1
|
Välimets S, Pedetti P, Virginia LJ, Hoang MN, Sauer M, Peterbauer C. Secretory expression of recombinant small laccase genes in Gram-positive bacteria. Microb Cell Fact 2023; 22:72. [PMID: 37062846 PMCID: PMC10108450 DOI: 10.1186/s12934-023-02075-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/28/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND Laccases are multicopper enzymes that oxidize a wide range of aromatic and non-aromatic compounds in the presence of oxygen. The majority of industrially relevant laccases are derived from fungi and are produced in eukaryotic expression systems such as Pichia pastoris and Saccharomyces cerevisiae. Bacterial laccases for research purposes are mostly produced intracellularly in Escherichia coli, but secretory expression systems are needed for future applications. Bacterial laccases from Streptomyces spp. are of interest for potential industrial applications because of their lignin degrading activities. RESULTS In this study, we expressed small laccases genes from Streptomyces coelicolor, Streptomyces viridosporus and Amycolatopsis 75iv2 with their native signal sequences in Gram-positive Bacillus subtilis and Streptomyces lividans host organisms. The extracellular activities of ScLac, SvLac and AmLac expressed in S. lividans reached 1950 ± 99 U/l, 812 ± 57 U/l and 12 ± 1 U/l in the presence of copper supplementation. The secretion of the small laccases was irrespective of the copper supplementation; however, activities upon reconstitution with copper after expression were significantly lower, indicating the importance of copper during laccase production. The production of small laccases in B. subtilis resulted in extracellular activity that was significantly lower than in S. lividans. Unexpectedly, AmLac and ScLac were secreted without their native signal sequences in B. subtilis, indicating that B. subtilis secretes some heterologous proteins via an unknown pathway. CONCLUSIONS Small laccases from S. coelicolor, S. viridosporus and Amycolatopsis 75iv2 were secreted in both Gram-positive expression hosts B. subtilis and S. lividans, but the extracellular activities were significantly higher in the latter.
Collapse
Affiliation(s)
- Silja Välimets
- Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Institute of Food Technology, Muthgasse 18, Vienna, Vienna, 1190, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Vienna, 1190, Austria
| | - Patricia Pedetti
- Food Microbiology, Wageningen University and Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, The Netherlands
| | - Ludovika Jessica Virginia
- Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Institute of Food Technology, Muthgasse 18, Vienna, Vienna, 1190, Austria
| | - Mai Ngoc Hoang
- Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Institute of Food Technology, Muthgasse 18, Vienna, Vienna, 1190, Austria
- Department of Human Medicine, Institute of Immunology, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
| | - Michael Sauer
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Vienna, 1190, Austria
| | - Clemens Peterbauer
- Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Institute of Food Technology, Muthgasse 18, Vienna, Vienna, 1190, Austria.
| |
Collapse
|
2
|
Ajeje SB, Hu Y, Song G, Peter SB, Afful RG, Sun F, Asadollahi MA, Amiri H, Abdulkhani A, Sun H. Thermostable Cellulases / Xylanases From Thermophilic and Hyperthermophilic Microorganisms: Current Perspective. Front Bioeng Biotechnol 2021; 9:794304. [PMID: 34976981 PMCID: PMC8715034 DOI: 10.3389/fbioe.2021.794304] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
The bioconversion of lignocellulose into monosaccharides is critical for ensuring the continual manufacturing of biofuels and value-added bioproducts. Enzymatic degradation, which has a high yield, low energy consumption, and enhanced selectivity, could be the most efficient and environmentally friendly technique for converting complex lignocellulose polymers to fermentable monosaccharides, and it is expected to make cellulases and xylanases the most demanded industrial enzymes. The widespread nature of thermophilic microorganisms allows them to proliferate on a variety of substrates and release substantial quantities of cellulases and xylanases, which makes them a great source of thermostable enzymes. The most significant breakthrough of lignocellulolytic enzymes lies in lignocellulose-deconstruction by enzymatic depolymerization of holocellulose into simple monosaccharides. However, commercially valuable thermostable cellulases and xylanases are challenging to produce in high enough quantities. Thus, the present review aims at giving an overview of the most recent thermostable cellulases and xylanases isolated from thermophilic and hyperthermophilic microbes. The emphasis is on recent advancements in manufacturing these enzymes in other mesophilic host and enhancement of catalytic activity as well as thermostability of thermophilic cellulases and xylanases, using genetic engineering as a promising and efficient technology for its economic production. Additionally, the biotechnological applications of thermostable cellulases and xylanases of thermophiles were also discussed.
