1
|
Optimization of Low-Biomass Sample Collection and Quantitative PCR-Based Titration Impact 16S rRNA Microbiome Resolution. Microbiol Spectr 2022; 10:e0225522. [PMID: 36377933 PMCID: PMC9769501 DOI: 10.1128/spectrum.02255-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The major aquatic interface between host and environment in teleost finfish species is the gill. The diversity of this infraclass, high complexity of the organ, and its direct exposure to the surrounding environment make it an ideal candidate for furthering our understanding of the intertwined relationships between host and microbiome. Capturing the structure and diversity of bacterial communities from this low-biomass, inhibitor-rich tissue can, however, prove challenging. Lessons learned in doing so are directly applicable to similar sample types in other areas of microbiology. Through the development of a quantitative PCR assay for both host material and 16S rRNA genes, we tested and developed a robust method for low-biomass sample collection which minimized host DNA contamination. Quantification of 16S rRNA facilitated not only the screening of samples prior to costly library construction and sequencing but also the production of equicopy libraries based on 16S rRNA gene copies. A significant increase in diversity of bacteria captured was achieved, providing greater information on the true structure of the microbial community. Such findings offer important information for determining functional processes. Results were confirmed across fresh, brackish, and marine environs with four different fish species, with results showing broad homology between samples, demonstrating the robustness of the approach. Evidence presented is widely applicable to samples similar in composition, such as sputum or mucus, or those that are challenging due to the inherent inclusion of inhibitors. IMPORTANCE The interaction between the fish gill and surrounding bacteria-rich water provides an intriguing model for examining the interaction between the fish, free-floating bacteria, and the bacterial microbiome on the gill surface. Samples that are inherently low in bacteria, or that have components that inhibit the ability to produce libraries that identify the components of microbial communities, present significant challenges. Gill samples present both of these types of challenges. We developed methods for quantifying both the bacterial and host DNA material and established a sampling method which both reduced inhibitor content and maximized bacterial diversity. By quantifying and normalizing bacteria prior to library construction, we showed significant improvements with regards to the fidelity of the final data. Our results support wide-ranging applications for analyzing samples of similar composition, such as mucus and sputum, in other microbiological spheres.
Collapse
|
2
|
Sangannavar PA, Kumar JS, Subrahmanyam G, Kutala S. Genomics and omics tools to assess complex microbial communities in silkworms: A paradigm shift towards translational research. J Microbiol Methods 2021. [DOI: 10.1016/bs.mim.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
3
|
Agrawal PK, Agrawal S, Shrivastava R. Modern molecular approaches for analyzing microbial diversity from mushroom compost ecosystem. 3 Biotech 2015; 5:853-866. [PMID: 28324393 PMCID: PMC4624149 DOI: 10.1007/s13205-015-0289-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/22/2015] [Indexed: 12/20/2022] Open
Abstract
Biosphere is a store house of various microorganisms that may be employed to isolate and exploit microbes for environmental, pharmaceutical, agricultural and industrial applications. There is restricted data regarding the structure and dynamics of microbial communities in several ecosystems because only a little fraction of microbial diversity is accessible by culture methods. Owing to limitations of traditional enrichment methods and pure culture techniques, microbiological studies have offered a narrow portal for investigating microbial flora. The bacterial community represented by the morphological and nutritional criteria failed to provide a natural taxonomic order according to the evolutionary relationship. Genetic diversity among the isolates recovered from mushroom compost has not been widely studied. To understand genetic diversity and community composition of the mushroom compost microflora, different approaches are now followed by taxonomists, to characterize and identify isolates up to species level. Molecular microbial ecology is an emerging discipline of biology under molecular approach which can provide complex community profiles along with useful phylogenetic information. The genomic era has resulted in the development of new molecular tools and techniques for study of culturable microbial diversity including the DNA base ratio (mole% G + C), DNA-DNA hybridization, DNA microarray and reverse sample genome probing. In addition, non-culturable diversity of mushroom compost ecosystem can be characterized by employing various molecular tools which would be discussed in the present review.
