1
|
Tarazanova M, Huppertz T, Starrenburg M, Todt T, van Hijum S, Kok J, Bachmann H. Transcriptional response of Lactococcus lactis during bacterial emulsification. PLoS One 2019; 14:e0220048. [PMID: 31344087 PMCID: PMC6657864 DOI: 10.1371/journal.pone.0220048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Microbial surface properties are important for interactions with the environment in which cells reside. Surface properties of lactic acid bacteria significantly vary and some strains can form strong emulsions when mixed with a hydrocarbon. Lactococcus lactis NCDO712 forms oil-in-water emulsions upon mixing of a cell suspension with petroleum. In the emulsion the bacteria locate at the oil-water interphase which is consistent with Pickering stabilization. Cells of strain NCDO712 mixed with sunflower seed oil did not stabilize the oil droplets. This study shows that the addition of either ethanol or ammonium sulfate led to cell aggregation, which subsequently allowed stabilizing oil-in-water emulsions. From this, we conclude that bacterial cell aggregation is important for emulsion droplet stabilization. To determine how bacterial emulsification influences the microbial transcriptome RNAseq analysis was performed on lactococci taken from the oil-water interphase. In comparison to cells in suspension 72 genes were significantly differentially expressed with a more than 4-fold difference. The majority of these genes encode proteins involved in transport processes and the metabolism of amino acids, carbohydrates and ions. Especially the proportion of genes belonging to the CodY regulon was high. Our results also point out that in a complex environment such as food fermentations a heterogeneous response of microbes might be caused by microbe-matrix interactions. In addition, microdroplet technologies are increasingly used in research. The understanding of interactions between bacterial cells and oil-water interphases is of importance for conducting and interpreting such experiments.
Collapse
Affiliation(s)
- Mariya Tarazanova
- TI Food and Nutrition, AN Wageningen, The Netherlands
- NIZO, Ede BA, The Netherlands
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Thom Huppertz
- TI Food and Nutrition, AN Wageningen, The Netherlands
- NIZO, Ede BA, The Netherlands
| | - Marjo Starrenburg
- TI Food and Nutrition, AN Wageningen, The Netherlands
- NIZO, Ede BA, The Netherlands
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Tilman Todt
- Radboud University Medical Centre CMBI, Geert Grooteplein Nijmegen, The Netherlands
- HAN, University of Applied Sciences, PGL Nijmegen, The Netherlands
| | - Sacha van Hijum
- TI Food and Nutrition, AN Wageningen, The Netherlands
- NIZO, Ede BA, The Netherlands
- Radboud University Medical Centre CMBI, Geert Grooteplein Nijmegen, The Netherlands
| | - Jan Kok
- TI Food and Nutrition, AN Wageningen, The Netherlands
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Herwig Bachmann
- TI Food and Nutrition, AN Wageningen, The Netherlands
- NIZO, Ede BA, The Netherlands
- * E-mail:
| |
Collapse
|
2
|
Senz M, van Lengerich B, Bader J, Stahl U. Control of cell morphology of probiotic Lactobacillus acidophilus for enhanced cell stability during industrial processing. Int J Food Microbiol 2014; 192:34-42. [PMID: 25305442 DOI: 10.1016/j.ijfoodmicro.2014.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/07/2014] [Accepted: 09/14/2014] [Indexed: 10/24/2022]
Abstract
The viability of bacteria during industrial processing is an essential quality criterion for bacterial preparations, such as probiotics and starter cultures. Therefore, producing stable microbial cultures during proliferation is of great interest. A strong correlation between the culture medium and cellular morphology was observed for the lactic acid bacterium Lactobacillus acidophilus NCFM, which is commonly used in the dairy industry as a probiotic supplement and as a starter culture. The cell shapes ranged from single short rods to long filamentous rods. The culture medium composition could control this phenomenon of pleomorphism, especially the use of peptone in combination with an adequate heating of the medium during preparation. Furthermore, we observed a correlation between the cell size and stability of the microorganisms during industrial processing steps, such as freeze-drying, extrusion encapsulation and storage following dried preparations. The results revealed that short cells are more stable than long cells during each of the industrially relevant processing steps. As demonstrated for L. acidophilus NCFM, the adaptation of the medium composition and optimized medium preparation offer the possibility to increase the concentration of viable cells during up- and survival rate during down-stream processing.
