1
|
Gam R, Sung M, Prasad Pandurangan A. Experimental and Computational Approaches to Direct Cell Reprogramming: Recent Advancement and Future Challenges. Cells 2019; 8:E1189. [PMID: 31581647 PMCID: PMC6829265 DOI: 10.3390/cells8101189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
The process of direct cell reprogramming, also named transdifferentiation, permits for the conversion of one mature cell type directly into another, without returning to a dedifferentiated state. This makes direct reprogramming a promising approach for the development of several cellular and tissue engineering therapies. To achieve the change in the cell identity, direct reprogramming requires an arsenal of tools that combine experimental and computational techniques. In the recent years, several methods of transdifferentiation have been developed. In this review, we will introduce the concept of direct cell reprogramming and its background, and cover the recent developments in the experimental and computational prediction techniques with their applications. We also discuss the challenges of translating this technology to clinical setting, accompanied with potential solutions.
Collapse
Affiliation(s)
- Rihab Gam
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Minkyung Sung
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | | |
Collapse
|
2
|
Induction of male germ cell-like lineage from chicken fetal bone marrow stem cells with chicken testis extract. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0629-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Cellular Reprogramming Using Protein and Cell-Penetrating Peptides. Int J Mol Sci 2017; 18:ijms18030552. [PMID: 28273812 PMCID: PMC5372568 DOI: 10.3390/ijms18030552] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Recently, stem cells have been suggested as invaluable tools for cell therapy because of their self-renewal and multilineage differentiation potential. Thus, scientists have developed a variety of methods to generate pluripotent stem cells, from nuclear transfer technology to direct reprogramming using defined factors, or induced pluripotent stem cells (iPSCs). Considering the ethical issues and efficiency, iPSCs are thought to be one of the most promising stem cells for cell therapy. Induced pluripotent stem cells can be generated by transduction with a virus, plasmid, RNA, or protein. Herein, we provide an overview of the current technology for iPSC generation and describe protein-based transduction technology in detail.
Collapse
|
4
|
Lowenthal J, Sugarman J. Ethics and policy issues for stem cell research and pulmonary medicine. Chest 2015; 147:824-834. [PMID: 25732448 DOI: 10.1378/chest.14-1696] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Stem cell research and related initiatives in regenerative medicine, cell-based therapy, and tissue engineering have generated considerable scientific and public interest. Researchers are applying stem cell technologies to chest medicine in a variety of ways: using stem cells as models for drug discovery, testing stem cell-based therapies for conditions as diverse as COPD and cystic fibrosis, and producing functional lung and tracheal tissue for physiologic modeling and potential transplantation. Although significant scientific obstacles remain, it is likely that stem cell-based regenerative medicine will have a significant clinical impact in chest medicine. However, stem cell research has also generated substantial controversy, posing a variety of ethical and regulatory challenges for research and clinical practice. Some of the most prominent ethical questions related to the use of stem cell technologies in chest medicine include (1) implications for donors, (2) scientific prerequisites for clinical testing and use, (3) stem cell tourism, (4) innovation and clinical use of emerging stem cell-based interventions, (5) responsible translation of stem cell-based therapies to clinical use, and (6) appropriate and equitable access to emerging therapies. Having a sense of these issues should help to put emerging scientific advances into appropriate context and to ensure the responsible clinical translation of promising therapeutics.
Collapse
Affiliation(s)
- Justin Lowenthal
- School of Medicine, Medical Scientist Training Program, Johns Hopkins University, Baltimore, MD
| | - Jeremy Sugarman
- Berman Institute of Bioethics, Department of Medicine, Department of Health Policy and Management, Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
5
|
Xie F, Tang X, Zhang Q, Deng C. Reprogramming human adipose tissue stem cells using epidermal keratinocyte extracts. Mol Med Rep 2014; 11:182-8. [PMID: 25333210 PMCID: PMC4237102 DOI: 10.3892/mmr.2014.2711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/25/2014] [Indexed: 11/06/2022] Open
Abstract
Human adipose tissue stem cells (ATSCs) can differentiate into various types of cell in response to lineage-specific induction factors. Reprogramming cells using nuclear and cytoplasmic extracts derived from another type of somatic cell is an effective method of producing specific types of differentiated cell. In the present study, the ability of reprogrammed ATSCs to acquire epidermal keratinocyte properties following transient exposure to epidermal keratinocyte extracts was demonstrated. Reversibly permeabilized ATSCs were incubated for 1 h in nuclear and cytoplasmic extracts from epidermal keratinocytes, resealed with CaCl2 and cultured. ATSC reprogramming is demonstrated by nuclear uptake of epidermal keratinocyte extracts. After one week of exposure to extracts, ATSCs underwent changes in cell morphology, cell-specific genes were activated, and epidermal keratinocyte markers including K19 and K1/K10 (markers of stem cells and terminally differentiated keratinocytes, respectively) were expressed. This study indicates that the reprogramming of ATSCs using nuclear and cytoplasmic extracts from epidermal keratinocytes is a viable option for the production of specific types of cell.