Collapse
|
4
|
|
5
|
Microbial diversity in the era of omic technologies. BIOMED RESEARCH INTERNATIONAL 2013; 2013:958719. [PMID: 24260747 PMCID: PMC3821902 DOI: 10.1155/2013/958719] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/26/2013] [Accepted: 08/26/2013] [Indexed: 11/17/2022]
Abstract
Human life and activity depends on microorganisms, as they are responsible for providing basic elements of life. Although microbes have such a key role in sustaining basic functions for all living organisms, very little is known about their biology since only a small fraction (average 1%) can be cultured under laboratory conditions. This is even more evident when considering that >88% of all bacterial isolates belong to four bacterial phyla, the Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Advanced technologies, developed in the last years, promise to revolutionise the way that we characterize, identify, and study microbial communities. In this review, we present the most advanced tools that microbial ecologists can use for the study of microbial communities. Innovative microbial ecological DNA microarrays such as PhyloChip and GeoChip that have been developed for investigating the composition and function of microbial communities are presented, along with an overview of the next generation sequencing technologies. Finally, the Single Cell Genomics approach, which can be used for obtaining genomes from uncultured phyla, is outlined. This tool enables the amplification and sequencing of DNA from single cells obtained directly from environmental samples and is promising to revolutionise microbiology.
Collapse
|
6
|
Akondi K, Lakshmi V. Emerging Trends in Genomic Approaches for Microbial Bioprospecting. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:61-70. [DOI: 10.1089/omi.2012.0082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- K.B. Akondi
- Department of Applied Microbiology, Sri Padmavati Women's University, Tirupati, India
| | - V.V. Lakshmi
- Department of Applied Microbiology, Sri Padmavati Women's University, Tirupati, India
| |
Collapse
|
7
|
Vieites JM, Guazzaroni ME, Beloqui A, Golyshin PN, Ferrer M. Metagenomics approaches in systems microbiology. FEMS Microbiol Rev 2009; 33:236-55. [DOI: 10.1111/j.1574-6976.2008.00152.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
8
|
Liu G, Amemiya T, Itoh K. Two-dimensional DNA gel electrophoresis mapping: a novel approach to diversity analysis of bacterial communities in environmental soil. J Biosci Bioeng 2008; 105:127-33. [PMID: 18343339 DOI: 10.1263/jbb.105.127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 11/12/2007] [Indexed: 11/17/2022]
Abstract
The diversity analysis of bacteria is useful for the environmental assessment of soil. Traditional molecular-based methods such as denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) analysis achieve a low-resolution display of bacterial DNA fragments on a gel. To improve the resolution, a novel two-dimensional DNA gel electrophoresis (2-DGE) method was designed. This method can generate a high-resolution DNA map that facilitates the detailed analysis of soil bacteria. This map can be obtained by utilizing 2-DGE to separate genomic DNA fragments produced by polymerase chain reaction (PCR) amplification on the basis of chain length and G+C content. To develop this 2-DGE method further and to apply it to the assessment of bacterial diversity, we carried out a 2-DGE mapping of bacterial DNA fragments from different environmental soils and computed Shannon index as well as plotted rank-abundance curves on the basis of the relative intensity of each spot on the maps. DGGE mapping was also performed to compare the resolution of the two methods. 2-DGE mapping was capable of generating a higher resolution display by a factor of more than 2 using a DGGE fingerprint pattern on a piece of gel. Furthermore, the higher number of detected spots from the 2-DGE map enabled the assessment of differences in bacterial diversity in complex soil systems using a logarithmic normal rank-abundance plot.
Collapse
Affiliation(s)
- Guohua Liu
- Graduate School of Engineering, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| | | | | |
Collapse
|
9
|
Malik S, Beer M, Megharaj M, Naidu R. The use of molecular techniques to characterize the microbial communities in contaminated soil and water. ENVIRONMENT INTERNATIONAL 2008; 34:265-276. [PMID: 18083233 DOI: 10.1016/j.envint.2007.09.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 08/16/2007] [Accepted: 09/02/2007] [Indexed: 05/25/2023]
Abstract
Traditionally, the identification and characterization of microbial communities in contaminated soil and water has previously been limited to those microorganisms that are culturable. The application of molecular techniques to study microbial populations at contaminated sites without the need for culturing has led to the discovery of unique and previously unrecognized microorganisms as well as complex microbial diversity in contaminated soil and water which shows an exciting opportunity for bioremediation strategies. Nucleic acid extraction from contaminated sites and their subsequent amplification by polymerase chain reaction (PCR) has proved extremely useful in assessing the changes in microbial community structure by several microbial community profiling techniques. This review examines the current application of molecular techniques for the characterization of microbial communities in contaminated soil and water. Techniques that identify and quantify microbial population and catabolic genes involved in biodegradation are examined. In addition, methods that directly link microbial phylogeny to its ecological function at contaminated sites as well as high throughput methods for complex microbial community studies are discussed.