Collapse
Affiliation(s)
- Samaila Boyi Ajeje
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yun Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Sunday Bulus Peter
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Richmond Godwin Afful
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Mohammad Ali Asadollahi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Abdulkhani
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Haiyan Sun
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
3
|
Wang S, Yang Z, Li Z, Tian Y. Heterologous Expression of Recombinant Transglutaminase in Bacillus subtilis SCK6 with Optimized Signal Peptide and Codon, and Its Impact on Gelatin Properties. J Microbiol Biotechnol 2020; 30:1082-1091. [PMID: 32325545 PMCID: PMC9728238 DOI: 10.4014/jmb.2002.02049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/19/2020] [Indexed: 12/15/2022]
Abstract
Microbial transglutaminases (MTGs) are widely used in the food industry. In this study, the MTG gene of Streptomyces sp. TYQ1024 was cloned and expressed in a food-grade bacterial strain, Bacillus subtilis SCK6. Extracellular activity of the MTG after codon and signal peptide (SP Ync M) optimization was 20 times that of the pre-optimized enzyme. After purification, the molecular weight of the MTG was 38 kDa and the specific activity was 63.75 U/mg. The optimal temperature and pH for the recombinant MTG activity were 50°C and 8.0, respectively. MTG activity increased 1.42- fold in the presence of β-ME and 1.6-fold in the presence of DTT. Moreover, 18% sodium chloride still resulted in 83% enzyme activity, which showed good salt tolerance. Cross-linking gelatin with the MTG increased the strength of gelatin 1.67 times and increased the thermal denaturation temperature from 61.8 to 75.8°C. The MTG also significantly increased the strength and thermal stability of gelatin. These characteristics demonstrated the huge commercial potential of MTG, such as for applications in salted protein foods.
Collapse
Affiliation(s)
- Shiting Wang
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, P.R. China,College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Zhigang Yang
- Chengdu Jinkai Bioengineering Co., Ltd., Chengdu 611130, P.R. China
| | - Zhenjiang Li
- Chengdu Jinkai Bioengineering Co., Ltd., Chengdu 611130, P.R. China,Corresponding author Z.L. Phone: +17790268754 E-mail:
| | - Yongqiang Tian
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, P.R. China,College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China,Corresponding author Z.L. Phone: +17790268754 E-mail:
| |
Collapse
|
4
|
Wang X, Deng Z, Liu T. Marker‐Free System Using Ribosomal Promoters Enhanced Xylose/Glucose Isomerase Production inStreptomyces rubiginosus. Biotechnol J 2019; 14:e1900114. [DOI: 10.1002/biot.201900114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/05/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaojie Wang
- State Key Laboratory of Microbial Metabolism, School of Life Science and BiotechnologyShanghai Jiao Tong UniversityShanghai 200030 P. R. China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Science and BiotechnologyShanghai Jiao Tong UniversityShanghai 200030 P. R. China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical SciencesWuhan UniversityWuhan 430071 P. R. China
- Hubei Engineering Laboratory for Synthetic MicrobiologyWuhan Institute of BiotechnologyWuhan 430075 P. R. China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical SciencesWuhan UniversityWuhan 430071 P. R. China
- Hubei Engineering Laboratory for Synthetic MicrobiologyWuhan Institute of BiotechnologyWuhan 430075 P. R. China
| |
Collapse
|
5
|
Liu R, Deng Z, Liu T. Streptomyces species: Ideal chassis for natural product discovery and overproduction. Metab Eng 2018; 50:74-84. [DOI: 10.1016/j.ymben.2018.05.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/26/2022]
|
6
|
Noguchi Y, Kashiwagi N, Uzura A, Ogino C, Kondo A, Ikeda H, Sota M. Development of a strictly regulated xylose-induced expression system in Streptomyces. Microb Cell Fact 2018; 17:151. [PMID: 30241528 PMCID: PMC6149001 DOI: 10.1186/s12934-018-0991-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
Background Genetic tools including constitutive and inducible promoters have been developed over the last few decades for strain engineering in Streptomyces. Inducible promoters are useful for controlling gene expression, however only a limited number are applicable to Streptomyces. The aim of this study is to develop a controllable protein expression system based on an inducible promoter using sugar inducer, which has not yet been widely applied in Streptomyces. Results To determine a candidate promoter, inducible protein expression was first examined in Streptomyces avermitilis MA-4680 using various carbon sources. Xylose isomerase (xylA) promoter derived from xylose (xyl) operon was selected due to strong expression of xylose isomerase (XylA) in the presence of d-xylose. Next, a xylose-inducible protein expression system was constructed by investigating heterologous protein expression (chitobiase as a model protein) driven by the xylA promoter in Streptomyces lividans. Chitobiase activity was detected at high levels in S. lividans strain harboring an expression vector with xylA promoter (pXC), under both xylose-induced and non-induced conditions. Thus, S. avermitilis xylR gene, which encodes a putative repressor of xyl operon, was introduced into constructed vectors in order to control protein expression by d-xylose. Among strains constructed in the study, XCPR strain harboring pXCPR vector exhibited strict regulation of protein expression. Chitobiase activity in the XCPR strain was observed to be 24 times higher under xylose-induced conditions than that under non-induced conditions. Conclusion In this study, a strictly regulated protein expression system was developed based on a xylose-induced system. As far as we could ascertain, this is the first report of engineered inducible protein expression in Streptomyces by means of a xylose-induced system. This system might be applicable for controllable expression of toxic products or in the field of synthetic biology using Streptomyces strains. Electronic supplementary material The online version of this article (10.1186/s12934-018-0991-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuji Noguchi