Collapse
Affiliation(s)
- Feng Xie
- Department of Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai 200011, P.R. China
| | - Xinjie Tang
- Department of Plastic and Reconstructive Surgery, Huashan Hospital, Fudan University School of Medicine, Shanghai 200040, P.R. China
| | - Qun Zhang
- Department of Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai 200011, P.R. China
| | - Chenliang Deng
- Department of Plastic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, P.R. China
| |
Collapse
|
6
|
Maitra A. Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy. Expert Rev Mol Diagn 2014; 5:893-905. [PMID: 16255631 DOI: 10.1586/14737159.5.6.893] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adverse effects of viral vectors, instability of naked DNA, cytotoxicity and low transfection of cationic lipids, cationic polymers and other synthetic vectors are currently severe limitations in gene therapy. In addition to targeting a specific cell type, an ideal nonviral vector must manifest an efficient endosomal escape, render sufficient protection of DNA in the cytosol and help provide an easy passage of cytosolic DNA to the nucleus. Virus-like size calcium phosphate nanoparticles have been found to overcome many of these limitations in delivering genes to the nucleus of specific cells. This review has focused on some applications of DNA-loaded calcium phosphate nanoparticles as nonviral vectors in gene delivery, and their potential use in gene therapy, as well as highlighting the mechanistic studies to probe the reason for high transfection efficiency of the vector. It has been demonstrated that calcium ions play an important role in endosomal escape, cytosolic stability and enhanced nuclear uptake of DNA through nuclear pore complexes. The special role of exogenous calcium ions to overcome obstacles in practical realization of this field suggests that calcium phosphate nanoparticles are not 'me too' synthetic vectors and can be designated as second-generation nonviral vectors for gene therapy.
Collapse
Affiliation(s)
- Amarnath Maitra
- Department of Chemistry, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
7
|
Qu T, Shi G, Ma K, Yang HN, Duan WM, Pappas GD. Targeted cell reprogramming produces analgesic chromaffin-like cells from human mesenchymal stem cells. Cell Transplant 2013; 22:2257-66. [PMID: 23394594 DOI: 10.3727/096368912x662435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transplantation of allogeneic adrenal chromaffin cells demonstrated the promise of favorable outcomes for pain relief in patients. However, there is a very limited availability of suitable human adrenal gland tissues, genetically well-matched donors in particular, to serve as grafts. Xenogeneic materials, such as porcine and bovine adrenal chromaffin cells, present problems; for instance, immune rejection and possible pathogenic contamination are potential issues. To overcome these challenges, we have tested the novel approach of cell reprogramming to reprogram human bone marrow (BM)-derived mesenchymal stem cells (hMSCs) using cellular extracts of porcine chromaffin cells. We produced a new type of cell, chromaffin-like cells, generated from the reprogrammed hMSCs, which displayed a significant increase in expression of human preproenkephalin (hPPE), a precursor for enkephalin opioid peptides, compared to the inherent expression of hPPE in naive hMSCs. The resultant chromaffin-like cells not only expressed the key molecular markers of adrenal chromaffin cells, such as tyrosine hydroxylase (TH) and methionine enkephalin (Met-enkephalin), but also secreted opioid peptide Met-enkephalin in culture. In addition, intrathecal injection of chromaffin-like cells in rats produced significant analgesic effects without using immunosuppressants. These results suggest that analgesic chromaffin-like cells can be produced from an individual's own tissue-derived stem cells by targeted cell reprogramming and also that these chromaffin-like cells may serve as potential autografts for chronic pain management.
Collapse
Affiliation(s)
- T Qu
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
8
|
The implications of stem cell applications for diseases of the respiratory system. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 130:39-54. [PMID: 22915199 DOI: 10.1007/10_2012_153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Stem cells possess the unique properties of unlimited self-renewal capability and a broad differentiation spectrum to produce multiple different cell types. This provides many platforms to explore novel multidisciplinary approaches to create and/or restore functional three-dimensional tissues or organs for the treatment of a range of diseases. In this chapter, in the context of respiratory diseases, we review the unique properties of stem cells, and how they have been studied for their therapeutic potential in cell therapy and tissue engineering. In addition, we give a brief overview of the current clinical studies on the use of stem cells for both acute and chronic respiratory diseases.
Collapse
|
9
|
Blyth NJ. Mechanisms and techniques of reprogramming: using PDX-1 homeobox protein as a novel treatment of insulin dependent diabetes mellitus. Diabetes Metab Syndr 2012; 6:113-119. [PMID: 23153982 DOI: 10.1016/j.dsx.2012.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Homeobox proteins are key regulators of stem cell proliferation and differentiation which function as transcription factors and regulate cell fate decisions. Pancreatic Duodenal Homeobox-1 (PDX-1) is a homeobox protein which acts as a key regulator in the development of b cells in the Islets of Langerhans. It plays an important role in maintaining the identity and function of the Islets of Langerhans, and in the development of the pancreas. There is strong evidence that PDX-1 plays a role in activating the insulin promoter and increasing insulin levels in response to glucose. PDX-1 also binds to sequences within β cells and regulates the promoter activity of a number of islet genes including insulin, glut-2 and neurogenin 3. When fused with the VP16 activation sequence, transfection of the PDX-1 gene has been shown to transform liver cells into insulin producing cells. Because homeobox proteins are able to passively translocate through cell membranes, due to an intrinsic transduction domain (penetratin), the use of these proteins to reprogram target cells may help overcome the limiting supply of β cells and be a potential future treatment for Type 1 diabetes.
