [Accepted: 04/05/2007] [Indexed: 10/23/2022]
Abstract
Extraction followed by reverse phase liquid chromatography (LC)/electrospray ionization-ion trap-mass spectrometry (ESI-IT-MS) analysis has been successfully developed for the determination of peptaibols, fungal toxic metabolites, in marine sediments. Spiking experiments showed that the mean recovery of target compounds exceeded 85% at a spiking level of 10 ng/g of sediment (wet weight). Detection and quantification limits were 250 and 830 pg/g of sediment, respectively. The method developed constituted the first sensitive assay for quantification of peptaibol trace amounts in a natural environment. A concentration of 5 ng/g in sediment samples collected from Fier d'Ars was found.
Collapse
Affiliation(s)
- Laurence Poirier
- Université de Nantes, Nantes Atlantique Universités, SMAB, EA2160, Faculté de pharmacie, 1 rue G. Veil-BP 53508, Nantes F-44000, France.
| | | | | | | | | | | | | |
Collapse
|
16
|
Poirier L, Quiniou F, Ruiz N, Montagu M, Amiard JC, Pouchus YF. Toxicity assessment of peptaibols and contaminated sediments on Crassostrea gigas embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 83:254-62. [PMID: 17582518 DOI: 10.1016/j.aquatox.2007.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 04/30/2007] [Indexed: 05/15/2023]
Abstract
Peptaibols are known membrane-modifying peptides that were recently detected in marine sediments and mussels collected from a shellfish farming area (Fier d'Ars, Atlantic coast, France). In this investigation, embryotoxicity bioassays with oysters (Crassostrea gigas) were performed to assess acute toxicity of alamethicin and different groups of peptaibols produced by a Trichoderma longibrachiatum strain isolated from marine environment. C. gigas embryos appeared very sensitive to all the metabolites examined with higher toxic effects for long-sequence peptides (EC50 ranging from 10 to 64 nM). D-shaped larvae with mantle abnormality were particularly noticed when peptaibol concentrations increased. Disturbances of embryogenesis were also observed following exposure to organic and aqueous extract of sediments from Fier d'Ars (EC50=42.4 and 6.6 g L(-1) dry weight, respectively). Although peptaibol concentrations measured in these sediments could explain only a part of the toxic effects observed, this study suggests that these mycotoxins can induce larval abnormalities in a population of exposed animals at environmentally realistic concentrations. Their detection in coastal areas devoted to bivalve culture should be taken into account.
Collapse
Affiliation(s)
- Laurence Poirier
- Université de Nantes, Nantes Atlantique Universités, SMAB EA2160, Faculté de pharmacie, 1 rue Gaston Veil-BP 53508, Nantes F-44000, France.
| | | | | | | | | | | |
Collapse
|
17
|
Poirier L, Montagu M, Landreau A, Mohamed-Benkada M, Grovel O, Sallenave-Namont C, Biard JF, Amiard-Triquet C, Amiard JC, Pouchus YF. Peptaibols: stable markers of fungal development in the marine environment. Chem Biodivers 2007; 4:1116-28. [PMID: 17589880 DOI: 10.1002/cbdv.200790100] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Different peptaibols were observed in both fresh and frozen marine sediments collected from a marine area devoted to bivalve culture (Fier d'Ars, Atlantic coast, France). The identification of the peptaibols was based on a three-step mass-spectrometric analysis: observation of doubly charged ions with a characteristic isotopic profile, cleavage and observation of C- and N-terminal fragments, and partial sequencing of the N-terminal segments. The MS characteristics indicated numerous similarities between the peptaibols detected and those produced by different strains of Trichoderma species isolated from fresh sediments. Peptaibols were also detected in mussel samples collected at the same site. This constitutes the first observation of contamination of the marine human-food chain by fungal metabolites. Since peptaibols were readily observed both in fresh sediments and in samples kept frozen for several years, these compounds can be considered as stable markers of the development of Trichoderma in the marine environment.
Collapse
Affiliation(s)
- Laurence Poirier
- Université de Nantes, Nantes Atlantique Universités, SMAB, EA2160, Faculté de pharmacie, Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ruiz N, Wielgosz-Collin G, Poirier L, Grovel O, Petit KE, Mohamed-Benkada M, du Pont TR, Bissett J, Vérité P, Barnathan G, Pouchus YF. New Trichobrachins, 11-residue peptaibols from a marine strain of Trichoderma longibrachiatum. Peptides 2007; 28:1351-8. [PMID: 17629355 DOI: 10.1016/j.peptides.2007.05.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 05/25/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
A marine strain of Trichoderma longibrachiatum isolated from blue mussels (Mytilus edulis) was investigated for short peptaibol production. Various 11-residue peptaibols, obtained as microheterogenous mixtures after a chromatographic fractionation, were identified by positive mass spectrometry fragmentation (ESI-IT-MS(n), CID-MS(n) and GC/EI-MS). Thirty sequences were identified, which is the largest number of analogous sequences so far observed at once. Twenty-one sequences were new, and nine others corresponded to peptaibols already described. These peptaibols belonged to the same peptidic family based on the model Ac-Aib-xxx-xxx-xxx-Aib-Pro-xxx-xxx-Aib-Pro-xxol. They were named trichobrachin A when the residue in position 2 was an Asn, and trichobrachin C when it was a Gln. Major chromatographic sub-fractions, corresponding to purified peptaibols, were assayed for their cytotoxic activity. Trichobrachin A-IX and trichobrachin C exhibited the highest activities. There was an exponential relation between their relative hydrophobicity and their cytotoxicity on KB cells.