- Nagase R&D Center, Nagase & Co., Ltd., 2-2-3 Murotani, Nishi-ku, Kobe, Hyogo, 651-2241, Japan
| | - Norimasa Kashiwagi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Atsuko Uzura
- Nagase R&D Center, Nagase & Co., Ltd., 2-2-3 Murotani, Nishi-ku, Kobe, Hyogo, 651-2241, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Haruo Ikeda
- Laboratory of Microbial Engineering, Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Masahiro Sota
- Nagase R&D Center, Nagase & Co., Ltd., 2-2-3 Murotani, Nishi-ku, Kobe, Hyogo, 651-2241, Japan
| |
Collapse
|
7
|
Zarai Y, Margaliot M, Sontag ED, Tuller T. Controllability Analysis and Control Synthesis for the Ribosome Flow Model. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1351-1364. [PMID: 28541906 PMCID: PMC5778923 DOI: 10.1109/tcbb.2017.2707420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ribosomal density along different parts of the coding regions of the mRNA molecule affects various fundamental intracellular phenomena including: protein production rates, global ribosome allocation and organismal fitness, ribosomal drop off, co-translational protein folding, mRNA degradation, and more. Thus, regulating translation in order to obtain a desired ribosomal profile along the mRNA molecule is an important biological problem. We study this problem by using a dynamical model for mRNA translation, called the ribosome flow model (RFM). In the RFM, the mRNA molecule is modeled as an ordered chain of $n$ sites. The RFM includes $n$ state-variables describing the ribosomal density profile along the mRNA molecule, and the transition rates from each site to the next are controlled by $n+1$ positive constants. To study the problem of controlling the density profile, we consider some or all of the transition rates as time-varying controls. We consider the following problem: given an initial and a desired ribosomal density profile in the RFM, determine the time-varying values of the transition rates that steer the system to the desired density profile, if they exist. More specifically, we consider two control problems. In the first, all transition rates can be regulated separately, and the goal is to steer the ribosomal density profile and the protein production rate from a given initial value to a desired value. In the second problem, one or more transition rates are jointly regulated by a single scalar control, and the goal is to steer the production rate to a desired value within a certain set of feasible values. In the first case, we show that the system is controllable, i.e., the control is powerful enough to steer the system to any desired value in finite time, and provide simple closed-form expressions for constant positive control functions (or transition rates) that asymptotically steer the system to the desired value. In the second case, we show that the system is controllable, and provide a simple algorithm for determining the constant positive control value that asymptotically steers the system to the desired value. We discuss some of the biological implications of these results.
Collapse
|
8
|
Carrillo Rincón AF, Magdevska V, Kranjc L, Fujs Š, Müller R, Petković H. Production of extracellular heterologous proteins in Streptomyces rimosus, producer of the antibiotic oxytetracycline. Appl Microbiol Biotechnol 2018; 102:2607-2620. [PMID: 29417200 DOI: 10.1007/s00253-018-8793-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 11/29/2022]
Abstract
Among the Streptomyces species, Streptomyces lividans has often been used for the production of heterologous proteins as it can secrete target proteins directly into the culture medium. Streptomyces rimosus, on the other hand, has for long been used at an industrial scale for oxytetracycline production, and it holds 'Generally Recognised As Safe' status. There are a number of properties of S. rimosus that make this industrial strain an attractive candidate as a host for heterologous protein production, including (1) rapid growth rate; (2) growth as short fragments, as for Escherichia coli; (3) high efficiency of transformation by electroporation; and (4) secretion of proteins into the culture medium. In this study, we specifically focused our efforts on an exploration of the use of the Sec secretory pathway to export heterologous proteins in a S. rimosus host. We aimed to develop a genetic tool kit for S. rimosus and to evaluate the extracellular production of target heterologous proteins of this industrial host. This study demonstrates that S. rimosus can produce the industrially important enzyme phytase AppA extracellularly, and analogous to E. coli as a host, application of His-Tag/Ni-affinity chromatography provides a simple and rapid approach to purify active phytase AppA in S. rimosus. We thus demonstrate that S. rimosus can be used as a potential alternative protein expression system.