Collapse
Affiliation(s)
- Seidu Malik
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, South Australia 5095, Australia
| | | | | | | |
Collapse
|
10
|
Rich VI, Konstantinidis K, DeLong EF. Design and testing of ‘genome-proxy’ microarrays to profile marine microbial communities. Environ Microbiol 2008; 10:506-21. [DOI: 10.1111/j.1462-2920.2007.01471.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Gentry TJ, Wickham GS, Schadt CW, He Z, Zhou J. Microarray applications in microbial ecology research. MICROBIAL ECOLOGY 2006; 52:159-75. [PMID: 16897303 DOI: 10.1007/s00248-006-9072-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 04/07/2006] [Indexed: 05/11/2023]
Abstract
Microarray technology has the unparalleled potential to simultaneously determine the dynamics and/or activities of most, if not all, of the microbial populations in complex environments such as soils and sediments. Researchers have developed several types of arrays that characterize the microbial populations in these samples based on their phylogenetic relatedness or functional genomic content. Several recent studies have used these microarrays to investigate ecological issues; however, most have only analyzed a limited number of samples with relatively few experiments utilizing the full high-throughput potential of microarray analysis. This is due in part to the unique analytical challenges that these samples present with regard to sensitivity, specificity, quantitation, and data analysis. This review discusses specific applications of microarrays to microbial ecology research along with some of the latest studies addressing the difficulties encountered during analysis of complex microbial communities within environmental samples. With continued development, microarray technology may ultimately achieve its potential for comprehensive, high-throughput characterization of microbial populations in near real time.
Collapse
Affiliation(s)
- T J Gentry
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | | | | | | |
Collapse
|
12
|
Bae JW, Park YH. Homogeneous versus heterogeneous probes for microbial ecological microarrays. Trends Biotechnol 2006; 24:318-23. [PMID: 16697477 DOI: 10.1016/j.tibtech.2006.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2005] [Revised: 03/22/2006] [Accepted: 04/27/2006] [Indexed: 10/24/2022]
Abstract
Microbial ecological microarrays have been developed for investigating the composition and functions of microorganism communities in environmental niches. These arrays include microbial identification microarrays, which use oligonucleotides, gene fragments or microbial genomes as probes. In this article, the advantages and disadvantages of each type of probe are reviewed. Oligonucleotide probes are currently useful for probing uncultivated bacteria that are not amenable to gene fragment probing, whereas the functional gene fragments amplified randomly from microbial genomes require phylogenetic and hierarchical categorization before use as microbial identification probes, despite their high resolution for both specificity and sensitivity. Until more bacteria are sequenced and gene fragment probes are thoroughly validated, heterogeneous bacterial genome probes will provide a simple, sensitive and quantitative tool for exploring the ecosystem structure.
Collapse
Affiliation(s)
- Jin-Woo Bae
- Biological Resources Center, Korea Research Institute of Bioscience and Biotechnology, Eundong 52, Yusong, Daejeon, Korea
| | | |
Collapse
|
13
|
Gilbride KA, Lee DY, Beaudette LA. Molecular techniques in wastewater: Understanding microbial communities, detecting pathogens, and real-time process control. J Microbiol Methods 2006; 66:1-20. [PMID: 16635533 DOI: 10.1016/j.mimet.2006.02.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 01/30/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
Traditionally, the detection of pathogens in water, wastewater, and other environmental samples is restricted by the ability to culture such organisms from complex environmental samples. During the last decade the use of molecular methods have supplied the means for examining microbial diversity and detecting specific organisms without the need for cultivation. The application of molecular techniques to the study of natural and engineered environmental systems has increased our insight into the vast diversity and interaction of microorganisms present in complex environments. In this paper, we will review the current and emerging molecular approaches for characterizing microbial community composition and structure in wastewater processes. Recent studies show that advances in microarray assays are increasing our capability of detecting hundreds and even thousands of DNA sequences simultaneously and rapidly. With the current progress in microfluidics and optoelectronics, the ability to automate a detection/identification system is now being realized. The status of such a system for wastewater monitoring is discussed.