Collapse
Affiliation(s)
- Nicolas Ruiz
- Université de Nantes, Nantes Atlantique Universités, SMAB-EA 2160, Faculté de pharmacie, BP 53508, F-44000 Nantes, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Degenkolb T, Kirschbaum J, Brückner H. New Sequences, Constituents, and Producers of Peptaibiotics: An Updated Review. Chem Biodivers 2007; 4:1052-67. [PMID: 17589876 DOI: 10.1002/cbdv.200790096] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To date, 18 genera of imperfect and ascomycetous fungi have been recognized to produce ca. 700 individual sequences of peptaibiotics. These are linear polypeptide antibiotics which i) have a molecular weight between 500 and 2,200 Dalton, thus containing 5-21 residues; ii) show a high content of alpha-aminoisobutyric acid; iii) are characterized by the presence of other nonproteinogenic amino acids and/or lipoamino acids; iv) possess an acylated N-terminus, and v) have a C-terminal residue that, in most of them, consists of a free or acetylated amide-bonded 1,2-amino alcohol, but might also be an amine, amide, free amino acid, 2,5-dioxopiperazine, or sugar alcohol. From April 2003 until present, ca. 300 new individual sequences of peptaibiotics have been published in the literature, but most of them have not yet been included in databases. To summarize these new sequences and novel constituents, as well as to introduce fungal species hitherto unknown as producers of peptaibiotics, the relevant literature is reviewed. Furthermore, ecophysiological and taxonomic aspects of the producing fungi are discussed.
Collapse
Affiliation(s)
- Thomas Degenkolb
- Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Science, University of Giessen, Heinrich-Buff-Ring 26-32, Giessen, Germany
| | | | | |
Collapse
|
20
|
Kubicek CP, Komoń-Zelazowska M, Sándor E, Druzhinina IS. Facts and Challenges in the Understanding of the Biosynthesis of Peptaibols byTrichoderma. Chem Biodivers 2007; 4:1068-82. [PMID: 17589877 DOI: 10.1002/cbdv.200790097] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Species of the mitosporic filamentous fungal genus Trichoderma are prominent producers of both short (7-11 residues) and long (18-20 residues) peptaibols and peptaibiotics, which are thought to be involved in their interaction with other living systems. Numerous reviews are available regarding biodiversity, structure, and mode of action of these peptide derivatives, but little emphasis has been paid to the physiology and genetics of their formation. In this review article, we used the recent knowledge on biosynthesis and production of these components to speculate on some of the unknown points. We also highlight areas where further research is most urgently needed.
Collapse
Affiliation(s)
- Christian P Kubicek
- Division of Gene Technology and Applied Biochemistry (DGTAB), Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/1665, Vienna, Austria
| | | | | | | |
Collapse
|
21
|
Abstract
The fungal genus Trichoderma has various applications in industry and in medicine, and several species have economic importance as sources of enzymes, antibiotics, plant growth promoters, decomposers of xenobiotics, and as commercial biofungicides. Peptaibiotics and peptaibols are a class of linear peptides synthesized by such fungi, and more than 300 have been described to date. Of this class, those compounds exhibiting antimicrobial activity are referred to as antibiotic peptides. In this review, the biosynthesis, fermentation, structure elucidation (by MS and NMR techniques in particular) and biological activity of antibiotic peptides from Trichoderma species are described.