Collapse
Affiliation(s)
- Andrés Felipe Carrillo Rincón
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria, CSIC, C/Albert Einstein, 22, 39011, Santander, Spain.,Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Pharmaceutical Biotechnology, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Vasilka Magdevska
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, SI, Slovenia.,Acies Bio, d.o.o. Tehnološki Park 21, 1000, Ljubljana, SI, Slovenia
| | - Luka Kranjc
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, SI, Slovenia
| | - Štefan Fujs
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, SI, Slovenia.,Acies Bio, d.o.o. Tehnološki Park 21, 1000, Ljubljana, SI, Slovenia
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Pharmaceutical Biotechnology, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Hrvoje Petković
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria, CSIC, C/Albert Einstein, 22, 39011, Santander, Spain. .,Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, SI, Slovenia. .,Acies Bio, d.o.o. Tehnološki Park 21, 1000, Ljubljana, SI, Slovenia.
| |
Collapse
|
9
|
Li J, Wang H, Kwon YC, Jewett MC. Establishing a high yieldingstreptomyces-based cell-free protein synthesis system. Biotechnol Bioeng 2017; 114:1343-1353. [DOI: 10.1002/bit.26253] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/06/2017] [Accepted: 01/15/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Jian Li
- Department of Chemical and Biological Engineering; Northwestern University; Evanston Illinois 60208
| | - He Wang
- Department of Chemical and Biological Engineering; Northwestern University; Evanston Illinois 60208
- Masters in Biotechnology Program; Northwestern University; Evanston Illinois
| | - Yong-Chan Kwon
- Department of Chemical and Biological Engineering; Northwestern University; Evanston Illinois 60208
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering; Northwestern University; Evanston Illinois 60208
- Masters in Biotechnology Program; Northwestern University; Evanston Illinois
- Chemistry of Life Processes Institute; Northwestern University; Evanston Illinois
- Member; Robert H. Lurie Comprehensive Cancer Center; Northwestern University; Chicago Illinois
- Simpson Querrey Institute; Northwestern University; Chicago Illinois. Center for Synthetic Biology; Northwestern University; Evanston Illinois
| |
Collapse
|
10
|
Liu S, Wang M, Du G, Chen J. Improving the active expression of transglutaminase in Streptomyces lividans by promoter engineering and codon optimization. BMC Biotechnol 2016; 16:75. [PMID: 27793152 PMCID: PMC5084433 DOI: 10.1186/s12896-016-0304-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/13/2016] [Indexed: 12/15/2022] Open
Abstract
Background Transglutaminases (TGase), which are synthesized as a zymogen (pro-TGase) in Streptomyces sp., are important enzymes in the food industry. Because this pro-peptide is essential for the correct folding of Streptomyces TGase, TGase is usually expressed in an inactive pro-TGase form, which is then converted to active TGase by the addition of activating proteases in vitro. In this study, Streptomyces hygroscopicus TGase was actively produced by Streptomyces lividans through promoter engineering and codon optimization. Results A gene fragment (tg1, 2.6 kb) that encoded the pro-TGase and its endogenous promoter region, signal peptide and terminator was amplified from S. hygroscopicus WSH03-13 and cloned into plasmid pIJ86, which resulted in pIJ86/tg1. After fermentation for 2 days, S. lividans TK24 that harbored pIJ86/tg1 produced 1.8 U/mL of TGase, and a clear TGase band (38 kDa) was detected in the culture supernatant. These results indicated that the pro-TGase was successfully expressed and correctly processed into active TGase in S. lividans TK24 by using the TGase promoter. Based on deletion analysis, the complete sequence of the TGase promoter is restricted to the region from −693 to −48. We also identified a negative element (−198 to −148) in the TGase promoter, and the deletion of this element increased the TGase production by 81.3 %, in contrast to the method by which S. lividans expresses pIJ86/tg1. Combining the deletion of the negative element of the promoter and optimization of the gene codons, the yield and productivity of TGase reached 5.73 U/mL and 0.14 U/mL/h in the recombinant S. lividans, respectively. Conclusions We constructed an active TGase-producing strain that had a high yield and productivity, and the optimized TGase promoter could be a good candidate promoter for the expression of other proteins in Streptomyces.
Collapse
Affiliation(s)
- Song Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
| | - Miao Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China. .,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Sevillano L, Vijgenboom E, van Wezel GP, Díaz M, Santamaría RI. New approaches to achieve high level enzyme production in Streptomyces lividans. Microb Cell Fact 2016; 15:28. [PMID: 26846788 PMCID: PMC4743123 DOI: 10.1186/s12934-016-0425-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/19/2016] [Indexed: 11/29/2022] Open
Abstract
Background Actinomycetes are saprophytic soil bacteria, and a rich source of industrial enzymes. While some of these enzymes can be produced using well-characterized production platforms such as Escherichia coli or Bacillus subtilis,Streptomyces lividans may be the preferred host for proper folding and efficient secretion of active enzymes. A combination of promoters, signal peptides and hosts were tested in order to obtain the best protein expression in this actinomycete. The xylanase, Xys1, from S. halstedii, the α-amylase, Amy, from S. griseus and the small laccase, SLAC, from S. coelicolor were used as reporters. Results The promoters xysAp from S. halstedii JM8 and pstSp from S. lividans were the most efficient among those tested. An improvement of 17 % was obtained in xylanase activity when the signal peptide of the α-amylase protein (Amy) of S. griseus IMRU3570 was used to direct its secretion. Enhanced expression of SsgA, a protein that plays a role in processes that require cell-wall remodelling, resulted in a improvement of 40 and 70 % of xylanase and amylase production, respectively. Deletion of genes SLI7232 and SLI4452 encoding putative repressors of xysAp provided improvement of production up to 70 % in the SLI7232 deletion strain. However, full derepression of this promoter activity was not obtained under the conditions assayed. Conclusions Streptomyces lividans is a frequently used platform for industrial enzyme production and a rational strain-development approach delivered significant improvement of protein production by this host. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0425-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Sevillano
- Instituto de Biología Funcional y Genómica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, C/Zacarías González nº 2, 37007, Salamanca, Spain.