Collapse
Affiliation(s)
- Martin Senz
- Berlin University of Technology, Department of Applied and Molecular Microbiology, Berlin, Germany; Research and Teaching Institute for Brewing in Berlin, Research Institute for Special Microbiology, Berlin, Germany.
| | | | - Johannes Bader
- Beuth University of Applied Sciences, Department of Biotechnology, Berlin, Germany
| | - Ulf Stahl
- Berlin University of Technology, Department of Applied and Molecular Microbiology, Berlin, Germany; Research and Teaching Institute for Brewing in Berlin, Research Institute for Special Microbiology, Berlin, Germany
| |
Collapse
|
3
|
Deepika G, Charalampopoulos D. Surface and adhesion properties of lactobacilli. ADVANCES IN APPLIED MICROBIOLOGY 2010; 70:127-52. [PMID: 20359456 DOI: 10.1016/s0065-2164(10)70004-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The surface properties of lactobacilli are of significant technological importance as they determine the interaction of the bacterial cells with the gastrointestinal mucosa, and therefore influence their location in the gut and their functionality. Studying the surface of the bacteria is critical for understanding the adhesion process better. This review compiles the knowledge from studies on the characterization Lactobacillus surfaces and evaluates the potential relationship between the cells' physicochemical characteristics and their adhesive abilities. It also discusses the effect that the production processes, such as fermentation and drying, can exert on the surface properties and adhesion abilities of lactobacilli.
Collapse
Affiliation(s)
- G Deepika
- Department of Food and Nutritional Sciences, The University of Reading, Reading RG6 6AP, UK
| | | |
Collapse
|
4
|
Deepika G, Green R, Frazier R, Charalampopoulos D. Effect of growth time on the surface and adhesion properties of Lactobacillus rhamnosus GG. J Appl Microbiol 2009; 107:1230-40. [DOI: 10.1111/j.1365-2672.2009.04306.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Lý MH, Cavin JF, Cachon R, Lê TM, Belin JM, Waché Y. Relationship between the presence of the citrate permease plasmid and high electron-donor surface properties of Lactococcus lactis ssp. lactis biovar. diacetylactis. FEMS Microbiol Lett 2007; 268:166-70. [PMID: 17250762 DOI: 10.1111/j.1574-6968.2006.00570.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Some strains of Lactococcus lactis subspecies possess a citrate permease that enables them to utilize citrate and to produce diacetyl. Such strains are classified as diacetylactis biovariants (L. lactis ssp. lactis biovar. diacetylactis). We investigated the electron-donor surface properties of L. lactis strains and observed that the diacetylactis biovariants presented increased adhesion to electron-acceptor solvents (microbial adhesion to solvents electron-donor characteristics of cells of <27% for L. lactis and about 50% for L. lactis ssp. lactis biovar diacetylactis). We investigated the properties of a pCitP- derivative and observed for a diacetylactis biovariant strain a loss of the electron-donor characteristics falling from 47% for a pCitP+ strain to 8% for its pCitP- derivative. This suggests that the presence of high electron-donor characteristics on the surface of L. lactis results to a large extent from the presence of the citrate permease plasmid.