Collapse
Affiliation(s)
- Juliana F de S Daniel
- Departamento de Química, Universidade Federal de São Carlos, CP 676, cep 13.565-905, São Carlos-SP, Brazil.
| | | |
Collapse
|
22
|
Stoppacher N, Reithner B, Omann M, Zeilinger S, Krska R, Schuhmacher R. Profiling of trichorzianines in culture samples of Trichoderma atroviride by liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:3963-3970. [PMID: 18008385 DOI: 10.1002/rcm.3301] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Peptaibols are bioactive linear peptides of 5-20 amino acid residues and contain specific non-proteinogenic amino acids such as alpha-aminoisobutyric acid (Aib). They are antibiotic secondary metabolites of moulds belonging predominantly to the genus Trichoderma, some species of which are successfully used as biocontrol organisms to fight against plant diseases. In the present study we developed a profiling method for the relative quantification of 16 trichorzianine peptaibols in culture samples of T. atroviride and the comparison of their expression patterns by liquid chromatography/electrospray ionisation tandem mass spectrometry (LC/ESI-MS/MS). The method is based on selected reaction monitoring (SRM) in a triple-quadrupole tandem mass spectrometer using three SRM transitions per compound. The trichorzianines were enriched by solid-phase extraction (SPE) on C(18) cartridges. SPE recoveries were evaluated for diluted trichorzianine standard solutions and ranged from 72-97%. Suppression of the ionisation of the peptaibols in the ESI source ranged from 67-128% for most of the trichorzianines in culture filtrates of two different strains of T. atroviride and in spiked culture medium. In the case of trichorzianines TA Vb, TA VIa and TA VIb the presence of matrix components in the fungal culture samples caused a reduction of the SRM signal, with intensities between 34% and 56% relative to pure standard solutions. Finally, the profiling method was successfully applied to culture samples of T. atroviride P1 wild-type and two deletion mutants showing different trichorzianine expression patterns characteristic for the investigated fungal strains. This is the first LC-SRM profiling method for peptaibols for the investigation of peptaibol expression patterns in fungal culture samples.
Collapse
Affiliation(s)
- Norbert Stoppacher
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Applied Life Sciences-Vienna, Konrad Lorenz Str. 20, Tulln, Austria
| | | | | | | | | | | |
Collapse
|
23
|
Xiao-Yan S, Qing-Tao S, Shu-Tao X, Xiu-Lan C, Cai-Yun S, Yu-Zhong Z. Broad-spectrum antimicrobial activity and high stability of Trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiol Lett 2006; 260:119-25. [PMID: 16790027 DOI: 10.1111/j.1574-6968.2006.00316.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Antimicrobial metabolites produced by Trichoderma koningii SMF2 exhibited antimicrobial activity against a range of Gram-positive bacterial and fungal phytopathogens. Purification of these metabolites was achieved using combinations of gel filtration and high-performance liquid chromatography. Identified by liquid chromatography electrospray ionization tandem mass spectrometry, the active metabolites proved to be three known peptaibols: Trichokonin VI, VII and VIII. The Trichokonins were stable and remained biological active over a wide pH range and at every temperature tested, showing no loss of activity even after autoclaving. Trichokonins were insensitive to proteolytic enzymes. Trichokonin VI takes on typical helical structure and the structure changes only slightly at different temperatures and pH values. The present study presented the potential of Trichokonins to be used as biological control agents.
Collapse
Affiliation(s)
- Song Xiao-Yan
- State Key Laboratory of Microbial Technology, Shandong University, Ji'nan, China
| | | | | | | | | | | |
Collapse
|
24
|
Krause C, Kirschbaum J, Brückner H. Peptaibiomics: an advanced, rapid and selective analysis of peptaibiotics/peptaibols by SPE/LC-ES-MS. Amino Acids 2006; 30:435-43. [PMID: 16622603 DOI: 10.1007/s00726-005-0275-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 10/01/2005] [Indexed: 10/24/2022]
Abstract
"Proteomics" and "peptidomics" are used as technical terms to define the analysis and study of all proteins and peptides expressed in an organism or tissue. In analogy we propose the name peptaibiomics for the analysis of a group of fungal peptide antibiotics (peptaibiotics) containing the characteristic amino acid Aib (alpha-aminoisobutyric acid). In analogy to the peptidome the complete expression of peptaibiotics by fungal multienzyme complexes should be named the peptaibiome. Peptaibiotics are defined as peptides containing Aib and exerting a variety of bioactivities. They comprise the sub-groups of N-acetylated peptaibols, characterized also by a C-terminal amide-linked 2-amino alcohol, and lipopeptaibols having in place of an acetyl group a lipophilic fatty acid acyl group. Furthermore, lipoaminopeptides are also known with long-chain fatty acid on the N-termini, a lipoamino acid in position three and a strongly basic secondary or tertiary amine form a subgroup of mixed forms which could not be integrated in one of these three previously mentioned groups. Here we present a specific and rapid screening method on the peptaibiome applicable directly onto filamentous fungi cultured in a single Petri dish. The method comprises solid-phase extraction (SPE) of peptaibiotics followed by on-line reversed-phase HPLC coupled to an ion trap electrospray tandem mass spectrometer (ES-MS). The presence of these peptides is indicated by characteristic mass differences of Deltam = 85.1 Da representing Aib-residues which can be observed in the b-series of acylium fragment ions resulting from ES-MS. Partial sequences can be deduced from the data and compared with structures compiled in electronic peptaibol data bases. The judgement is possible whether or not structures are novel, already known or related to known structures. Suitability of the method is demonstrated with the analysis of strains of Trichoderma and its teleomorph Hypocrea. New sequences of peptaibiotics are presented and those being related to established 10- to 18-residue peptaibols trichovirin, trichogin and trichotoxin, which have been described in the literature.
