1
|
Morrison JJ, Camberg JL. Building the Bacterial Divisome at the Septum. Subcell Biochem 2024; 104:49-71. [PMID: 38963483 DOI: 10.1007/978-3-031-58843-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Across living organisms, division is necessary for cell survival and passing heritable information to the next generation. For this reason, cell division is highly conserved among eukaryotes and prokaryotes. Among the most highly conserved cell division proteins in eukaryotes are tubulin and actin. Tubulin polymerizes to form microtubules, which assemble into cytoskeletal structures in eukaryotes, such as the mitotic spindle that pulls chromatids apart during mitosis. Actin polymerizes to form a morphological framework for the eukaryotic cell, or cytoskeleton, that undergoes reorganization during mitosis. In prokaryotes, two of the most highly conserved cell division proteins are the tubulin homolog FtsZ and the actin homolog FtsA. In this chapter, the functions of the essential bacterial cell division proteins FtsZ and FtsA and their roles in assembly of the divisome at the septum, the site of cell division, will be discussed. In most bacteria, including Escherichia coli, the tubulin homolog FtsZ polymerizes at midcell, and this step is crucial for recruitment of many other proteins to the division site. For this reason, both FtsZ abundance and polymerization are tightly regulated by a variety of proteins. The actin-like FtsA protein polymerizes and tethers FtsZ polymers to the cytoplasmic membrane. Additionally, FtsA interacts with later stage cell division proteins, which are essential for division and for building the new cell wall at the septum. Recent studies have investigated how actin-like polymerization of FtsA on the lipid membrane may impact division, and we will discuss this and other ways that division in bacteria is regulated through FtsZ and FtsA.
Collapse
Affiliation(s)
- Josiah J Morrison
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, USA
| | - Jodi L Camberg
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
2
|
Nanninga N. Molecular Cytology of 'Little Animals': Personal Recollections of Escherichia coli (and Bacillus subtilis). Life (Basel) 2023; 13:1782. [PMID: 37629639 PMCID: PMC10455606 DOI: 10.3390/life13081782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
This article relates personal recollections and starts with the origin of electron microscopy in the sixties of the previous century at the University of Amsterdam. Novel fixation and embedding techniques marked the discovery of the internal bacterial structures not visible by light microscopy. A special status became reserved for the freeze-fracture technique. By freeze-fracturing chemically fixed cells, it proved possible to examine the morphological effects of fixation. From there on, the focus switched from bacterial structure as such to their cell cycle. This invoked bacterial physiology and steady-state growth combined with electron microscopy. Electron-microscopic autoradiography with pulses of [3H] Dap revealed that segregation of replicating DNA cannot proceed according to a model of zonal growth (with envelope-attached DNA). This stimulated us to further investigate the sacculus, the peptidoglycan macromolecule. In particular, we focused on the involvement of penicillin-binding proteins such as PBP2 and PBP3, and their role in division. Adding aztreonam (an inhibitor of PBP3) blocked ongoing divisions but not the initiation of new ones. A PBP3-independent peptidoglycan synthesis (PIPS) appeared to precede a PBP3-dependent step. The possible chemical nature of PIPS is discussed.
Collapse
Affiliation(s)
- Nanne Nanninga
- Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
3
|
Santana-Molina C, del Saz-Navarro DM, Devos DP. Early origin and evolution of the FtsZ/tubulin protein family. Front Microbiol 2023; 13:1100249. [PMID: 36704558 PMCID: PMC9871819 DOI: 10.3389/fmicb.2022.1100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
The origin of the FtsZ/tubulin protein family was extremely relevant for life since these proteins are present in nearly all organisms, carrying out essential functions such as cell division or forming a major part of the cytoskeleton in eukaryotes. Therefore, investigating the early evolution of the FtsZ/tubulin protein family could reveal crucial aspects of the diversification of the three domains of life. In this study, we revisited the phylogenies of the FtsZ/tubulin protein family in an extensive prokaryotic diversity, focusing on the main evolutionary events that occurred during its evolution. We found evidence of its early origin in the last universal common ancestor since FtsZ was present in the last common ancestor of Bacteria and Archaea. In bacteria, ftsZ genes are genomically associated with the bacterial division gene cluster, while in archaea, ftsZ duplicated prior to archaeal diversification, and one of the copies is associated with protein biosynthesis genes. Archaea have expanded the FtsZ/tubulin protein family with sequences closely related to eukaryotic tubulins. In addition, we report novel CetZ-like groups in Halobacterota and Asgardarchaeota. Investigating the C-termini of prokaryotic paralogs basal to eukaryotic tubulins, we show that archaeal CetZ, as well as the plasmidic TubZ from Firmicutes, most likely originated from archaeal FtsZ. Finally, prokaryotic tubulins are restricted to Odinarchaeaota and Prosthecobacter species, and they seem to belong to different molecular systems. However, their phylogenies suggest that they are closely related to α/β-tubulins pointing to a potential ancestrality of these eukaryotic paralogs of tubulins.
Collapse
Affiliation(s)
- Carlos Santana-Molina
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), University of Utrecht, Utrecht, Netherlands
| | - DMaría del Saz-Navarro
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain
| | - Damien P. Devos
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
4
|
Ancient origin and constrained evolution of the division and cell wall gene cluster in Bacteria. Nat Microbiol 2022; 7:2114-2127. [PMID: 36411352 DOI: 10.1038/s41564-022-01257-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
Abstract
The division and cell wall (dcw) gene cluster in Bacteria comprises 17 genes encoding key steps in peptidoglycan synthesis and cytokinesis. To understand the origin and evolution of this cluster, we analysed its presence in over 1,000 bacterial genomes. We show that the dcw gene cluster is strikingly conserved in both gene content and gene order across all Bacteria and has undergone only a few rearrangements in some phyla, potentially linked to cell envelope specificities, but not directly to cell shape. A large concatenation of the 12 most conserved dcw cluster genes produced a robust tree of Bacteria that is largely consistent with recent phylogenies based on frequently used markers. Moreover, evolutionary divergence analyses show that the dcw gene cluster offers advantages in defining high-rank taxonomic boundaries and indicate at least two main phyla in the Candidate Phyla Radiation (CPR) matching a sharp dichotomy in dcw gene cluster arrangement. Our results place the origin of the dcw gene cluster in the Last Bacterial Common Ancestor and show that it has evolved vertically for billions of years, similar to major cellular machineries such as the ribosome. The strong phylogenetic signal, combined with conserved genomic synteny at large evolutionary distances, makes the dcw gene cluster a robust alternative set of markers to resolve the ever-growing tree of Bacteria.
Collapse
|
5
|
Nyongesa S, Weber PM, Bernet È, Pulido F, Nieves C, Nieckarz M, Delaby M, Viehboeck T, Krause N, Rivera-Millot A, Nakamura A, Vischer NOE, vanNieuwenhze M, Brun YV, Cava F, Bulgheresi S, Veyrier FJ. Evolution of longitudinal division in multicellular bacteria of the Neisseriaceae family. Nat Commun 2022; 13:4853. [PMID: 35995772 PMCID: PMC9395523 DOI: 10.1038/s41467-022-32260-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Rod-shaped bacteria typically elongate and divide by transverse fission. However, several bacterial species can form rod-shaped cells that divide longitudinally. Here, we study the evolution of cell shape and division mode within the family Neisseriaceae, which includes Gram-negative coccoid and rod-shaped species. In particular, bacteria of the genera Alysiella, Simonsiella and Conchiformibius, which can be found in the oral cavity of mammals, are multicellular and divide longitudinally. We use comparative genomics and ultrastructural microscopy to infer that longitudinal division within Neisseriaceae evolved from a rod-shaped ancestor. In multicellular longitudinally-dividing species, neighbouring cells within multicellular filaments are attached by their lateral peptidoglycan. In these bacteria, peptidoglycan insertion does not appear concentric, i.e. from the cell periphery to its centre, but as a medial sheet guillotining each cell. Finally, we identify genes and alleles associated with multicellularity and longitudinal division, including the acquisition of amidase-encoding gene amiC2, and amino acid changes in proteins including MreB and FtsA. Introduction of amiC2 and allelic substitution of mreB in a rod-shaped species that divides by transverse fission results in shorter cells with longer septa. Our work sheds light on the evolution of multicellularity and longitudinal division in bacteria, and suggests that members of the Neisseriaceae family may be good models to study these processes due to their morphological plasticity and genetic tractability.