Collapse
Affiliation(s)
- Nadine J Blyth
- Barwon Biomedical Research, The University of Melbourne, Barwon Health, Geelong, Victoria, Australia.
| |
Collapse
|
10
|
Ree A. Epigenetikk - gen og miljø. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2012. [DOI: 10.4045/tidsskr.11.1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
11
|
Proliferation and multi-differentiation potentials of human mesenchymal stem cells on thermoresponsive PDMS surfaces grafted with PNIPAAm. Biosci Rep 2009; 30:149-58. [PMID: 19445653 DOI: 10.1042/bsr20090026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The thermo-responsivity of PNIPAAm [poly(N-isopropylcarylamide)]-grafted PDMS [poly(dimethylsiloxane)] surface is a property that could be feasibly used for detaching cells adhered on the surface. We used benzophenone-initiated photopolymerization to graft PNIPAAm on PDMS substrates to construct the PNIPAAm-grafted PDMS surface and this PDMS surface was highly thermo-responsive. hMSCs (human mesenchymal stem cells) were used to analyse the proliferation and multi-differentiation of stem cells on the PNIPAAm-grafted PDMS surface. The results showed that hMSCs could adhere on the PNIPAAm-grafted PDMS surface at 37 degrees C and form cell colonies, and then become fibroblastic. The proliferation potential of hMSCs on the PNIPAAm-grafted PDMS surface was not significantly different from that on a plate surface coated with gelatin. However, as it proved easier to detach cells from the surface, by changing temperature, a higher viability of detached cells could be obtained with the PNIPAAm-grafted PDMS surface, using a temperature shift, compared with a gelatin-coated surface, where cells are detached by treatment with trypsin. hMSCs on the PNIPAAm-grafted PDMS surface were induced into osteoblasts, adipocytes and neurocytes under osteogenic medium, adipogenic medium and neurogenic medium respectively. The PNIPAAm-grafted PDMS surface was favourable for osteogenesis of hMSCs, although the potentials of adipogenesis and neurogenesis of hMSCs on the PNIPAAm-grafted PDMS surface were similar to those on the plate surface coated with gelatin. The above results demonstrate that the PNIPAAm-grafted PDMS surface not only kept the potentials of proliferation and multi-differentiation of hMSCs, but also increased the viability of hMSCs.
Collapse
|
12
|
Roh S, Choi HY, Park SK, Won C, Kim BW, Kim JH, Kang H, Lee ER, Cho SG. Porcine nuclear transfer using somatic donor cells altered to express male germ cell function. Reprod Fertil Dev 2009; 21:882-91. [PMID: 19698292 DOI: 10.1071/rd09063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/17/2009] [Indexed: 11/23/2022] Open
Abstract
Recent studies reported that the direct transformation of one differentiated somatic cell type into another is possible. In the present study, we were able to modulate the cell fate of somatic cells to take on male germ cell function by introducing cell extracts derived from porcine testis tissue. Fibroblasts were treated with streptolysin O, which reversibly permeabilises the plasma membrane, and incubated with testis extracts. Our results showed that the testis extracts (TE) could activate expression of male germ cell-specific genes, implying that TE can provide regulatory components required for altering the cell fate of fibroblasts. Male germ cell function was sustained for more than 10 days after the introduction of TE. In addition, a single TE-treated cell was injected directly into the cytoplasm of in vitro-matured porcine oocytes. The rate of blastocyst formation was significantly higher in the TE-treated nuclear donor cell group than in the control cell group. The expression level of Nanog, Sox9 and Eomes was drastically increased when altered cells were used as donor nuclei. Our results suggest that TE can be used to alter the cell fate of fibroblasts to express male germ cell function and improve the developmental efficiency of the nuclear transfer porcine embryos.
Collapse
Affiliation(s)
- Sangho Roh
- Embryo Biotechnology Laboratory, Dental Research Institute and CLS21, Seoul National University School of Dentistry, Seoul, Korea. ;
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Nirmalanandhan VS, Sittampalam GS. Stem cells in drug discovery, tissue engineering, and regenerative medicine: emerging opportunities and challenges. ACTA ACUST UNITED AC 2009; 14:755-68. [PMID: 19675315 DOI: 10.1177/1087057109336591] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stem cells, irrespective of their origin, have emerged as valuable reagents or tools in human health in the past 2 decades. Initially, a research tool to study fundamental aspects of developmental biology is now the central focus of generating transgenic animals, drug discovery, and regenerative medicine to address degenerative diseases of multiple organ systems. This is because stem cells are pluripotent or multipotent cells that can recapitulate developmental paths to repair damaged tissues. However, it is becoming clear that stem cell therapy alone may not be adequate to reverse tissue and organ damage in degenerative diseases. Existing small-molecule drugs and biologicals may be needed as "molecular adjuvants" or enhancers of stem cells administered in therapy or adult stem cells in the diseased tissues. Hence, a combination of stem cell-based, high-throughput screening and 3D tissue engineering approaches is necessary to advance the next wave of tools in preclinical drug discovery. In this review, the authors have attempted to provide a basic account of various stem cells types, as well as their biology and signaling, in the context of research in regenerative medicine. An attempt is made to link stem cells as reagents, pharmacology, and tissue engineering as converging fields of research for the next decade.