Collapse
Affiliation(s)
- Mai Hu'o'ng Lý
- Laboratoire de Microbiologie UMR UB/INRA 1232, Qualités des Aliments, ENSBANA, Dijon, France
| | | | | | | | | | | |
Collapse
|
6
|
Ly MH, Naïtali-Bouchez M, Meylheuc T, Bellon-Fontaine MN, Le TM, Belin JM, Waché Y. Importance of bacterial surface properties to control the stability of emulsions. Int J Food Microbiol 2006; 112:26-34. [PMID: 16952409 DOI: 10.1016/j.ijfoodmicro.2006.05.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 02/24/2006] [Accepted: 05/24/2006] [Indexed: 11/16/2022]
Abstract
In colloidal media such as emulsions or food matrixes, the stability results from physicochemical interactions. The same type of interaction is involved in the attachment processes of microorganisms, through their surface properties, to interfaces. When bacteria are present in a food matrix, it is probable that their surface interacts with the other constituents. In this paper, the involvement of bacterial surface properties of Lactococcus lactis subsp lactis biovar diacetylactis (LLD) on the stability of model emulsions has been studied. The hydrophobic and electrostatic cell-surface properties were characterized by the MATH method and by microelectrophoresis, respectively. The oil-in-water emulsions were stabilized by various surface-active compounds, CTAB, SDS or Tween 20, giving differently charged droplets. Two strains with different surface characteristics were added to the emulsion. Contrasting with emulsions made with the non-ionic surfactant, for which the stability was not modified by the addition of bacteria, the emulsions made with ionic surface-active compounds were unstable in the presence of bacteria when the bacterial surface charge was opposite to the one of the emulsion droplets. Moreover, aggregation and flocculation phenomena were observed for emulsions stabilized with the cationic surfactant, particularly for more negatively charged bacteria. The effect of bacteria on the emulsion stability depended on the strain which shows the importance of the choice of the microorganism according to of the characteristics of the colloidal media to obtain a stable system. In addition, these results suggest that the interactions between bacteria and other food components can influence the position of bacteria in food matrixes.
Collapse
Affiliation(s)
- Mai Huong Ly
- Laboratoire de Microbiologie UMR UB/INRA 1232, ENSBANA, 1, Esplanade Erasme 21000 Dijon, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Schär-Zammaretti P, Dillmann ML, D'Amico N, Affolter M, Ubbink J. Influence of fermentation medium composition on physicochemical surface properties of Lactobacillus acidophilus. Appl Environ Microbiol 2006; 71:8165-73. [PMID: 16332799 PMCID: PMC1317426 DOI: 10.1128/aem.71.12.8165-8173.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The effect of the simple and complex basic components of a fermentation medium on the surface properties of Lactobacillus acidophilus NCC2628 is studied by physicochemical methods, such as electrophoresis, interfacial adhesion, and X-ray photonelectron spectroscopy, and by transmission electron microscopy. Starting from an optimized complete medium, the effect of carbohydrates, peptones, and yeast extracts on the physicochemical properties of the cell wall is systematically investigated by consecutively omitting one of the principal components from the fermentation medium at the time. The physicochemical properties and structure of the bacterial cell wall remain largely unchanged if the carbohydrate content of the fermentation medium is strongly reduced, although the concentration of surface proteins increases slightly. Both peptone and yeast extract have a considerable influence on the bacterial cell wall, as witnessed by changes in surface charge, hydrophobicity, and the nitrogen-to-carbon ratio. Both zeta potential and the cell wall hydrophobicity show a positive correlation with the nitrogen-to-carbon ratio of the bacterial surfaces, indicative of the important role of surface proteins in the overall surface physical chemistry. The hydrophobicity of the cell wall, which is low for the cultures grown in the complete medium and in the absence of carbohydrates, becomes fairly high for the cultures grown in the medium without peptones and the medium without yeast extract. UV spectrophotometry and sodium dodecyl sulfate-polyacrylamide gel electrophoresis combined with liquid chromatography-tandem mass spectrometry are used to analyze the effect of medium composition on LiCl-extractable cell wall proteins, confirming the major change in protein composition of the cell wall for the culture fermented in the medium without peptones. In particular, it is found that expression of the S-layer protein is dependent on the protein source of the fermentation medium.
Collapse
|
8
|
Abstract
Although of heterogeneous spatiotemporal and species compositions, all biofilms undergo certain common developmental events: organic molecules on the substratum can play a role in initial attachment, attached cells grow and additional cells attach from the bulk liquid. Biofilm growth is a four-dimensional (X, Y, Z and T) process similar to organ development.
Collapse
Affiliation(s)
- R J Palmer
- Center for Environmental Biotechnology, University of Tennessee, Knoxville 37932, USA.
| | | |
Collapse
|