Collapse
Affiliation(s)
- Sammy Nyongesa
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Philipp M Weber
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- University of Vienna, Vienna Doctoral School of Ecology and Evolution, Vienna, Austria
| | - Ève Bernet
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Francisco Pulido
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Cecilia Nieves
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Marta Nieckarz
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, SE-90187, Sweden
| | - Marie Delaby
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Tobias Viehboeck
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- University of Vienna, Vienna Doctoral School of Ecology and Evolution, Vienna, Austria
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, , University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Nicole Krause
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- University of Vienna, Vienna Doctoral School of Ecology and Evolution, Vienna, Austria
| | - Alex Rivera-Millot
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Arnaldo Nakamura
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Norbert O E Vischer
- Bacterial Cell Biology & Physiology, Swammerdam Institute of Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098, Amsterdam, the Netherlands
| | | | - Yves V Brun
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, SE-90187, Sweden
| | - Silvia Bulgheresi
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Frédéric J Veyrier
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
6
|
Abstract
The bacterial cell envelope provides many important functions. It protects cells from harsh environments, serves as a selective permeability barrier, houses bioenergetic functions, defines sensitivity to antibacterial agents, and plays a crucial role in biofilm formation, symbiosis, and virulence. Despite the important roles of this cellular compartment, we lack a detailed understanding of the biosynthesis and remodeling of the cell envelope. Here, we report that the R. sphaeroides two-component signaling system NtrYX is a previously undescribed regulator of cell envelope processes, providing evidence that it is directly involved in controlling transcription of genes involved in cell envelope assembly, structure, and function in this and possibly other bacteria. Thus, our data report on a newly discovered process used by bacteria to assemble and remodel the cell envelope. Activity of the NtrYX two-component system has been associated with important processes in diverse bacteria, ranging from symbiosis to nitrogen and energy metabolism. In the facultative alphaproteobacterium Rhodobacter sphaeroides, loss of the two-component system NtrYX results in increased lipid production and sensitivity to some known cell envelope-active compounds. In this study, we show that NtrYX directly controls multiple properties of the cell envelope. We find that the response regulator NtrX binds upstream of cell envelope genes, including those involved in peptidoglycan biosynthesis and modification and in cell division. We show that loss of NtrYX impacts the cellular levels of peptidoglycan precursors and lipopolysaccharide and alters cell envelope structure, increasing cell length and the thickness of the periplasm. Cell envelope function is also disrupted in the absence of NtrYX, resulting in increased outer membrane permeability. Based on the properties of R. sphaeroides cells lacking NtrYX and the target genes under direct control of this two-component system, we propose that NtrYX plays a previously undescribed, and potentially conserved, role in the assembly, structure, and function of the cell envelope in a variety of bacteria.
Collapse
|
7
|
Liu J, Yu M, Chatnaparat T, Lee JH, Tian Y, Hu B, Zhao Y. Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in Pseudomonas syringae. BMC Genomics 2020; 21:296. [PMID: 32272893 PMCID: PMC7146990 DOI: 10.1186/s12864-020-6701-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/25/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Pseudomonas syringae is an important plant pathogen, which could adapt many different environmental conditions. Under the nutrient-limited and other stress conditions, P. syringae produces nucleotide signal molecules, i.e., guanosine tetra/pentaphosphate ((p)ppGpp), to globally regulate gene expression. Previous studies showed that (p) ppGpp played an important role in regulating virulence factors in P. syringae pv. tomato DC3000 (PstDC3000) and P. syringae pv. syringae B728a (PssB728a). Here we present a comparative transcriptomic analysis to uncover the overall effects of (p)ppGpp-mediated stringent response in P. syringae. RESULTS In this study, we investigated global gene expression profiles of PstDC3000 and PssB728a and their corresponding (p)ppGpp0 mutants in hrp-inducing minimal medium (HMM) using RNA-seq. A total of 1886 and 1562 differentially expressed genes (DEGs) were uncovered between the (p)ppGpp0 mutants and the wild-type in PstDC3000 and PssB728a, respectively. Comparative transcriptomics identified 1613 common DEGs, as well as 444 and 293 unique DEGs in PstDC3000 and PssB728a, respectively. Functional cluster analysis revealed that (p) ppGpp positively regulated a variety of virulence-associated genes, including type III secretion system (T3SS), type VI secretion system (T6SS), cell motility, cell division, and alginate biosynthesis, while negatively regulated multiple basic physiological processes, including DNA replication, RNA processes, nucleotide biosynthesis, fatty acid metabolism, ribosome protein biosynthesis, and amino acid metabolism in both PstDC3000 and PssB728a. Furthermore, (p) ppGpp had divergent effects on other processes in PstDC3000 and PssB728a, including phytotoxin, nitrogen regulation and general secretion pathway (GSP). CONCLUSION In this study, comparative transcriptomic analysis reveals common regulatory networks in both PstDC3000 and PssB728a mediated by (p) ppGpp in HMM. In both P. syringae systems, (p) ppGpp re-allocate cellular resources by suppressing multiple basic physiological activities and enhancing virulence gene expression, suggesting a balance between growth, survival and virulence. Our research is important in that due to similar global gene expression mediated by (p) ppGpp in both PstDC3000 and PssB728a, it is reasonable to propose that (p) ppGpp could be used as a target to develop novel control measures to fight against important plant bacterial diseases.
Collapse
Affiliation(s)
- Jun Liu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Tiyakhon Chatnaparat
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Yanli Tian
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Baishi Hu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA.
| |
Collapse
|
8
|
Beltrán-Heredia E, Monroy F, Cao-García FJ. Mechanical conditions for stable symmetric cell constriction. Phys Rev E 2019; 100:052408. [PMID: 31869912 DOI: 10.1103/physreve.100.052408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Indexed: 11/07/2022]
Abstract
Cell constriction is a decisive step for division in many cells. However, its physical pathway remains poorly understood, calling for a quantitative analysis of the forces required in different cytokinetic scenarios. Using a model cell composed by a flexible membrane (actin cortex and cell membrane) that encloses the cytoplasm, we study the mechanical conditions necessary for stable symmetric constriction under radial equatorial forces using analytical and numerical methods. We deduce that stable symmetric constriction requires positive effective spontaneous curvature, while spontaneous constriction requires a spontaneous curvature higher than the characteristic inverse cell size. Surface tension reduction (for example by actin cortex growth and membrane trafficking) increases the stability and spontaneity of cellular constriction. A reduction of external pressure also increases stability and spontaneity. Cells with prolate lobes (elongated cells) require lower stabilization forces than oblate-shaped cells (discocytes). We also show that the stability and spontaneity of symmetric constriction increase as constriction progresses. Our quantitative results settle the physical requirements for stable cytokinesis, defining a quantitative framework to analyze the mechanical role of the different constriction machinery and cytokinetic pathways found in real cells, so contributing to a deeper quantitative understanding of the physical mechanism of the cell division process.