Collapse
Affiliation(s)
- C Krause
- Department of Food Sciences, Interdisciplinary Research Center, University of Giessen, Giessen, Germany
| | | | | |
Collapse
|
25
|
Mohamed-Benkada M, Montagu M, Biard JF, Mondeguer F, Verite P, Dalgalarrondo M, Bissett J, Pouchus YF. New short peptaibols from a marine Trichoderma strain. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:1176-80. [PMID: 16541408 DOI: 10.1002/rcm.2430] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The production of peptaibols by a marine-related Trichoderma longibrachiatum strain was studied using electrospray ionisation multiple-stage ion trap mass spectrometry (ESI-MSn-IT) and gas chromatography/electron impact mass spectrometry (GC/EI-MS). Two major groups of peptaibols were identified, those with long sequences (20 amino acids) and others with short sequences (11 amino acids). This paper describes the methodology used to establish the sequences of short peptaibols in a mixture without previous individual separation. Nine peptaibols were identified. Among them, eight are new, namely as trichobrachin A I-IV (Aib9-Pro10 sequence) and as trichobrachin B I-IV (Val9-Pro10 sequence). Original Pro6-Val7 and Val9-Pro10 sequences have to be noted.
Collapse
Affiliation(s)
- Mustapha Mohamed-Benkada
- Université de Nantes, Groupe SMAB-EA 2160, Faculté de pharmacie, BP 53508, 44035 Nantes Cedex 1, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Szekeres A, Leitgeb B, Kredics L, Antal Z, Hatvani L, Manczinger L, Vágvölgyi C. Peptaibols and related peptaibiotics of Trichoderma. A review. Acta Microbiol Immunol Hung 2005; 52:137-68. [PMID: 16003936 DOI: 10.1556/amicr.52.2005.2.2] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peptaibols and the related peptaibiotics are linear, amphipathic polypeptides. More than 300 of these secondary metabolites have been described to date. These compounds are composed of 5-20 amino acids and are generally produced in microheterogeneous mixtures. Peptaibols and peptaibiotics with unusual amino acid content are the result of non-ribosomal biosynthesis. Large multifunctional enzymes known as peptide synthetases assemble these molecules by the multiple carrier thiotemplate mechanism from a remarkable range of precursors, which can be N-methylated, acylated or reduced. Peptaibols and peptaibiotics show interesting physico-chemical and biological properties including the formation of pores in bilayer lipid membranes, as well as antibacterial, antifungal, occasionally antiviral activities, and may elicit plant resistance. The three-dimensional structure of peptaibols and peptaibiotics is characterized predominantly by one type of the helical motifs alpha-helix, 3(10)-helix and beta-bend ribbon spiral. The aim of this review is to summarize the data available about the biosynthesis, biological activity and conformational properties of peptaibols and peptaibiotics described from Trichoderma species.
Collapse
Affiliation(s)
- A Szekeres
- Department of Microbiology, Faculty of Sciences, University of Szeged, P.O. Box 533, H-6701 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
27
|
Blumenthal CZ. Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei: justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi. Regul Toxicol Pharmacol 2004; 39:214-28. [PMID: 15041150 DOI: 10.1016/j.yrtph.2003.09.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Indexed: 11/23/2022]
Abstract
Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei are three important production organisms used in industrial fermentations. Several of the fungal secondary metabolites produced by selected strains of these three fungi are capable of eliciting toxicity in animals. Among those toxic substances are the well-known mycotoxins 3-nitropropionic acid and ochratoxin A. However, many others, such as kojic acid, may not be true mycotoxins. The production, extraction, chemical structure, and the toxicity (expressed as LD(50)) of these substances are reviewed. Production of toxic secondary metabolites in A. niger, A. oryzae, and T. reesei is strain-specific and environment-dependent. Considering all of the safety measures taken in the industrial production process, these three fungal species are safe to use. The recently revised JECFA specification for mycotoxins in food enzyme preparations is also discussed. The extent of mycotoxin tests in food enzyme preparations should be judged on a case-by-case basis, through a careful evaluation based on knowledge of taxonomy, biochemistry, and genetics. In many cases, the testing scope at the level of genus should be sufficient. In other cases, the scope can even be further narrowed based on scientific knowledge and assessment.
Collapse
|
28
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2002; 37:652-661. [PMID: 12112749 DOI: 10.1002/jms.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|