Collapse
Affiliation(s)
- Victor Sanjit Nirmalanandhan
- University of Kansas Medical Center & Kansas Masonic Cancer Research Center, Department of Pharmacology Toxicology and Therapeutics, The Institute for Advancing Medical Innovation, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
14
|
Diaz Sanchez-Bustamante C, Kelm JM, Egermann M, Djonov V, Fussenegger M. Ectopic Expression of Delta FBJ Murine Osteosarcoma Viral Oncogene Homolog B Mediates Transdifferentiation of Adipose-like Spheroids into Osteo-like Microtissues. Tissue Eng Part A 2008; 14:1377-94. [DOI: 10.1089/ten.tea.2007.0185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Jens Maria Kelm
- Department of Surgical Research and Clinic for Cardiovascular Surgery, University Hospital and University of Zurich, Zurich, Switzerland
| | - Marcus Egermann
- Orthopädische Universitätsklinik Heidelberg, Heidelberg, Germany
| | - Valentin Djonov
- Institute of Anatomy, University of Berne, Berne, Switzerland
| | - Martin Fussenegger
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Stem cell potential for type 1 diabetes therapy. Open Life Sci 2007. [DOI: 10.2478/s11535-007-0035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractStem cells have been considered as a useful tool in Regenerative Medicine due to two main properties: high rate of self-renewal, and their potential to differentiate into all cell types present in the adult organism. Depending on their origin, these cells can be grouped into embryonic or adult stem cells. Embryonic stem cells are obtained from the inner cell mass of blastocyst, which appears during embryonic day 6 of human development. Adult stem cells are present within various tissues of the organism and are responsible for their turnover and repair. In this sense, these cells open new therapeutic possibilities to treat degenerative diseases such as type 1 diabetes. This pathology is caused by the autoimmune destruction of pancreatic β-cells, resulting in the lack of insulin production. Insulin injection, however, cannot mimic β-cell function, thus causing the development of important complications. The possibility of obtaining β-cell surrogates from either embryonic or adult stem cells to restore insulin secretion will be discussed in this review.
Collapse
|
16
|
Collas P, Taranger CK. Epigenetic reprogramming of nuclei using cell extracts. ACTA ACUST UNITED AC 2007; 2:309-17. [PMID: 17848718 DOI: 10.1007/bf02698058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/28/2022]
Abstract
Recent evidence indicates that nuclear and cytoplasmic extracts from undifferentiated cells can reprogram gene expression and promote pluripotency in otherwise more developmentally restricted cell types. Notably, extracts of embryonal carcinoma cells or embryonic stem cells have been shown to elicit a shift in the transcriptional program of target cells to upregulate embryonic stem cell genes, downregulate somatic cell-specific markers, and epigenetically modify histones. Reprogrammed kidney epithelial cells acquire a potential for differentiation toward ectodermal and mesodermal lineages. Cell extract-mediated nuclear reprogramming may constitute an attractive alternative to reprogramming somatic cells by cell fusion or nuclear transfer. This review highlights recent observations leading to the concept that extracts derived from pluripotent cells contain regulatory components capable of reprogramming somatic nuclear function. Limitations of current extract-based reprogramming approaches are also addressed.
Collapse
Affiliation(s)
- Philippe Collas
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, Blindern, Oslo 0317, Norway.
| | | |
Collapse
|
17
|
Xiang Y, Zheng Q, Jia BB, Huang GP, Xu YL, Wang JF, Pan ZJ. Ex vivo expansion and pluripotential differentiation of cryopreserved human bone marrow mesenchymal stem cells. J Zhejiang Univ Sci B 2007; 8:136-46. [PMID: 17266190 PMCID: PMC1791057 DOI: 10.1631/jzus.2007.b0136] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study is aimed at investigating the potentials of ex vivo expansion and pluri-differentiation of cryopreservation of adult human bone marrow mesenchymal stem cells (hMSCs) into chondrocytes, adipocytes and neurocytes. Cryopreserved hMSCs were resuscitated and cultured for 15 passages, and then induced into chondrocytes, adipocytes and neurocytes with corresponding induction medium. The induced cells were observed for morphological properties and detected for expressions of type II collagen, triglyceride or neuron-specific enolase and nestin. The result showed that the resuscitated cells could differentiate into chondrocytes after exposure to transforming growth factor beta(1) (TGF-beta(1)), insulin-like growth factor I (IGF-I) and vitamin C (V(C)), and uniformly changed morphologically from a spindle-like fibroblastic appearance to a polygonal shape in three weeks. The induced cells were heterochromatic to safranin O and expressed cartilage matrix-procollagenal (II) mRNA. The resuscitated cells cultured in induction medium consisting of dexamethasone, 3-isobutyl-1-methylxanthine, indomethacin and IGF-I showed adipogenesis, and lipid vacuoles accumulation was detectable after 21 d. The resuscitated hMSCs were also induced into neurocytes and expressed nestin and neuron specific endolase (NSE) that were special surface markers associated with neural cells at different stage. This study suggested that the resuscitated hMSCs should be still a population of pluripotential cells and that it could be used for establishing an abundant hMSC reservoir for further experiment and treatment of various clinical diseases.