Collapse
Affiliation(s)
- Elena Beltrán-Heredia
- Departamento de Estructura de la Materia, Física Térmica, y Electrónica, Universidad Complutense de Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.,Departamento de Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Francisco Monroy
- Departamento de Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.,Unit of Translational Biophysics, Instituto de Investigación Sanitaria Hospital Doce de Octubre (imas12), Avenida de Cordoba s/n, 28041 Madrid, Spain
| | - Francisco J Cao-García
- Departamento de Estructura de la Materia, Física Térmica, y Electrónica, Universidad Complutense de Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.,IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| |
Collapse
|
9
|
Conservation of the Essential Genome Among Caulobacter and Brevundimonas Species. Curr Microbiol 2016; 72:503-10. [PMID: 26750121 DOI: 10.1007/s00284-015-0964-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
When the genomes of Caulobacter isolates NA1000 and K31 were compared, numerous genome rearrangements were observed. In contrast, similar comparisons of closely related species of other bacterial genera revealed nominal rearrangements. A phylogenetic analysis of the 16S rRNA indicated that K31 is more closely related to Caulobacter henricii CB4 than to other known Caulobacters. Therefore, we sequenced the CB4 genome and compared it to all of the available Caulobacter genomes to study genome rearrangements, discern the conservation of the NA1000 essential genome, and address concerns about using 16S rRNA to group Caulobacter species. We also sequenced the novel bacteria, Brevundimonas DS20, a representative of the genus most closely related to Caulobacter and used it as part of an outgroup for phylogenetic comparisons. We expected to find that there would be fewer rearrangements when comparing more closely related Caulobacters. However, we found that relatedness was not correlated with the amount of observed "genome scrambling." We also discovered that nearly all of the essential genes previously identified for C. crescentus are present in the other Caulobacter genomes and in the Brevundimonas genomes as well. However, a few of these essential genes were only found in NA1000, and some were missing in a combination of one or more species, while other proteins were 100 % identical across species. Also, phylogenetic comparisons of highly conserved genomic regions revealed clades similar to those identified by 16S rRNA-based phylogenies, verifying that 16S rRNA sequence comparisons are a valid method for grouping Caulobacters.
Collapse
|
10
|
Massidda O, Nováková L, Vollmer W. From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division? Environ Microbiol 2013; 15:3133-57. [PMID: 23848140 DOI: 10.1111/1462-2920.12189] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/08/2013] [Accepted: 06/09/2013] [Indexed: 12/22/2022]
Abstract
Streptococcus pneumoniae is an oval-shaped Gram-positive coccus that lives in intimate association with its human host, both as a commensal and pathogen. The seriousness of pneumococcal infections and the spread of multi-drug resistant strains call for new lines of intervention. Bacterial cell division is an attractive target to develop antimicrobial drugs. This review discusses the recent advances in understanding S. pneumoniae growth and division, in comparison with the best studied rod-shaped models, Escherichia coli and Bacillus subtilis. To maintain their shape, these bacteria propagate by peripheral and septal peptidoglycan synthesis, involving proteins that assemble into distinct complexes called the elongasome and the divisome, respectively. Many of these proteins are conserved in S. pneumoniae, supporting the notion that the ovococcal shape is also achieved by rounds of elongation and division. Importantly, S. pneumoniae and close relatives with similar morphology differ in several aspects from the model rods. Overall, the data support a model in which a single large machinery, containing both the peripheral and septal peptidoglycan synthesis complexes, assembles at midcell and governs growth and division. The mechanisms generating the ovococcal or coccal shape in lactic-acid bacteria have likely evolved by gene reduction from a rod-shaped ancestor of the same group.
Collapse
Affiliation(s)
- Orietta Massidda
- Department of Surgical Sciences, University of Cagliari, Via Porcell, 4, 09100, Cagliari, Italy
| | | | | |
Collapse
|
11
|
Maggi S, Massidda O, Luzi G, Fadda D, Paolozzi L, Ghelardini P. Division protein interaction web: identification of a phylogenetically conserved common interactome between Streptococcus pneumoniae and Escherichia coli. Microbiology (Reading) 2008; 154:3042-3052. [DOI: 10.1099/mic.0.2008/018697-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Silvia Maggi
- Dipartimento di Biologia, Università Tor Vergata, Roma, Italy
| | - Orietta Massidda
- Dipartimento di Scienze e Tecnologie Biomediche, Sez. Microbiologia Medica, Cagliari, Italy
| | - Giuseppe Luzi
- Dipartimento di Medicina Interna, Facoltà di Medicina, Università La Sapienza, Roma, Italy
| | - Daniela Fadda
- Dipartimento di Scienze e Tecnologie Biomediche, Sez. Microbiologia Medica, Cagliari, Italy
| | | | - Patrizia Ghelardini
- Istituto di Biologia e Patologia Molecolare del CNR, Roma, Italy
- Dipartimento di Biologia, Università Tor Vergata, Roma, Italy
| |
Collapse
|
12
|
Vega D, Ayala JA. The DD-carboxypeptidase activity encoded by pbp4B is not essential for the cell growth of Escherichia coli. Arch Microbiol 2006; 185:23-7. [PMID: 16402224 DOI: 10.1007/s00203-005-0057-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 10/19/2005] [Accepted: 11/07/2005] [Indexed: 11/21/2022]
Abstract
The gene (pbp4B) encoding a putative DD-carboxypeptidase has been deleted in Escherichia coli and it is shown to be not essential for cell division. Disruption of the gene in a genetic background where all putative activities of DD-carboxypeptidases and/or DD-endopeptidases had been eliminated indicates that these activities are not required for cell growth in enterobacteria. The penicillin-binding capacity and a low DD-carboxypeptidase activity of PBP4B are demonstrated.
Collapse
Affiliation(s)
- Daniel Vega
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Campus de Cantoblanco, 28049, Madrid, Spain
| | | |
Collapse
|
13
|
Lara B, Rico AI, Petruzzelli S, Santona A, Dumas J, Biton J, Vicente M, Mingorance J, Massidda O. Cell division in cocci: localization and properties of the Streptococcus pneumoniae FtsA protein. Mol Microbiol 2005; 55:699-711. [PMID: 15660997 DOI: 10.1111/j.1365-2958.2004.04432.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied the cytological and biochemical properties of the FtsA protein of Streptococcus pneumoniae. FtsA is a widespread bacterial cell division protein that belongs to the actin superfamily. In Escherichia coli and Bacillus subtilis, FtsA localizes to the septal ring after FtsZ, but its exact role in septation is not known. In S. pneumoniae, we found that, during exponential growth, the protein localizes to the nascent septa, at the equatorial zones of the dividing cells, where an average of 2200 FtsA molecules per cell are present. Likewise, FtsZ was found to localize with the same pattern and to be present at an average of 3000 molecules per cell. Consistent with the colocalization, FtsA was found to interact with FtsZ and with itself. Purified FtsA is able to bind several nucleotides, the affinity being highest for adenosine triphosphate (ATP), and lower for other triphosphates and diphosphates. The protein polymerizes in vitro, in a nucleotide-dependent manner, forming long corkscrew-like helixes, composed of 2 + 2 paired protofilaments. No nucleotide hydrolytic activity was detected. Consistent with the absence of an ATPase activity, the polymers are highly stable and not dynamic. These results suggest that the FtsA protein could also polymerize in vivo and the polymers participate in septation.