| | - Erik Vijgenboom
- Molecular Biotechnology, IBL, Sylvius Laboratory, Leiden University, Leiden, The Netherlands.
| | - Gilles P van Wezel
- Molecular Biotechnology, IBL, Sylvius Laboratory, Leiden University, Leiden, The Netherlands.
| | - Margarita Díaz
- Instituto de Biología Funcional y Genómica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, C/Zacarías González nº 2, 37007, Salamanca, Spain.
| | - Ramón I Santamaría
- Instituto de Biología Funcional y Genómica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, C/Zacarías González nº 2, 37007, Salamanca, Spain.
| |
Collapse
|
12
|
Muhamadali H, Xu Y, Ellis DI, Trivedi DK, Rattray NJW, Bernaerts K, Goodacre R. Metabolomics investigation of recombinant mTNFα production in Streptomyces lividans. Microb Cell Fact 2015; 14:157. [PMID: 26449894 PMCID: PMC4598958 DOI: 10.1186/s12934-015-0350-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/29/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Whilst undergoing differentiation, Streptomyces produce a large quantity of hydrolytic enzymes and secondary metabolites, and it is this very ability that has focussed increasing interest on the use of these bacteria as hosts for the production of various heterologous proteins. However, within this genus, the exploration and understanding of the metabolic burden associated with such bio-products has only just begun. In this study our overall aim was to apply metabolomics approaches as tools to get a glimpse of the metabolic alterations within S. lividans TK24 when this industrially relevant microbe is producing recombinant murine tumour necrosis factor alpha (mTNFα), in comparison to wild type and empty (non-recombinant protein containing) plasmid-carrying strains as controls. RESULTS Whilst growth profiles of all strains demonstrated comparable trends, principal component-discriminant function analysis of Fourier transform infrared (FT-IR) spectral data, showed clear separation of wild type from empty plasmid and mTNFα-producing strains, throughout the time course of incubation. Analysis of intra- and extra-cellular metabolic profiles using gas chromatography-mass spectrometry (GC-MS) displayed similar trends to the FT-IR data. Although the strain carrying the empty plasmid demonstrated metabolic changes due to the maintenance of the plasmid, the metabolic behaviour of the recombinant mTNFα-producing strain appeared to be the most significantly affected. GC-MS results also demonstrated a significant overflow of several organic acids (pyruvate, 2-ketoglutarate and propanoate) and sugars (xylitol, mannose and fructose) in the mTNFα-producing strain. CONCLUSION The results obtained in this study have clearly demonstrated the metabolic impacts of producing mTNFα in S. lividans TK24, while displaying profound metabolic effects of harbouring the empty PIJ486 plasmid. In addition, the level of mTNFα produced in this study, further highlights the key role of media composition towards the efficiency of a bioprocess and metabolic behaviour of the host cells, which directly influences the yield of the recombinant product.
Collapse
Affiliation(s)
- Howbeer Muhamadali
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| | - Yun Xu
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| | - David I Ellis
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| | - Drupad K Trivedi
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| | - Nicholas J W Rattray
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| | - Kristel Bernaerts
- Bio- and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, KU Leuven (University of Leuven), Leuven Chem&Tech, Celestijnenlaan 200F (bus 2424), 3001, Leuven, Belgium.
| | - Royston Goodacre
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
13
|
Abstract
Using the dynamic mean-field approximation of the totally asymmetric simple exclusion process (TASEP), we investigate the effect of small changes in the initiation, elongation, and termination rates along the mRNA strand on the steady-state protein translation rate. We show that the sensitivity of mRNA translation is equal to the sensitivity of the maximal eigenvalue of a symmetric, nonnegative, tridiagonal, and irreducible matrix. This leads to new analytical results as well as efficient numerical schemes that are applicable for large-scale models. Our results show that in the usual endogenous case, when initiation is more rate-limiting than elongation, the sensitivity of the translation rate to small mutations rapidly increases towards the 5′ end of the ORF. When the initiation rate is high, as may be the case for highly expressed and/or heterologous optimized genes, the maximal sensitivity is with respect to the elongation rates at the middle of the mRNA strand. We also show that the maximal possible effect of a small increase/decrease in any of the rates along the mRNA is an increase/decrease of the same magnitude in the translation rate. These results are in agreement with previous molecular evolutionary and synthetic biology experimental studies.