Collapse
Affiliation(s)
- Ying Xiang
- School of Life Sciences, Zhejiang University, Hangzhou 310012, China
| | - Qiang Zheng
- Department of Orthopedics, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Bing-bing Jia
- School of Life Sciences, Zhejiang University, Hangzhou 310012, China
| | - Guo-ping Huang
- School of Life Sciences, Zhejiang University, Hangzhou 310012, China
| | - Yu-lin Xu
- School of Life Sciences, Zhejiang University, Hangzhou 310012, China
| | - Jin-fu Wang
- School of Life Sciences, Zhejiang University, Hangzhou 310012, China
- †E-mail:
| | - Zhi-jun Pan
- Department of Orthopedics, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
- †E-mail:
| |
Collapse
|
18
|
Abstract
The cause of renal fibrosis in diabetic nephropathy is widely believed to be phenotypic switching of fibroblasts to an activated state. However, emerging evidence suggests that diabetes also alters the phenotype of normal, non-fibroblast kidney cells, such as mesangial cells, tubular epithelial cells, and bone marrow-derived progenitors. Experiments have shown that cytokines, high glucose, and advanced glycation end products induce profibrotic changes in kidney cell phenotype by the processes of myofibroblast transdifferentiation and epithelial-mesenchymal transition. As a result, differentiated kidney cells become reprogrammed to secrete and accumulate extracellular matrix. This revised view implies that inhibiting phenotypic transitions in nonfibroblasts might limit fibrosis in diabetic nephropathy.
Collapse
Affiliation(s)
- M S Simonson
- Division of Nephrology and Hypertension, Department of Medicine, School of Medicine, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA.
| |
Collapse
|
19
|
Collas P, Taranger CK. Toward reprogramming cells to pluripotency. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2007:47-67. [PMID: 16903416 DOI: 10.1007/3-540-31437-7_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The possibility of turning one somatic cell type into another may in the long run have beneficial applications in regenerative medicine. Somatic cell nuclear transfer (therapeutic cloning) may offer this possibility; however, ethical guidelines prevent application of this technology in many in countries. As a result, alternative approaches are being developed for altering cell fate. This communication discusses recent non-nuclear transfer-based in vitro approaches for reprogramming cells and enhancing their potential for differentiation toward various lineages.
Collapse
Affiliation(s)
- P Collas
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, Norway.
| | | |
Collapse
|
20
|
Abstract
Reprogramming of a differentiated cell into a cell capable of giving rise to many different cell types, a pluripotent cell, which in turn could repopulate or repair sick or damaged tissue, would present beneficial applications in regenerative medicine. Somatic cell nuclear transfer may offer this possibility, but technical hurdles and ethical frameworks currently prevent application of this technology in several countries. As a result, alternative strategies to reprogramming cell fate are being developed. This review briefly addresses somatic cell nuclear transfer and focuses on recent non-nuclear transfer-based approaches for reprogramming somatic cells and enhancing their differentiation potential. These include the fusion of somatic cells with embryonic stem cells, the treatment of somatic cells with extract of pluripotent cells and the retroviral transduction of somatic cells to overexpress pluripotency genes.
Collapse
Affiliation(s)
- P Collas
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, Oslo, Norway.
| |
Collapse
|
21
|
Lee WCC, Rubin JP, Marra KG. Regulation of alpha-smooth muscle actin protein expression in adipose-derived stem cells. Cells Tissues Organs 2006; 183:80-6. [PMID: 17053324 DOI: 10.1159/000095512] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2006] [Indexed: 01/14/2023] Open
Abstract
The objective of this work was to study the response of adipose-derived stem cells (ASCs) to exogenous biochemical stimulation, and the potential of ASCs to differentiate toward the smooth muscle cell (SMC) lineage. Immunofluorescence staining and Western blot analysis detected protein expression of the early SMC marker alpha-smooth muscle actin (alpha-SMA) in both control and experiment groups. Expression of alpha-SMA in ASCs significantly increased when treated with transforming growth factor-beta1, while alpha-SMA expression only slightly increased in the presence of retinoic acid (RA), beta-mercaptoethanol and ascorbic acid. Treatment with platelet-derived growth factor-BB, RA and dibutyryl-cyclic adenosine monophosphate decreased the expression of alpha-SMA significantly. While beta-mercaptoethanol and ascorbic acid, as well as RA have resulted in increased alpha-SMA expression in marrow-derived mesenchymal stem cells and other progenitor cells, our results demonstrate that these treatments do not significantly increase alpha-SMA expression, indicating that the differentiation potential of ASCs and mesenchymal stem cells may be fundamentally different.