Collapse
Affiliation(s)
- K A Gilbride
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St. Toronto, ON, Canada M4B 2K3.
| | | | | |
Collapse
|
14
|
Ki JS, Han MS. A low-density oligonucleotide array study for parallel detection of harmful algal species using hybridization of consensus PCR products of LSU rDNA D2 domain. Biosens Bioelectron 2006; 21:1812-21. [PMID: 16246543 DOI: 10.1016/j.bios.2005.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 09/15/2005] [Accepted: 09/19/2005] [Indexed: 11/15/2022]
Abstract
A low-density oligonucleotide array approach based on the hybridization of consensus PCR products of LSU rDNA was developed in order to simultaneously detect various harmful algae. A set of oligonucleotide probes for the hybridization of specific LSU rDNA D2 regions was developed for the identification of 10 representative harmful microalgae. Each probe was spotted onto a streptoavidin-coated glass slide by pipetting. Universal primers were designed within the conserved regions adjacent to the D2 regions of all harmful algae and used to PCR amplify the complete D2 regions. The PCR products were hybridized to the oligonucleotides arrayed on the slide. The array produced unique hybridization patterns for each species of harmful algae and allowed us to differentiate the closely related species. Furthermore, we were able to simultaneously detect several predominant HAB species from a mixture of culture strains and from a natural sample. These results show that DNA microarray can be a new technical platform for parallel discrimination of harmful algae and has great potential to alter the manner in which researchers monitor these microorganisms.
Collapse
Affiliation(s)
- Jang-Seu Ki
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.
| | | |
Collapse
|
15
|
Bae JW, Rhee SK, Park JR, Chung WH, Nam YD, Lee I, Kim H, Park YH. Development and evaluation of genome-probing microarrays for monitoring lactic acid bacteria. Appl Environ Microbiol 2006; 71:8825-35. [PMID: 16332879 PMCID: PMC1317428 DOI: 10.1128/aem.71.12.8825-8835.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome-probing microarray (GPM) was developed for quantitative, high-throughput monitoring of community dynamics in lactic acid bacteria (LAB) fermentation through the deposit of 149 microbial genomes as probes on a glass slide. Compared to oligonucleotide microarrays, the specificity of GPM was remarkably increased to a species-specific level. GPM possesses about 10- to 100-fold higher sensitivity (2.5 ng of genomic DNA) than the currently used 50-mer oligonucleotide microarrays. Since signal variation between the different genomes was very low compared to that of cDNA or oligonucleotide-based microarrays, the capacity of global quantification of microbial genomes could also be observed in GPM hybridization. In order to assess the applicability of GPMs, LAB community dynamics were monitored during the fermentation of kimchi, a traditional Korean food. In this work, approximately 100 diverse LAB species could be quantitatively analyzed as actively involved in kimchi fermentation.
Collapse
Affiliation(s)
- Jin-Woo Bae
- Biological Resources Center, Korea Research Institute of Bioscience and Biotechnology, Eundong 52, Yusong, Daejeon, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sessitsch A, Hackl E, Wenzl P, Kilian A, Kostic T, Stralis-Pavese N, Sandjong BT, Bodrossy L. Diagnostic microbial microarrays in soil ecology. THE NEW PHYTOLOGIST 2006; 171:719-35. [PMID: 16918544 DOI: 10.1111/j.1469-8137.2006.01824.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Soil microbial communities are responsible for important physiological and metabolic processes. In the last decade soil microorganisms have been frequently analysed by cultivation-independent techniques because only a minority of the natural microbial communities are accessible by cultivation. Cultivation-independent community analyses have revolutionized our understanding of soil microbial diversity and population dynamics. Nevertheless, many methods are still laborious and time-consuming, and high-throughput methods have to be applied in order to understand population shifts at a finer level and to be better able to link microbial diversity with ecosystems functioning. Microbial diagnostic microarrays (MDMs) represent a powerful tool for the parallel, high-throughput identification of many microorganisms. Three categories of MDMs have been defined based on the nature of the probe and target molecules used: phylogenetic oligonucleotide microarrays with short oligonucleotides against a phylogenetic marker gene; functional gene arrays containing probes targeting genes encoding specific functions; and community genome arrays employing whole genomes as probes. In this review, important methodological developments relevant to the application of the different types of diagnostic microarrays in soil ecology will be addressed and new approaches, needs and future directions will be identified, which might lead to a better insight into the functional activities of soil microbial communities.