Collapse
|
14
|
Poker G, Zarai Y, Margaliot M, Tuller T. Maximizing protein translation rate in the non-homogeneous ribosome flow model: a convex optimization approach. J R Soc Interface 2015; 11:20140713. [PMID: 25232050 DOI: 10.1098/rsif.2014.0713] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Translation is an important stage in gene expression. During this stage, macro-molecules called ribosomes travel along the mRNA strand linking amino acids together in a specific order to create a functioning protein. An important question, related to many biomedical disciplines, is how to maximize protein production. Indeed, translation is known to be one of the most energy-consuming processes in the cell, and it is natural to assume that evolution shaped this process so that it maximizes the protein production rate. If this is indeed so then one can estimate various parameters of the translation machinery by solving an appropriate mathematical optimization problem. The same problem also arises in the context of synthetic biology, namely, re-engineer heterologous genes in order to maximize their translation rate in a host organism. We consider the problem of maximizing the protein production rate using a computational model for translation-elongation called the ribosome flow model (RFM). This model describes the flow of the ribosomes along an mRNA chain of length n using a set of n first-order nonlinear ordinary differential equations. It also includes n + 1 positive parameters: the ribosomal initiation rate into the mRNA chain, and n elongation rates along the chain sites. We show that the steady-state translation rate in the RFM is a strictly concave function of its parameters. This means that the problem of maximizing the translation rate under a suitable constraint always admits a unique solution, and that this solution can be determined using highly efficient algorithms for solving convex optimization problems even for large values of n. Furthermore, our analysis shows that the optimal translation rate can be computed based only on the optimal initiation rate and the elongation rate of the codons near the beginning of the ORF. We discuss some applications of the theoretical results to synthetic biology, molecular evolution, and functional genomics.
Collapse
Affiliation(s)
- Gilad Poker
- School of EE-Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoram Zarai
- School of EE-Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Margaliot
- School of EE-Systems, Tel Aviv University, Tel Aviv 69978, Israel The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamir Tuller
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
15
|
Streptomyces griseusEnhances Denitrification byRalstonia pickettiiK50, Which Is Possibly Mediated by Histidine Produced during Co-Culture. Biosci Biotechnol Biochem 2014; 72:163-70. [DOI: 10.1271/bbb.70528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Geng W, Yang C, Gu Y, Liu R, Guo W, Wang X, Song C, Wang S. Cloning of ε-poly-L-lysine (ε-PL) synthetase gene from a newly isolated ε-PL-producing Streptomyces albulus NK660 and its heterologous expression in Streptomyces lividans. Microb Biotechnol 2014; 7:155-64. [PMID: 24423427 PMCID: PMC3937719 DOI: 10.1111/1751-7915.12108] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 11/27/2022] Open
Abstract
ε-Poly-L-lysine (ε-PL), showing a wide range of antimicrobial activity, is now industrially produced as a food additive by a fermentation process. A new strain capable of producing ε-PL was isolated from a soil sample collected from Gutian, Fujian Province, China. Based on its morphological and biochemical features and phylogenetic similarity with 16S rRNA gene, the strain was identified as Streptomyces albulus and named NK660. The yield of ε-PL in 30 l fed-batch fermentation with pH control was 4.2 g l−1 when using glycerol as the carbon source. The structure of ε-PL was determined by nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization–time of flight mass spectrometry (MALDI-TOF MS). Previous studies have shown that the antimicrobial activity of ε-PL is dependent on its molecular size. In this study, the polymerization degree of the ε-PL produced by strain NK660 ranged from 19 to 33 L-lysine monomers, with the main component consisting of 24–30 L-lysine monomers, which implied that the ε-PL might have higher antimicrobial activity. Furthermore, the ε-PL synthetase gene (pls) was cloned from strain NK660 by genome walking. The pls gene with its native promoter was heterologously expressed in Streptomyces lividans ZX7, and the recombinant strain was capable of synthesizing ε-PL. Here, we demonstrated for the first time heterologous expression of the pls gene in S. lividans. The heterologous expression of pls gene in S. lividans will open new avenues for elucidating the molecular mechanisms of ε-PL synthesis.