Collapse
Affiliation(s)
- Wen-Chi C Lee
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
22
|
French AJ, Wood SH, Trounson AO. Human therapeutic cloning (NTSC). ACTA ACUST UNITED AC 2006; 2:265-76. [PMID: 17848713 DOI: 10.1007/bf02698053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/15/2022]
Abstract
Human therapeutic cloning or nuclear transfer stem cells (NTSC) to produce patient-specific stem cells, holds considerable promise in the field of regenerative medicine. The recent withdrawal of the only scientific publications claiming the successful generation of NTSC lines afford an opportunity to review the available research in mammalian reproductive somatic cell nuclear transfer (SCNT) with the goal of progressing human NTSC. The process of SCNT is prone to epigenetic abnormalities that contribute to very low success rates. Although there are high mortality rates in some species of cloned animals, most surviving clones have been shown to have normal phenotypic and physiological characteristics and to produce healthy offspring. This technology has been applied to an increasing number of mammals for utility in research, agriculture, conservation, and biomedicine. In contrast, attempts at SCNT to produce human embryonic stem cells (hESCs) have been disappointing. Only one group has published reliable evidence of success in deriving a cloned human blastocyst, using an undifferentiated hESC donor cell, and it failed to develop into a hESC line. When optimal conditions are present, it appears that in vitro development of cloned and parthenogenetic embryos, both of which may be utilized to produce hESCs, may be similar to in vitro fertilized embryos. The derivation of ESC lines from cloned embryos is substantially more efficient than the production of viable offspring. This review summarizes developments in mammalian reproductive cloning, cell-to-cell fusion alternatives, and strategies for oocyte procurement that may provide important clues facilitating progress in human therapeutic cloning leading to the successful application of cell-based therapies utilizing autologous hESC lines.
Collapse
|
23
|
Collas P, Taranger CK, Boquest AC, Noer A, Dahl JA. On the way to reprogramming cells to pluripotency using cell-free extracts. Reprod Biomed Online 2006; 12:762-70. [PMID: 16792855 DOI: 10.1016/s1472-6483(10)61088-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The functional reprogramming of a differentiated cell to pluripotency may present beneficial applications in regenerative medicine. Somatic cell nuclear transfer may offer this possibility, but technical hurdles and ethical guidelines currently prevent application of this technology in several countries. As a result, alternative approaches are being developed for altering cell fate. Recent non-nuclear transfer-based approaches for reprogramming somatic cells are discussed as well as ways to enhance their differentiation potential. These approaches include the fusion of differentiated cells with embryonic stem cells and the use of extract from pluripotent cells to reprogramme differentiated cells into multipotent or pluripotent cells.
Collapse
Affiliation(s)
- Philippe Collas
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway.
| | | | | | | | | |
Collapse
|
24
|
Bäckesjö CM, Li Y, Lindgren U, Haldosén LA. Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. J Bone Miner Res 2006; 21:993-1002. [PMID: 16813520 DOI: 10.1359/jbmr.060415] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED In vitro, mesenchymal stem cells differentiate to osteoblasts when exposed to bone-inducing medium. However, adipocytes are also formed. We showed that activation of the nuclear protein deacetylase Sirt1 reduces adipocyte formation and promotes osteoblast differentiation. INTRODUCTION Mesenchymal stem cells (MSCs) can differentiate into osteoblasts, adipocytes, chondrocytes, and myoblasts. It has been suggested that a reciprocal relationship exists between the differentiation of MSCs into osteoblasts and adipocytes. Peroxisome proliferator-activated receptor gamma2 (PPARgamma2) is a key element for the differentiation into adipocytes. Activation of Sirt1 has recently been shown to decrease adipocyte development from preadipocytes through inhibition of PPARgamma2. MATERIALS AND METHODS We used the mouse mesenchymal cell line C3H10T1/2 and primary rat bone marrow cells cultured in osteoblast differentiation medium with or without reagents affecting Sirt1 activity. Adipocyte levels were analyzed by light microscopy and flow cytometry (FACS) after staining with Oil red O and Nile red, respectively. Osteoblast and adipocyte markers were studied with quantitative real-time PCR. Mineralization in cultures of primary rat bone marrow stromal cells was studied by von Kossa and alizarin red staining. RESULTS We found that Sirt1 is expressed in the mesenchymal cell line C3H10T1/2. Treatment with the plant polyphenol resveratrol as well as isonicotinamide, both of which activate Sirt1, blocked adipocyte development and increased the expression of osteoblast markers. Nicotinamide, which inhibits Sirt1, increased adipocyte number and increased expression of adipocyte markers. Furthermore, activation of Sirt1 prevented the increase in adipocytes caused by the PPARgamma-agonist troglitazone. Finally, activation of Sirt1 in rat primary bone marrow stromal cells increased expression of osteoblast markers and also mineralization. CONCLUSIONS In this study, we targeted Sirt1 to control adipocyte development during differentiation of MSCs into osteoblasts. The finding that resveratrol and isonicotinamide markedly inhibited adipocyte and promoted osteoblast differentiation may be relevant in the search for new treatment regimens of osteoporosis but also important for the evolving field of cell-based tissue engineering.