Collapse
Affiliation(s)
- A Sessitsch
- ARC Seibersdorf research GmbH, Department. of Bioresources, A-2444 Seibersdorf, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Bae JW, Rhee SK, Nam YD, Park YH. Generation of subspecies level-specific microbial diagnostic microarrays using genes amplified from subtractive suppression hybridization as microarray probes. Nucleic Acids Res 2005; 33:e113. [PMID: 16030349 PMCID: PMC1178008 DOI: 10.1093/nar/gni112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Revised: 06/17/2005] [Accepted: 06/30/2005] [Indexed: 11/25/2022] Open
Abstract
The generation of microarray probes with specificity below the species level is an ongoing challenge, not least because the high-throughput detection of microorganisms would be an efficient means of identifying environmentally relevant microbes. Here, we describe how suppression subtractive hybridization (SSH) can be applied to the production of microarray probes that are useful for microbial differentiation at the subspecies level. SSH was used to initially isolate unique genomic sequences of nine Salmonella strains, and these were validated in quadruplicate by microarray analysis. The results obtained indicate that a large group of genes subtracted by SSH could serve together, as one probe, for detecting a microbial subspecies. Similarly, the whole microbial genome (not subjected to SSH) can be used as a species-specific probe. The detailed methods described herein could be used and adapted for the estimation of any cultivable bacteria from different environments.
Collapse
Affiliation(s)
- Jin-Woo Bae
- Biological Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)Eundong 52, Yusong, Daejeon, Korea
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University12 Gaeshin-dong Heungduk-gu, Cheongju, Korea
| | - Young-Do Nam
- Biological Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)Eundong 52, Yusong, Daejeon, Korea
| | - Yong-Ha Park
- Biological Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)Eundong 52, Yusong, Daejeon, Korea
- National Research Laboratory of Molecular Ecosystematics, Institute of Probionics, Probionic Corporation, Korea Research Institute of Bioscience and Biotechnology (KRIBB)Eundong 52, Yusong, Daejeon, Korea
| |
Collapse
|
18
|
Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT. Methods of studying soil microbial diversity. J Microbiol Methods 2004; 58:169-88. [PMID: 15234515 DOI: 10.1016/j.mimet.2004.04.006] [Citation(s) in RCA: 552] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 04/07/2004] [Indexed: 11/25/2022]
Abstract
Soil microorganisms, such as bacteria and fungi, play central roles in soil fertility and promoting plant health. This review examines and compares the various methods used to study microbial diversity in soil.
Collapse
Affiliation(s)
- Jennifer L Kirk
- Department of Environmental Biology, University of Guelph, Ontario Agricultural College, Guelph, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Krause DO, Smith WJM, McSweeney CS. Use of community genome arrays (CGAs) to assess the effects of Acacia angustissima on rumen ecology. Microbiology (Reading) 2004; 150:2899-2909. [PMID: 15347749 DOI: 10.1099/mic.0.26953-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This research developed a community genome array (CGA) to assess the effects of Acacia angustissima on rumen microbiology. A. angustissima produces non-protein amino acids as well as tannins, which may be toxic to animals, and CGA was used to assess the effects of this plant on the ecology of the rumen. CGAs were developed using a 7·5 cm×2·5 cm nylon membrane format that included up to 96 bacterial genomes. It was possible to separately hybridize large numbers of membranes at once using this mini-membrane format. Pair-wise cross-hybridization experiments were conducted to determine the degree of cross-hybridization between strains; cross-hybridization occurred between strains of the same species, but little cross-reactivity was observed among different species. CGAs were successfully used to survey the microbial communities of animals consuming an A. angustissima containing diet but quantification was not precise. To properly quantify and validate the CGA, Fibrobacter and Ruminococcus populations were independently assessed using 16S rDNA probes to extracted rRNA. The CGA detected an increase in these populations as acacia increased in the diet, which was confirmed by rRNA analysis. There was a great deal of variation among strains of the same species in how they responded to A. angustissima. However, in general Selenomonas strains tended to be resistant to the tannins in the acacia while Butyrivibrio fibrisolvens was sensitive. On the other hand some species, like streptococci, varied. Streptococcus bovis-like strains were sensitive to an increase in acacia in the diet while Streptococcus gallolyticus-like strains were resistant. Strep. gallolyticus has independently been shown to be resistant to tannins. It is concluded that there is significant variation in tannin resistance between strains of the same species. This implies that there are specific molecular mechanisms at play that are independent of the phylogenetic position of the organism.
Collapse
Affiliation(s)
- Denis O Krause
- Department of Animal Science, Faculty of Agricultural and Food Sciences, University of Manitoba-Winnipeg, MB, Canada R3T 2N2
- CSIRO Livestock Industries, St Lucia, Australia
| | | | | |
Collapse
|
20
|
|