Collapse
Affiliation(s)
- Weitao Geng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China; Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Transcriptional characterisation of the negative effect exerted by a deficiency in type II signal peptidase on extracellular protein secretion in Streptomyces lividans. Appl Microbiol Biotechnol 2013; 97:10069-80. [DOI: 10.1007/s00253-013-5219-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
|
18
|
Recent advances in recombinant protein expression by Corynebacterium, Brevibacterium, and Streptomyces: from transcription and translation regulation to secretion pathway selection. Appl Microbiol Biotechnol 2013; 97:9597-608. [PMID: 24068337 DOI: 10.1007/s00253-013-5250-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 12/14/2022]
Abstract
Gram-positive bacteria are widely used to produce recombinant proteins, amino acids, organic acids, higher alcohols, and polymers. Many proteins have been expressed in Gram-positive hosts such as Corynebacterium, Brevibacterium, and Streptomyces. The favorable and advantageous characteristics (e.g., high secretion capacity and efficient production of metabolic products) of these species have increased the biotechnological applications of bacteria. However, owing to multiplicity from genes encoding the proteins and expression hosts, the expression of recombinant proteins is limited in Gram-positive bacteria. Because there is a very recent review about protein expression in Bacillus subtilis, here we summarize recent strategies for efficient expression of recombinant proteins in the other three typical Gram-positive bacteria (Corynebacterium, Brevibacterium, and Streptomyces) and discuss future prospects. We hope that this review will contribute to the development of recombinant protein expression in Corynebacterium, Brevibacterium, and Streptomyces.
Collapse
|
19
|
p-Hydroxycinnamic acid production directly from cellulose using endoglucanase- and tyrosine ammonia lyase-expressing Streptomyces lividans. Microb Cell Fact 2013; 12:45. [PMID: 23651460 PMCID: PMC3668229 DOI: 10.1186/1475-2859-12-45] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/14/2013] [Indexed: 12/04/2022] Open
Abstract
Background p-Hydroxycinnamic acid (pHCA) is an aromatic compound that serves as a starting material for the production of many commercially valuable chemicals, such as fragrances and pharmaceuticals, and is also used in the synthesis of thermostable polymers. However, chemical synthesis of pHCA is both costly and harmful to the environment. Although pHCA production using microbes has been widely studied, there remains a need for more cost-effective methods, such as the use of biomass as a carbon source. In this study, we produced pHCA using tyrosine ammonia lyase-expressing Streptomyces lividans. In order to improve pHCA productivity from cellulose, we constructed a tyrosine ammonia lyase- and endoglucanase (EG)-expressing S. lividans transformant and used it to produce pHCA from cellulose. Results A Streptomyces lividans transformant was constructed to express tyrosine ammonia lyase derived from Rhodobacter sphaeroides (RsTAL). The transformant produced 786 or 736 mg/L of pHCA after 7 days of cultivation in medium containing 1% glucose or cellobiose as the carbon source, respectively. To enhance pHCA production from phosphoric acid swollen cellulose (PASC), we introduced the gene encoding EG into RsTAL-expressing S. lividans. After 7 days of cultivation, this transformant produced 753, 743, or 500 mg/L of pHCA from 1% glucose, cellobiose, or PASC, respectively. Conclusions RsTAL-expressing S. lividans can produce pHCA from glucose and cellobiose. Similarly, RsTAL- and EG-expressing S. lividans can produce pHCA from glucose and cellobiose with excess EG activity remaining in the supernatant. This transformant demonstrated improved pHCA production from cellulose. Further enhancements in the cellulose degradation capability of the transformant will be necessary in order to achieve further improvements in pHCA production from cellulose.
Collapse
|
20
|
Gullón S, Vicente RL, Mellado RP. A novel two-component system involved in secretion stress response in Streptomyces lividans. PLoS One 2012; 7:e48987. [PMID: 23155440 PMCID: PMC3498368 DOI: 10.1371/journal.pone.0048987] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/03/2012] [Indexed: 11/30/2022] Open
Abstract
Background Misfolded proteins accumulating outside the bacterial cytoplasmic membrane can interfere with the secretory machinery, hence the existence of quality factors to eliminate these misfolded proteins is of capital importance in bacteria that are efficient producers of secretory proteins. These bacteria normally use a specific two-component system to respond to the stress produced by the accumulation of the misfolded proteins, by activating the expression of HtrA-like proteases to specifically eliminate the incorrectly folded proteins. Methodology/Principal Findings Overproduction of alpha-amylase in S. lividans causing secretion stress permitted the identification of a two-component system (SCO4156-SCO4155) that regulates three HtrA-like proteases which appear to be involved in secretion stress response. Mutants in each of the genes forming part of the two-genes operon that encodes the sensor and regulator protein components accumulated misfolded proteins outside the cell, strongly suggesting the involvement of this two-component system in the S. lividans secretion stress response. Conclusions/Significance To our knowledge this is the first time that a specific secretion stress response two-component system is found to control the expression of three HtrA-like protease genes in S. lividans, a bacterium that has been repeatedly used as a host for the synthesis of homologous and heterologous secretory proteins of industrial application.