Collapse
Affiliation(s)
- Beatriz Lara
- Aventis Pharma, 102 Route de Noisy, F-93235 Romainville cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Miyagishima SY, Wolk CP, Osteryoung KW. Identification of cyanobacterial cell division genes by comparative and mutational analyses. Mol Microbiol 2005; 56:126-43. [PMID: 15773984 DOI: 10.1111/j.1365-2958.2005.04548.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We performed comparative and mutational analyses to define more comprehensively the repertoire of genes involved in cyanobacterial cell division. Genes ftsE, ftsI, ftsQ, ftsW, and (previously recognized) ftsZ, minC, minD, minE and sulA were identified as homologues of cell division genes of Gram-negative and Gram-positive bacteria. Transposon mutagenesis of Synechococcus elongatus PCC 7942 identified five additional genes, cdv1, cdv2, cdv3, ftn6 and cikA, involved in cell division. cdv1 encodes a presumptive periplasmic peptidyl-prolyl cis-trans isomerase. cdv2 has similarity to ylmF which, like divIVA, lies within the Gram-positive bacterial ylm gene cluster whose members have functions associated with division. Conservation of other ylm genes in cyanobacteria suggests that cyanobacteria and Gram-positive bacteria share specific division proteins. Two ylm homologues are also found in algal and plant genomes. cdv3 has low but significant similarity to divIVA, suggesting that minE and cdv3 both mediate division-site determination in cyanobacteria. In contrast, Gram-positive bacteria lack minE, and (Gram-negative) proteobacteria lack divIVA. ftn6, of unknown function, and the circadian input kinase, cikA, are specific to cyanobacteria. In S. elongatus, unlike in other bacteria, FtsZ rings are formed at sites occupied by nucleoids. Thus, the division machinery of cyanobacteria differs in its composition and regulation from that of Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
15
|
Chen S, Jancrick J, Yokota H, Kim R, Kim SH. Crystal structure of a protein associated with cell division from Mycoplasma pneumoniae (GI: 13508053): a novel fold with a conserved sequence motif. Proteins 2004; 55:785-91. [PMID: 15146477 DOI: 10.1002/prot.10593] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UPF0040 is a family of proteins implicated in a cellular function of bacteria cell division. There is no structure information available on protein of this family. We have determined the crystal structure of a protein from Mycoplasma pneumoniae that belongs to this family using X-ray crystallography. Structural homology search reveals that this protein has a novel fold with no significant similarity to any proteins of known three-dimensional structure. The crystal structures of the protein in three different crystal forms reveal that the protein exists as a ring of octamer. The conserved protein residues, including a highly conserved DXXXR motif, are examined on the basis of crystal structure.
Collapse
Affiliation(s)
- Shengfeng Chen
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
16
|
Vicente M, Löwe J. Ring, helix, sphere and cylinder: the basic geometry of prokaryotic cell division. EMBO Rep 2003; 4:655-60. [PMID: 12835751 PMCID: PMC1326324 DOI: 10.1038/sj.embor.embor885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Accepted: 05/21/2003] [Indexed: 11/08/2022] Open
Abstract
Workshop on Manufacturing Bacteria: Design, Production and Assembly of Cell Division Components
Collapse
Affiliation(s)
- Miguel Vicente
- Centro Nacional de Biotecnología, CSIC Campus de Cantoblanco, E-28049 Madrid, Spain.
| | | |
Collapse
|
17
|
de Pedro MA, Young KD, Höltje JV, Schwarz H. Branching of Escherichia coli cells arises from multiple sites of inert peptidoglycan. J Bacteriol 2003; 185:1147-52. [PMID: 12562782 PMCID: PMC142844 DOI: 10.1128/jb.185.4.1147-1152.2003] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some strains of Escherichia coli defective for dacA, the gene coding for penicillin-binding protein 5, exhibit a strong branching phenotype when cell division is blocked. Since such branch formation implies a differentiation of polar caps at ectopic locations in the cell envelope, we analyzed murein segregation and observed a strong correlation between areas of inert murein and these morphological anomalies. In particular, the tips of branches exhibited the same properties as those described for polar caps of wild-type cells, i.e., the synthesis and turnover of murein were inhibited. Also, the mobility of cell envelope proteins was apparently constrained in areas with morphological defects. Polar regions of branching cells and sacculi had aberrant morphologies with a very high frequency. Of special interest was that areas of inert murein at polar caps were often split by areas of active synthesis, a situation unlike that observed in wild-type cells. These observations suggest that in dacA mutants, branches and other morphological anomalies may arise from split polar caps or by de novo generation of new poles built around inert peptidoglycan patches in the side walls of the cell.
Collapse
Affiliation(s)
- Miguel A de Pedro
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
18
|
Lara B, Ayala JA. Topological characterization of the essential Escherichia coli cell division protein FtsW. FEMS Microbiol Lett 2002; 216:23-32. [PMID: 12423747 DOI: 10.1111/j.1574-6968.2002.tb11409.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The membrane topology of Escherichia coli FtsW, a 46-kDa essential protein, was analyzed using a set of 28 ftsW-alkaline phosphatase (ftsW-phoA) and nine ftsW-beta-lactamase (ftsW-bla) gene fusions obtained by in vivo and in vitro methods. The alkaline phosphatase activities or resistance pattern of cells expressing the FtsW-PhoA or FtsW-Bla fusions confirmed only eight out of 10 transmembrane segments predicted by computational methods. After comparison with the recent topology of Streptococcus pneumoniae FtsW, we could identify all the fusions in absolute agreement with the predicted model: N-terminal and C-terminal ends in the cytoplasm, 10 transmembrane segments and one large loop of 67 amino acids (E240-E306) located in the periplasm.
Collapse
Affiliation(s)
- Beatriz Lara
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | |
Collapse
|
19
|
de Pedro MA, Höltje JV, Schwarz H. Fast lysis of Escherichia coli filament cells requires differentiation of potential division sites. MICROBIOLOGY (READING, ENGLAND) 2002; 148:79-86. [PMID: 11782501 DOI: 10.1099/00221287-148-1-79] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Periodic activation of zonal peptidoglycan (murein) synthesis at division sites in Escherichia coli has been reported recently. Zonal synthesis is responsible for septum formation, whereas elongation of the cell sacculus is performed by diffuse insertion of precursors. Zonal synthesis can be triggered in ftsA, ftsQ and ftsI (pbpB) division mutants growing as filaments at the restrictive temperature, but not in ftsZ mutant strains. The lytic response to beta-lactams of cells able or unable to periodically trigger a zonal mode of murein synthesis could be substantially different. Therefore, we investigated the response to the bacteriolytic beta-lactam cefsulodin of ftsZ and ftsI mutants growing at the restrictive (42 degrees C) temperature. The ftsI cells lysed early and quickly after addition of the antibiotic. Sacculi of lysed cells were transversely cut in a very sharp way. In contrast the ftsZ strain lysed late and slowly after addition of the antibiotic and sacculi showed a generalized weakening of the murein network and extended breaks with a frayed appearance. No transversely cut sacculi comparable to those seen in the ftsI samples were found. Our results strongly support that beta-lactam-induced lysis occurs preferentially at division sites because of the activation of zonal murein synthesis at the initiation of septation.
Collapse
Affiliation(s)
- Miguel Angel de Pedro
- Centro de Biología Molecular Severo Ochoa Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | | | | |
Collapse
|
20
|
de Pedro MA, Donachie WD, Höltje JV, Schwarz H. Constitutive septal murein synthesis in Escherichia coli with impaired activity of the morphogenetic proteins RodA and penicillin-binding protein 2. J Bacteriol 2001; 183:4115-26. [PMID: 11418550 PMCID: PMC95299 DOI: 10.1128/jb.183.14.4115-4126.2001] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pattern of peptidoglycan (murein) segregation in cells of Escherichia coli with impaired activity of the morphogenetic proteins penicillin-binding protein 2 and RodA has been investigated by the D-cysteine-biotin immunolabeling technique (M. A. de Pedro, J. C. Quintela, J.-V. Höltje, and H. Schwarz, J. Bacteriol. 179:2823-2834, 1997). Inactivation of these proteins either by amdinocillin treatment or by mutations in the corresponding genes, pbpA and rodA, respectively, leads to the generation of round, osmotically stable cells. In normal rod-shaped cells, new murein precursors are incorporated all over the lateral wall in a diffuse manner, being mixed up homogeneously with preexisting material, except during septation, when strictly localized murein synthesis occurs. In contrast, in rounded cells, incorporation of new precursors is apparently a zonal process, localized at positions at which division had previously taken place. Consequently, there is no mixing of new and old murein. Old murein is preserved for long periods of time in large, well-defined areas. We propose that the observed patterns are the result of a failure to switch off septal murein synthesis at the end of septation events. Furthermore, the segregation results confirm that round cells of rodA mutants do divide in alternate, perpendicular planes as previously proposed (K. J. Begg and W. D. Donachie, J. Bacteriol. 180:2564-2567, 1998).