Collapse
Affiliation(s)
- Carl-Magnus Bäckesjö
- Department for Clinical Science, Intervention and Technology (CLINTEC), Division of Orthopedics, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden.
| | | | | | | |
Collapse
|
25
|
Serakinci N, Keith WN. Therapeutic potential of adult stem cells. Eur J Cancer 2006; 42:1243-6. [PMID: 16678403 DOI: 10.1016/j.ejca.2006.01.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 01/23/2006] [Indexed: 01/14/2023]
Abstract
The aim of cell-based therapies is to replace or repair damaged tissues and organs. A diverse number of disorders are amenable to this approach, including haematopoietic, neurological and cardiovascular diseases, as well as bone defects and diabetes. Central to the success of cell therapy is the necessity to be able to identify, select, expand and manipulate cells outside the body. Recent advances in adult stem cell technologies and basic biology have accelerated therapeutic opportunities aimed at eventual clinical applications. Adult stem cells with the ability to differentiate down multiple lineages are an attractive alternative to human embryonic stem cells (hES) in regenerative medicine. In many countries, present legislation surrounding hES cells makes their use problematic, and indeed the origin of hES cells may represent a controversial issue for many communities. However, adult stem cells are not subject to these issues. This review will therefore focus on adult stem cells. Based on their extensive differentiation potential and, in some cases, the relative ease of their isolation, adult stem cells are appropriate for clinical development. Recently, several observations suggest that multipotential adult stem cells are capable of producing a whole spectrum of cell types, regardless of whether or not these tissues are derived from same germ layer; highlighting the opportunity to manipulate stem cells for therapeutic use.
Collapse
Affiliation(s)
- Nedime Serakinci
- Department of Anatomy and Neurobiology, I Southern Denmark University, Institute of Medical Biology, Winsløwparken 21 Stuen,C 5000 Odense, Denmark.
| | | |
Collapse
|
26
|
Abstract
The concept of reprogramming a cell is very intriguing and has immense therapeutic potential. Examples from physiology and developmental biology suggest that it may well be possible. Experimental approaches are beginning to suggest this also, in particular the initially astonishing accomplishment of somatic cell nuclear transfer and cloning. This chapter reviews current strategies and describes emerging methods for the proposition of reprogramming cells with cell extracts.
Collapse
Affiliation(s)
- Sadhana Agarwal
- Molecular and Cell Biology, Advanced Cell Technology, Inc., Worcester, Massachusetts, USA
| |
Collapse
|
27
|
Bossolasco P, Cova L, Calzarossa C, Rimoldi SG, Borsotti C, Deliliers GL, Silani V, Soligo D, Polli E. Neuro-glial differentiation of human bone marrow stem cells in vitro. Exp Neurol 2005; 193:312-25. [PMID: 15869934 DOI: 10.1016/j.expneurol.2004.12.013] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 07/09/2004] [Accepted: 12/01/2004] [Indexed: 01/09/2023]
Abstract
Bone marrow (BM) is a rich source of stem cells and may represent a valid alternative to neural or embryonic cells in replacing autologous damaged tissues for neurodegenerative diseases. The purpose of the present study is to identify human adult BM progenitor cells capable of neuro-glial differentiation and to develop effective protocols of trans-differentiation to surmount the hematopoietic commitment in vitro. Heterogeneous cell populations such as whole BM, low-density mononuclear and mesenchymal stem (MSCs), and several immunomagnetically separated cell populations were investigated. Among them, MSCs and CD90+ cells were demonstrated to express neuro-glial transcripts before any treatment. Several culture conditions with the addition of stem cell or astroblast conditioned media, different concentrations of serum, growth factors, and supplements, used alone or in combinations, were demonstrated to alter the cellular morphology in some cell subpopulations. In particular, MSCs and CD90+ cells acquired astrocytic and neuron-like morphologies in specific culture conditions. They expressed several neuro-glial specific markers by RT-PCR and glial fibrillary acid protein by immunocytochemistry after co-culture with astroblasts, both in the absence or presence of cell contact. In addition, floating neurosphere-like clones have been observed when CD90+ cells were grown in neural specific media. In conclusion, among the large variety of human adult BM cell populations analyzed, we demonstrated the in vitro neuro-glial potential of both the MSC and CD90+ subset of cells. Moreover, unidentified soluble factors provided by the conditioned media and cellular contacts in co-culture systems were effective in inducing the neuro-glial phenotype, further supporting the adult BM neural differentiative capability.
Collapse
|
28
|
Serakinci N, Guldberg P, Burns JS, Abdallah B, Schrødder H, Jensen T, Kassem M. Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene 2004; 23:5095-8. [PMID: 15107831 DOI: 10.1038/sj.onc.1207651] [Citation(s) in RCA: 274] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The neoplastic process may involve a cancer stem cell. This concept has emerged largely from the careful analysis of tumour biopsy systems from haematological, breast and brain tumours. However, the experimental systems necessary to provide the cellular and molecular evidence to support this important concept have been lacking. We have used adult mesenchymal stem cells (hMSC) transduced with the telomerase hTERT gene to investigate the neoplastic potential of adult stem cells. The hTERT-transduced line, hMSC-TERT20 at population doubling level (PDL) 256 showed loss of contact inhibition, anchorage independence and formed tumours in 10/10 mice. hMSC-TERT4 showed loss of contact inhibition at PDL 95, but did not exhibit anchorage independence and did not form tumours in mice. Both lines had a normal karyotype but showed deletion of the Ink4a/ARF locus. At later passage, hMSC-TERT4 also acquired an activating mutation in KRAS. In hMSC-TERT20, expression of the cell cycle-associated gene, DBCCR1 was lost due to promoter hypermethylation. This epigenetic event correlated with acquisition of tumorigenicity. These data suggest that the adult hMSCs can be targets for neoplastic transformation and have implications for the development of novel anticancer therapeutics and for the use of hMSC in tissue engineering and transplantation protocols.