Collapse
Affiliation(s)
- M A de Pedro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
21
|
Pinho MG, de Lencastre H, Tomasz A. Cloning, characterization, and inactivation of the gene pbpC, encoding penicillin-binding protein 3 of Staphylococcus aureus. J Bacteriol 2000; 182:1074-9. [PMID: 10648534 PMCID: PMC94384 DOI: 10.1128/jb.182.4.1074-1079.2000] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene pbpC from Staphylococcus aureus was sequenced: it encodes a 691-amino-acid protein with all of the conserved motifs of a class B high-molecular-weight penicillin-binding protein (PBP), including the transpeptidase conserved motifs SXXK, SXN, and KTG. Insertional inactivation of pbpC and introduction of the intact gene in a laboratory mutant missing PBP 3 showed that the pbpC gene encodes the staphylococcal PBP 3. Inactivation of pbpC caused no detectable change in the muropeptide composition of cell wall peptidoglycan and had only minimum, if any, effect on growth rates, but caused a small but significant decrease in rates of autolysis. Cells of abnormal size and shape and disoriented septa were produced when bacteria with inactivated pbpC were grown in the presence of a sub-MIC of methicillin.
Collapse
Affiliation(s)
- M G Pinho
- Laboratory of Microbiology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
22
|
Duez C, Thamm I, Sapunaric F, Coyette J, Ghuysen JM. The division and cell wall gene cluster of Enterococcus hirae S185. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1999; 9:149-61. [PMID: 10520745 DOI: 10.3109/10425179809072190] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A chromosomal 10355-bp segment of Enterococcus hirae S185 contains nine orfs which occur in the same order as the MraW-, FtsL-, PBP3-, MraY-, MurD-, MurG-, FtsQ-, FtsA- and FtsZ-encoding genes of the division and cell wall clusters of Escherichia coli and Bacillus subtilis. The E. hirae DNA segment lacks the genes which in E. coli encode the ligases Ddl, MurC, MurE and MurF and the integral membrane protein FtsW. The encoded E. hirae and E. coli proteins share 25% to 50% identity except FtsL and FtsQ (approximately = 14% identity).
Collapse
Affiliation(s)
- C Duez
- Centre d'Ingénierie des Protéines, Université de Liège, Institut de Chimie, Sart Tilman, Belgium
| | | | | | | | | |
Collapse
|
23
|
Abstract
To study the role of cell division in the process of nucleoid segregation, we measured the DNA content of individual nucleoids in isogenic Escherichia coli cell division mutants by image cytometry. In pbpB(Ts) and ftsZ strains growing as filaments at 42 degrees C, nucleoids contained, on average, more than two chromosome equivalents compared with 1.6 in wild-type cells. Because similar results were obtained with a pbpB recA strain, the increased DNA content cannot be ascribed to the occurrence of chromosome dimers. From the determination of the amount of DNA per cell and per individual nucleoid after rifampicin inhibition, we estimated the C and D periods (duration of a round of replication and time between termination and cell division respectively), as well as the D' period (time between termination and nucleoid separation). Compared with the parent strain and in contrast to ftsQ, ftsA and ftsZ mutants, pbpB(Ts) cells growing at the permissive temperature (28 degrees C) showed a long D' period (42 min versus 18 min in the parent) indicative of an extended segregation time. The results indicate that a defective cell division protein such as PbpB not only affects the division process but also plays a role in the last stage of DNA segregation. We propose that PbpB is involved in the assembly of the divisome and that this structure enhances nucleoid segregation.
Collapse
Affiliation(s)
- P G Huls
- Institute for Molecular Cell Biology, BioCentrum Amsterdam, University of Amsterdam, Kruislaan 316, 1098 SM Amsterdam, The Netherlands
| | | | | |
Collapse
|
24
|
Hakenbeck R, Grebe T, Zähner D, Stock JB. beta-lactam resistance in Streptococcus pneumoniae: penicillin-binding proteins and non-penicillin-binding proteins. Mol Microbiol 1999; 33:673-8. [PMID: 10447877 DOI: 10.1046/j.1365-2958.1999.01521.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The beta-lactams are by far the most widely used and efficacious of all antibiotics. Over the past few decades, however, widespread resistance has evolved among most common pathogens. Streptococcus pneumoniae has become a paradigm for understanding the evolution of resistance mechanisms, the simplest of which, by far, is the production of beta-lactamases. As these enzymes are frequently plasmid encoded, resistance can readily be transmitted between bacteria. Despite the fact that pneumococci are naturally transformable organisms, no beta-lactamase-producing strain has yet been described. A much more complex resistance mechanism has evolved in S. pneumoniae that is mediated by a sophisticated restructuring of the targets of the beta-lactams, the penicillin-binding proteins (PBPs); however, this may not be the whole story. Recently, a third level of resistance mechanisms has been identified in laboratory mutants, wherein non-PBP genes are mutated and resistance development is accompanied by deficiency in genetic transformation. Two such non-PBP genes have been described: a putative glycosyltransferase, CpoA, and a histidine protein kinase, CiaH. We propose that these non-PBP genes are involved in the biosynthesis of cell wall components at a step prior to the biosynthetic functions of PBPs, and that the mutations selected during beta-lactam treatment counteract the effects caused by the inhibition of penicillin-binding proteins.
Collapse
Affiliation(s)
- R Hakenbeck
- University of Kaiserslautern, Department of Microbiology, Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
25
|
Carrión M, Gómez MJ, Merchante-Schubert R, Dongarrá S, Ayala JA. mraW, an essential gene at the dcw cluster of Escherichia coli codes for a cytoplasmic protein with methyltransferase activity. Biochimie 1999; 81:879-88. [PMID: 10572301 DOI: 10.1016/s0300-9084(99)00208-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Three new open reading frames, mraZ, mraW and mraR (also called ftsL), were revealed by DNA sequencing immediately upstream of gene pbpB in the dcw cluster of Escherichia coli. We have found that mraW and mraZ are active genes, coding for two proteins with relative molecular masses of 34 800 and 17 300, respectively. MraW is a cytoplasmic protein that under overproduction condition is also loosely bound to the membrane. Soluble MraW was purified up to 90% by a single high performance electrophoresis (HPEC) step from an extract of an overproducing strain. The protein exhibits a S-adenosyl-dependent methyltransferase activity on membrane-located substrates.
Collapse
Affiliation(s)
- M Carrión
- Centro de Biología Molecular 'Severo Ochoa' C.S.I.C.-U.A.M., Campus de la Universidad Autónoma de Madrid Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
26
|
Paik J, Kern I, Lurz R, Hakenbeck R. Mutational analysis of the Streptococcus pneumoniae bimodular class A penicillin-binding proteins. J Bacteriol 1999; 181:3852-6. [PMID: 10368166 PMCID: PMC93869 DOI: 10.1128/jb.181.12.3852-3856.1999] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One group of penicillin target enzymes, the class A high-molecular-weight penicillin-binding proteins (PBPs), are bimodular enzymes. In addition to a central penicillin-binding-transpeptidase domain, they contain an N-terminal putative glycosyltransferase domain. Mutations in the genes for each of the three Streptococcus pneumoniae class A PBPs, PBP1a, PBP1b, and PBP2a, were isolated by insertion duplication mutagenesis within the glycosyltransferase domain, documenting that their function is not essential for cellular growth in the laboratory. PBP1b PBP2a and PBP1a PBP1b double mutants could also be isolated, and both showed defects in positioning of the septum. Attempts to obtain a PBP2a PBP1a double mutant failed. All mutants with a disrupted pbp2a gene showed higher sensitivity to moenomycin, an antibiotic known to inhibit PBP-associated glycosyltransferase activity, indicating that PBP2a is the primary target for glycosyltransferase inhibitors in S. pneumoniae.
Collapse
Affiliation(s)
- J Paik
- Max-Planck Institut für Molekulare Genetik, D-14185 Berlin, Germany
| | | | | | | |
Collapse
|
27
|
Pinho MG, de Lencastre H, Tomasz A. Transcriptional analysis of the Staphylococcus aureus penicillin binding protein 2 gene. J Bacteriol 1998; 180:6077-81. [PMID: 9829914 PMCID: PMC107690 DOI: 10.1128/jb.180.23.6077-6081.1998] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequencing of the vicinity of the staphylococcal pbp2 gene and transcriptional analysis by primer extension and promoter fusions were used to show that pbp2 is part of an operon that also includes a gene with high homology to prfA of Bacillus subtilis. Two distinct promoters were identified directing transcription of pbp2 either alone or together with prfA. It was recently reported that transposon inactivation of pbp2 causes a reduction in methicillin resistance, but complementation experiments were not fully successful. We now show that introduction of the intact pbp2 gene with its two newly identified promoters into the chromosome of the transposon mutant resulted in the full recovery of high-level methicillin resistance.
Collapse
Affiliation(s)
- M G Pinho
- Laboratory of Microbiology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
28
|
Massidda O, Anderluzzi D, Friedli L, Feger G. Unconventional organization of the division and cell wall gene cluster of Streptococcus pneumoniae. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 11):3069-3078. [PMID: 9846742 DOI: 10.1099/00221287-144-11-3069] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The genes responsible for cell wall biosynthesis and cell division (dcw genes) were identified and sequenced in Streptococcus pneumoniae. The genetic organization of the dcw cluster in Streptococcus pneumoniae differed significantly from the clusters of other bacteria reported to date. In particular, the genes corresponding to the 2 min region of the Escherichia coli chromosome were found distributed in three genetically separate regions of the Streptococcus pneumoniae chromosome. The first region contained the expected ftsA and ftsZ cell division genes at one end and pbp2b, ddl and murF at the other end. The murD, murG and divIB genes, always found located upstream of ftsA, were found in a second region separated from the first. A third region contained the yllC, yllD, pbp2x and mraY genes. The chromosomal region downstream of ftsZ was also sequenced and characterized. In Streptococcus pneumoniae this region contains four ORFs, all of unknown function, and an ORF encoding the Bacillus subtilis DivIVA homologue. The gene order and the organization of this region was found to be conserved in Staphylococcus aureus, Streptococcus pyogenes and Bacillus subtilis, raising the possibility that previously unidentified loci may also be involved in division.
Collapse
Affiliation(s)
- Orietta Massidda
- Department of Microbiology, Medicine Research Center,GlaxoWellcome,37100 Verona,Italy
| | - Daniela Anderluzzi
- Department of Microbiology, Medicine Research Center,GlaxoWellcome,37100 Verona,Italy
| | - Laurence Friedli
- Geneva Biomedical Research InstitUte,GlaxoWellcome, 14 Chemin des Aulx, CH-1228 Plans-les-Ouates, Geneva,Switzerland
| | - Georg Feger
- Geneva Biomedical Research InstitUte,GlaxoWellcome, 14 Chemin des Aulx, CH-1228 Plans-les-Ouates, Geneva,Switzerland
| |
Collapse
|
29
|
Ballesteros M, Kusano S, Ishihama A, Vicente M. The ftsQ1p gearbox promoter of Escherichia coli is a major sigma S-dependent promoter in the ddlB-ftsA region. Mol Microbiol 1998; 30:419-30. [PMID: 9791185 DOI: 10.1046/j.1365-2958.1998.01077.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The most potent promoters in the ddlB-ftsA region of the dcw cluster have been analysed for sigmaS-dependent transcription. Only the gearbox promoter ftsQ1p was found to be transcribed in vitro by RNA polymerase holoenzyme coupled to sigmaS (EsigmaS). This dependency on sigmaS was also found in vivo when single-copy fusions to a reporter gene were analysed in rpoS and rpoS+ backgrounds. Although ftsQ1p can be transcribed by RNA polymerase containing either sigmaD or sigmaS, there is a preference for EsigmaS when the assay conditions include potassium glutamate and supercoiled templates, a property shared with the bolA1p gearbox promoter. The rest of the promoters assayed, ftsQ2p and ftsZ2p3p4p, similarly to the control bolA2p promoter, were preferentially transcribed by EsigmaD, the housekeeper polymerase. The ftsQ1p and the bolA1p promoters also share the presence of AT-rich sequences upstream of the - 35 region and the requirement for an intact wild-type alpha-subunit for a proficient transcription, allowing their joint classification as gearboxes.
Collapse
Affiliation(s)
- M Ballesteros
- Departamento de Biología Celular y del Desarrollo, Consejo Superior de Investigaciones Científicas, Velázquez 144, E28006 Madrid, Spain
| | | | | | | |
Collapse
|
30
|
Flärdh K, Palacios P, Vicente M. Cell division genes ftsQAZ in Escherichia coli require distant cis-acting signals upstream of ddlB for full expression. Mol Microbiol 1998; 30:305-15. [PMID: 9791176 DOI: 10.1046/j.1365-2958.1998.01064.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A transcriptional reporter fusion has been introduced into the chromosomal ftsZ locus in such a way that all transcription that normally reaches ftsZ can be monitored. The new Phi(ftsZ-lacZ ) fusion yields four times more beta-galactosidase activity than a ddlB-ftsQAZ-lacZ fusion on a lambda prophage vector. A strongly polar ddlB ::Omega insertion prevents contributions from signals upstream of the ftsQAZ promoters and decreases transcription of the chromosomal Phi(ftsZ-lacZ ) fusion by 66%, demonstrating that around two-thirds of total ftsZ transcription require cis-acting elements upstream of ddlB. We suggest that those elements are distant promoters, and thus that the cell division and cell wall synthesis genes in the dcw gene cluster are to a large extent co-transcribed. The ddlB ::Omega insertion is lethal unless additional copies of ftsQA are provided or a compensatory decrease in FtsZ synthesis is made. This shows that ddlB is a dispensable gene, and reinforces the critical role of the FtsA/FtsZ ratio in septation. Using the new reporter fusion, it is demonstrated that ftsZ expression is not autoregulated.
Collapse
Affiliation(s)
- K Flärdh
- Departamento de Biología Celular y del Desarrollo, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
31
|
Mengin-Lecreulx D, Ayala J, Bouhss A, van Heijenoort J, Parquet C, Hara H. Contribution of the Pmra promoter to expression of genes in the Escherichia coli mra cluster of cell envelope biosynthesis and cell division genes. J Bacteriol 1998; 180:4406-12. [PMID: 9721276 PMCID: PMC107448 DOI: 10.1128/jb.180.17.4406-4412.1998] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, a promoter for the essential gene ftsI, which encodes penicillin-binding protein 3 of Escherichia coli, was precisely localized 1.9 kb upstream from this gene, at the beginning of the mra cluster of cell division and cell envelope biosynthesis genes (H. Hara, S. Yasuda, K. Horiuchi, and J. T. Park, J. Bacteriol. 179:5802-5811, 1997). Disruption of this promoter (Pmra) on the chromosome and its replacement by the lac promoter (Pmra::Plac) led to isopropyl-beta-D-thiogalactopyranoside (IPTG)-dependent cells that lysed in the absence of inducer, a defect which was complemented only when the whole region from Pmra to ftsW, the fifth gene downstream from ftsI, was provided in trans on a plasmid. In the present work, the levels of various proteins involved in peptidoglycan synthesis and cell division were precisely determined in cells in which Pmra::Plac promoter expression was repressed or fully induced. It was confirmed that the Pmra promoter is required for expression of the first nine genes of the mra cluster: mraZ (orfC), mraW (orfB), ftsL (mraR), ftsI, murE, murF, mraY, murD, and ftsW. Interestingly, three- to sixfold-decreased levels of MurG and MurC enzymes were observed in uninduced Pmra::Plac cells. This was correlated with an accumulation of the nucleotide precursors UDP-N-acetylglucosamine and UDP-N-acetylmuramic acid, substrates of these enzymes, and with a depletion of the pool of UDP-N-acetylmuramyl pentapeptide, resulting in decreased cell wall peptidoglycan synthesis. Moreover, the expression of ftsZ, the penultimate gene from this cluster, was significantly reduced when Pmra expression was repressed. It was concluded that the transcription of the genes located downstream from ftsW in the mra cluster, from murG to ftsZ, is also mainly (but not exclusively) dependent on the Pmra promoter.