Collapse
Affiliation(s)
- Nedime Serakinci
- Department of Endocrinology, University Hospital of Odense, Denmark.
| | | | | | | | | | | | | |
Collapse
|
29
|
Cova L, Ratti A, Volta M, Fogh I, Cardin V, Corbo M, Silani V. Stem cell therapy for neurodegenerative diseases: the issue of transdifferentiation. Stem Cells Dev 2004; 13:121-31. [PMID: 15068700 DOI: 10.1089/154732804773099326] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the past few years research on stem cells has exploded as a tool to develop potential therapies to treat incurable neurodegenerative diseases. Stem cell transplantation has been effective in several animal models, but the underlying restorative mechanisms are still unknown. Several events such as cell fusion, neurotrophic factor release, endogenous stem cell proliferation, and transdifferentiation (adult cell acquisition of new unexpected identities) may explain therapeutic success, in addition to replacement of lost cells. This issue needs to be clarified further to maximize the potential for effective therapies. Preliminary stem transplantation trials have already been performed for some neurodegenerative diseases. There is no effective pharmacological treatment for amyotrophic lateral sclerosis, but recent preliminary data both in experimental and clinical settings have targeted it as an ideal candidate disease for the development of stem cell therapy in humans. This review summarizes recent advances gained in stem cell research applied to neurodegenerative diseases with a special emphasis to the criticisms put forward.
Collapse
Affiliation(s)
- Lidia Cova
- Department of Neurology and Laboratory of Neuroscience, Dino Ferrari Center, University of Milan Medical School, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Håkelien AM, Gaustad KG, Collas P. Transient alteration of cell fate using a nuclear and cytoplasmic extract of an insulinoma cell line. Biochem Biophys Res Commun 2004; 316:834-41. [PMID: 15033476 DOI: 10.1016/j.bbrc.2004.02.127] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Indexed: 10/26/2022]
Abstract
We report a transient modulation of cell fate in fibroblasts briefly exposed to an extract derived from the rat insulin-producing beta cell line, INS-1E. Primary fetal rat fibroblasts were reversibly permeabilized with Streptolysin O, incubated for 1h in a 15,000g INS-1E nuclear and cytoplasmic extract, resealed, and cultured. A first marker of change in cell fate was a reduction of cell and nuclear size within days of exposure to extract such that in some instances the fibroblasts resembled INS-1E cells. Second, two beta cell transcripts, Pdx-1 and insulin, were detected in the fibroblasts for up to 4 weeks. Third, (pro)insulin labeling was detected in 5-30% of the cells for a period of 8-14 days after incubation in extract. These phenotypes were absent from fibroblasts exposed to heat-treated INS-1E extracts, a human fibroblast cell line-derived extract or buffer. The results indicate that the extract of an insulinoma-derived cell line can promote at least a transient modification of cell fate towards a beta cell phenotype in non-beta cells. Because they are easily accessible, cell extracts may represent a practical source of material for investigating the mechanisms of alteration of a nuclear and cellular program.
Collapse
Affiliation(s)
- Anne-Mari Håkelien
- Institute of Medical Biochemistry, University of Oslo, Oslo 0317, Norway
| | | | | |
Collapse
|
31
|
Gaustad KG, Boquest AC, Anderson BE, Gerdes AM, Collas P. Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochem Biophys Res Commun 2004; 314:420-7. [PMID: 14733922 DOI: 10.1016/j.bbrc.2003.12.109] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the differentiation of human adipose tissue stem cells (ATSCs) to take on cardiomyocyte properties following transient exposure to a rat cardiomyocyte extract. Reversibly permeabilized ATSCs were incubated for 1h in a nuclear and cytoplasmic extract of rat cardiomyocytes, resealed with CaCl(2), and cultured. Three weeks after exposure to extract, ATSCs expressed several cardiomyocyte markers including sarcomeric alpha-actinin, desmin, and cardiac troponin I, and displayed targeted expression of the gap junction protein connexin 43. Formation of binucleated and striated cells, and spontaneous beating in culture were also observed. A low proportion of intact ATSCs exposed to the extract also showed signs of alpha-actinin and connexin 43 expression. Additional evidence of differentiation was provided by induction of expression of nuclear lamin A/C, a marker of terminally differentiated cells, and a remarkable increase in cell cycle length. Together with our previous data, this study suggests that alteration of cell fate using cellular extracts may be applied to multiple cell types. Cell extracts may also prove useful for investigating the molecular mechanisms of stem cell differentiation.
Collapse
|
32
|
Abstract
Recent advances in pancreatic islet transplantation emphasize the potential of this approach for the long-term control of blood glucose levels in diabetic patients. However, tissue-replacement therapy will become widely available as a treatment for diabetes only when new sources of islets and insulin-producing cells are found. Here, we review recent evidence that documents the potential of mature liver as a source of tissue for generating a functional endocrine pancreas, by ectopic expression of pancreatic transcription and differentiation factors. When key events in the transconversion process have been identified, using the liver as a source of pancreatic tissue might provide a valuable approach for replacing impaired beta cell function in diabetics.
Collapse
|