Collapse
Affiliation(s)
- D Mengin-Lecreulx
- Laboratoire des Enveloppes Bactériennes, Centre National de la Recherche Scientifique, Université Paris-Sud, 91405 Orsay Cedex, France.
| | | | | | | | | | | |
Collapse
|
32
|
Powell BS, Court DL. Control of ftsZ expression, cell division, and glutamine metabolism in Luria-Bertani medium by the alarmone ppGpp in Escherichia coli. J Bacteriol 1998; 180:1053-62. [PMID: 9495742 PMCID: PMC106991 DOI: 10.1128/jb.180.5.1053-1062.1998] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inactivation of transcription factor sigma54, encoded by rpoN (glnF), restores high-temperature growth in Luria-Bertani (LB) medium to strains containing the heat-sensitive cell division mutation ftsZ84. Mutational defects in three other genes involved in general nitrogen control (glnD, glnG, and glnL) also suppress lethal filamentation. Since addition of glutamine to LB medium fully blocks suppression by each mutation, the underlying cause of suppression likely derives from a stringent response to the limitation of glutamine. This model is supported by several observations. The glnL mutation requires RelA-directed synthesis of the nutrient alarmone ppGpp to suppress filamentation. Artificially elevated levels of ppGpp suppress ftsZ84, as do RNA polymerase mutations that reproduce global effects of the ppGpp-induced state. Both the glnF null mutation and an elevated copy number of the relA gene similarly affect transcription from the upstream (pQ) promoters of the ftsQAZ operon, and both of these genetic conditions increase the steady-state level of the FtsZ84 protein. Physiological suppression of ftsZ84 by a high salt concentration was also shown to involve RelA. Additionally, we found that the growth of a glnF or glnD strain on LB medium depends on RelA or supplemental glutamine in the absence of RelA function. These data expand the roles for ppGpp in the regulation of glutamine metabolism and the expression of FtsZ during cell division.
Collapse
Affiliation(s)
- B S Powell
- Molecular Control and Genetics, ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Maryland 21702, USA
| | | |
Collapse
|
33
|
Abstract
The shape of Escherichia coli is strikingly simple compared to those of higher eukaryotes. In fact, the end result of E. coli morphogenesis is a cylindrical tube with hemispherical caps. It is argued that physical principles affect biological forms. In this view, genes code for products that contribute to the production of suitable structures for physical factors to act upon. After introduction of a physical model, the discussion is focused on the shape-maintaining (peptidoglycan) layer of E. coli. This is followed by a detailed analysis of the structural relationship of the cellular interior to the cytoplasmic membrane. A basic theme of this review is that the transcriptionally active nucleoid and the cytoplasmic translation machinery form a structural continuity with the growing cellular envelope. An attempt has been made to show how this dynamic relationship during the cell cycle affects cell polarity and how it leads to cell division.
Collapse
Affiliation(s)
- N Nanninga
- Institute for Molecular Cell Biology, BioCentrum Amsterdam, University of Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Henderson TA, Young KD, Denome SA, Elf PK. AmpC and AmpH, proteins related to the class C beta-lactamases, bind penicillin and contribute to the normal morphology of Escherichia coli. J Bacteriol 1997; 179:6112-21. [PMID: 9324260 PMCID: PMC179516 DOI: 10.1128/jb.179.19.6112-6121.1997] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Two proteins that bind penicillin were observed in Escherichia coli infected with lambda phages 141, 142, 650, and 651 from the Kohara genomic library. These phages carry chromosomal DNA fragments that do not contain any known penicillin binding protein (PBP) genes, indicating that unrecognized gene products were exhibiting penicillin binding activity. The genes encoding these proteins were subcloned, sequenced, and identified. One gene was ampC, which encodes a chromosomal class C beta-lactamase. The second gene was located at about 8.5 min on the E. coli genomic map and is a previously uncharacterized open reading frame, here named ampH, that encodes a protein closely related to the class C beta-lactamases. The predicted AmpH protein is similar in length to AmpC, but there are extensive alterations in the amino acid sequence between the SXXK and YXN motifs of the two proteins. AmpH bound strongly to penicillin G, cefoxitin, and cephalosporin C; was temperature sensitive; and disappeared from cells after overnight incubation in stationary phase. Although closely related to AmpC and other class C beta-lactamases, AmpH showed no beta-lactamase activity toward the substrate nitrocefin. Mutation of the ampC and/or ampH genes in E. coli lacking PBPs 1a and 5 produced morphologically aberrant cells, particularly in cell filaments induced by aztreonam. Thus, these two members of the beta-lactamase family exhibit characteristics similar to those of the classical PBPs, and their absence affects cell morphology. These traits suggest that AmpC and AmpH may play roles in the normal course of peptidoglycan synthesis, remodeling, or recycling.
Collapse
Affiliation(s)
- T A Henderson
- Department of Microbiology and Immunology, School of Medicine, University of North Dakota, Grand Forks 58202-9037, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Peptidoglycan (murein) segregation has been studied by means of a new labeling method. The method relies on the ability of Escherichia coli cells to incorporate D-Cys into macromolecular murein. The incorporation depends on a periplasmic amino acid exchange reaction. At low concentrations, D-Cys is innocuous to the cell. The distribution of modified murein in purified sacculi can be traced and visualized by immunodetection of the -SH groups by fluorescence and electron microscopy techniques. Analysis of murein segregation in wild-type and cell division mutant strains revealed that murein in polar caps is metabolically inert and is segregated in a conservative fashion. Elongation of the sacculus apparently occurs by diffuse insertion of precursors over the cylindrical part of the cell surface. At the initiation of cell division, there is a FtsZ-dependent localized activation of murein synthesis at the potential division sites. Penicillin-binding protein 3 and the products of the division genes ftsA and ftsQ are dispensable for the activation of division sites. As a consequence, under restrictive conditions ftsA,ftsI,or ftsQ mutants generate filamentous sacculi with rings of all-new murein at the positions where septa would otherwise develop.
Collapse
Affiliation(s)
- M A de Pedro
- Centro de Biología Molecular Severo Ochoa Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Facultad de Ciencias, Spain.
| | | | | | | |
Collapse
|
36
|
Liao X, Hancock RE. Identification of a penicillin-binding protein 3 homolog, PBP3x, in Pseudomonas aeruginosa: gene cloning and growth phase-dependent expression. J Bacteriol 1997; 179:1490-6. [PMID: 9045804 PMCID: PMC178857 DOI: 10.1128/jb.179.5.1490-1496.1997] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A homolog of Pseudomonas aeruginosa penicillin-binding protein 3 (PBP3), named PBP3x in this study, was identified by using degenerate primers based on conserved amino acid motifs in the high-molecular-weight PBPs. Analysis of the translated sequence of the pbpC gene encoding this PBP3x revealed that 41 and 48% of its amino acids were identical to those of Escherichia coli and P. aeruginosa PBP3s, respectively. The downstream sequence of pbpC encoded convergently transcribed homologs of the E. coli soxR gene and the Mycobacterium bovis adh gene. The pbpC gene product was expressed from the T7 promoter in E. coli and was exported to the cytoplasmic membrane of E. coli cells and could bind [3H] penicillin. By using a broad-host-range vector, pUCP27, the pbpC gene was expressed in P. aeruginosa PAO4089. [3H]penicillin-binding competition assays indicated that the pbpC gene product had lower affinities for several PBP3-targeted beta-lactam antibiotics than P. aeruginosa PBP3 did, and overexpression of the pbpC gene product had no effect on the susceptibility to the PBP3-targeted antibiotics tested. By gene replacement, a PBP3x-defective interposon mutant (strain HC132) was obtained and confirmed by Southern blot analysis. Inactivation of PBP3x caused no changes in the cell morphology or growth rate of exponentially growing cells, suggesting that pbpC was not required for cell viability under normal laboratory growth conditions. However, the upstream sequence of pbpC contained a potential sigma(s) recognition site, and pbpC gene expression appeared to be growth rate regulated. [3H]penicillin-binding assays indicated that PBP3 was mainly produced during exponential growth whereas PBP3x was produced in the stationary phase of growth.
Collapse
Affiliation(s)
- X Liao
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
37
|
Abstract
Several crucial genes required for bacterial division lie close together in a region called the dcw cluster. Within the cluster, gene expression is subject to complex transcriptional regulation, which serves to adjust the cell cycle in response to growth rate. The pivotally important FtsZ protein, which is needed to initiate division, is now known to interact with many other components of the division machinery in Escherichia coli. Some biochemical properties of FtsZ, and of another division protein called FtsA, suggest that they are similar to the eukaryotic proteins tubulin and actin respectively. Cell division needs to be closely co-ordinated with chromosome partitioning. The mechanism of partitioning is poorly understood, though several genes involved in this process, including several muk genes, have been identified. The min genes may participate in both septum positioning and chromosome partitioning. Coupled transcription and translation of membrane-associated proteins might also be important for partitioning. In the event of a failure in the normal partitioning process, Bacillus subtilis, at least, has a mechanism for removing a bisected nucleoid from the division septum.
Collapse
Affiliation(s)
- M Vicente
- Departamento de Biologia Celular y del Desarrollo, Velazquez, Madrid, Spain
| | | |
Collapse
|
38
|
Margolin W, Wang R, Kumar M. Isolation of an ftsZ homolog from the archaebacterium Halobacterium salinarium: implications for the evolution of FtsZ and tubulin. J Bacteriol 1996; 178:1320-7. [PMID: 8631708 PMCID: PMC177805 DOI: 10.1128/jb.178.5.1320-1327.1996] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have isolated a homolog of the cell division gene ftsZ from the extremely halophilic archaebacterium Halobacterium salinarium. The predicted protein of 39 kDa is divergent relative to eubacterial homologs, with 32% identity to Escherichia coli FtsZ. No other eubacterial cell division gene homologs were found adjacent to H. salinarium ftsZ. Expression of the ftsZ gene region in H. salinarium induced significant morphological changes leading to the loss of rod shape. Phylogenetic analysis demonstrated that the H. salinarium FtsZ protein is more related to tubulins than are the FtsZ proteins of eubacteria, supporting the hypothesis that FtsZ may have evolved into eukaryotic tubulin.
Collapse
Affiliation(s)
- W Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030, USA
| | | | | |
Collapse
|
39
|
Cam K, Cuzange A, Bouché JP. Sigma S-dependent overexpression of ftsZ in an Escherichia coli K-12 rpoB mutant that is resistant to the division inhibitors DicB and DicF RNA. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:190-4. [PMID: 7651342 DOI: 10.1007/bf02190800] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Escherichia coli genes dicF and dicB encode division inhibitors, which prevent the synthesis and activity, respectively, of the essential division protein FtsZ. A mutation at the C-terminal end of the RNA polymerase beta subunit renders cells resistant to both inhibitors. In the mutant strain the level of the ftsZ gene product is higher than in the wild type. Disruption of rpoS, which encodes the stationary phase sigma factor sigma S, lowers FtsZ protein levels in the mutant, and partially restores sensitivity to the inhibitors.
Collapse
Affiliation(s)
- K Cam
- Laboratoire de Microbiologie et Génétique moléculaire, Centre National de la Recherche Scientifique, Toulouse, France
| | | | | |
Collapse
|
40
|
Abstract
The harmonious growth and cell-to-cell uniformity of steady-state bacterial populations indicate the existence of a well-regulated cell cycle, responding to a set of internal signals. In Escherichia coli, the key events of this cycle are the initiation of DNA replication, nucleoid segregation and the initiation of cell division. The replication initiator is the DnaA protein. In nucleoid segregation, the MukB protein, required for proper partitioning, may be a member of the myosin-kinesin superfamily of mechanoenzymes. In cell division, the FtsZ protein has a tubulin motif, is a GTPase and polymerizes in a ring around midcell during septation; the FtsA protein has an actin-like structure. The nature of the internal signals triggering these events is not known but candidates include cell mass, the superhelical density of the chromosome and the concentration of two regulatory nucleotides, cyclic AMP and ppGpp. The involvement of cytoskeletal-like proteins in key cycle events encourages the notion of a fundamental biological unity in cell cycle regulation in all organisms.
Collapse
Affiliation(s)
- D Vinella
- Institut Jacques Monod, CNRS, Université Paris 7, France
| | | |
Collapse
|
41
|
Mengin-Lecreulx D, Blanot D, van Heijenoort J. Replacement of diaminopimelic acid by cystathionine or lanthionine in the peptidoglycan of Escherichia coli. J Bacteriol 1994; 176:4321-7. [PMID: 8021219 PMCID: PMC205645 DOI: 10.1128/jb.176.14.4321-4327.1994] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In Escherichia coli, auxotrophy for diaminopimelic acid (A2pm) can be suppressed by growth with exogenous cystathionine or lanthionine. The incorporation of cystathionine into peptidoglycan metabolism was examined with a dapA metC mutant, whereas for lanthionine, a dapA metA mutant strain was used. Analysis of peptidoglycan precursors and sacculi isolated from cells grown with epimeric cystathionine or lanthionine showed that meso-A2pm was totally replaced in the same position by either sulfur-containing amino acid. Moreover, mainly L-allo-cystathionine (95%) or meso-lanthionine (93%) was incorporated into the precursors and sacculi. For this purpose, a new, efficient high-pressure liquid chromatography (HPLC) technique for analysis of the cystathionine isomers was developed. The formation of the UDP-MurNAc tripeptide appeared to be a critical step, since the MurE synthetase accepted meso-lanthionine or D-allo- or L-allo-cystathionine in vitro as good substrates, although with higher Km values. Presumably, the 10-fold-higher UDP-MurNAc-L-Ala-D-Glu pool of cells grown with cystathionine or lanthionine ensured a normal rate of synthesis. The kinetic parameters of the MurF synthetase catalyzing the addition of D-alanyl-D-alanine were very similar for the meso-A2pm-,L-allo-cystathionine-, and meso-lanthionine-containing UDP-MurNAc tripeptides. HPLC analysis of the soluble fragments resulting from 95% digestion by Chalaropsis N-acetylmuramidase of the peptidoglycan material in isolated sacculi revealed that the proportion of the main dimer was far lower in cystathionine and lanthionine sacculi.
Collapse
Affiliation(s)
- D Mengin-Lecreulx
- Unité de Recherche Associée 1131 du Centre National de la Recherche Scientifique, Biochimie Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
| | | | | |
Collapse
|