Collapse
|
21
|
Lule I, Maldonado B, D’Huys PJ, Van Mellaert L, Van Impe J, Bernaerts K, Anné J. On the influence of overexpression of phosphoenolpyruvate carboxykinase in Streptomyces lividans on growth and production of human tumour necrosis factor-alpha. Appl Microbiol Biotechnol 2012; 96:367-72. [DOI: 10.1007/s00253-012-4182-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 05/10/2012] [Accepted: 05/13/2012] [Indexed: 11/27/2022]
|
22
|
Yang M, Butler M. Enhanced erythropoietin heterogeneity in a CHO culture is caused by proteolytic degradation and can be eliminated by a high glutamine level. Cytotechnology 2011; 34:83-99. [PMID: 19003383 DOI: 10.1023/a:1008137712611] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The molecular heterogeneity of recombinant humanerythropoietin (EPO) increased during the course of abatch culture of transfected Chinese hamster ovary(CHO) cells grown in serum-free medium. This wasshown by both an increased molecular weight and pIrange of the isolated EPO at the end of the culture. However, analysis of the N-glycan structures of themolecule by fluorophore-assisted carbohydrateelectrophoresis (FACE) and HPLC anion exchangechromatography indicated a consistent pattern ofglycosylation. Seven glycoforms were identified, thepredominant structure being a fully sialylatedtetra-antennary glycan. The degree of sialylationwas maintained throughout the culture. Analysis ofthe secreted EPO indicated a time-dependent increasein the molecular weight band width of the peptideconsistent with proteolytic degradation. A highglutamine concentration (16-20 mM) in the culturedecreased the apparent degradation of the EPO.
Collapse
Affiliation(s)
- M Yang
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | | |
Collapse
|
23
|
|
24
|
Mellado RP. Summing up particular features of protein secretion in Streptomyces lividans. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0709-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Lewis RA, Laing E, Allenby N, Bucca G, Brenner V, Harrison M, Kierzek AM, Smith CP. Metabolic and evolutionary insights into the closely-related species Streptomyces coelicolor and Streptomyces lividans deduced from high-resolution comparative genomic hybridization. BMC Genomics 2010; 11:682. [PMID: 21122120 PMCID: PMC3017869 DOI: 10.1186/1471-2164-11-682] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 12/01/2010] [Indexed: 11/12/2022] Open
Abstract
Background Whilst being closely related to the model actinomycete Streptomyces coelicolor A3(2), S. lividans 66 differs from it in several significant and phenotypically observable ways, including antibiotic production. Previous comparative gene hybridization studies investigating such differences have used low-density (one probe per gene) PCR-based spotted arrays. Here we use new experimentally optimised 104,000 × 60-mer probe arrays to characterize in detail the genomic differences between wild-type S. lividans 66, a derivative industrial strain, TK24, and S. coelicolor M145. Results The high coverage and specificity (detection of three nucleotide differences) of the new microarrays used has highlighted the macroscopic genomic differences between two S. lividans strains and S. coelicolor. In a series of case studies we have validated the microarray and have identified subtle changes in genomic structure which occur in the Asp-activating adenylation domains of CDA non-ribosomal peptide synthetase genes which provides evidence of gene shuffling between these domains. We also identify single nucleotide sequence inter-species differences which exist in the actinorhodin biosynthetic gene cluster. As the glyoxylate bypass is non-functional in both S. lividans strains due to the absence of the gene encoding isocitrate lyase it is likely that the ethylmalonyl-CoA pathway functions as the alternative mechanism for the assimilation of C2 compounds. Conclusions This study provides evidence for widespread genetic recombination, rather than it being focussed at 'hotspots', suggesting that the previously proposed 'archipelago model' of genomic differences between S. coelicolor and S. lividans is unduly simplistic. The two S. lividans strains investigated differ considerably in genetic complement, with TK24 lacking 175 more genes than its wild-type parent when compared to S. coelicolor. Additionally, we confirm the presence of bldB in S. lividans and deduce that S. lividans 66 and TK24, both deficient in the glyoxylate bypass, possess an alternative metabolic mechanism for the assimilation of C2 compounds. Given that streptomycetes generally display high genetic instability it is envisaged that these high-density arrays will find application for rapid assessment of genome content (particularly amplifications/deletions) in mutational studies of S. coelicolor and related species.
Collapse
Affiliation(s)
- Richard A Lewis
- Microbial Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lussier FX, Chambenoit O, Côté A, Hupé JF, Denis F, Juteau P, Beaudet R, Shareck F. Construction and functional screening of a metagenomic library using a T7 RNA polymerase-based expression cosmid vector. J Ind Microbiol Biotechnol 2010; 38:1321-8. [DOI: 10.1007/s10295-010-0915-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/12/2010] [Indexed: 11/24/2022]
|
27
|
D'Huys PJ, Lule I, Van Hove S, Vercammen D, Wouters C, Bernaerts K, Anné J, Van Impe JFM. Amino acid uptake profiling of wild type and recombinant Streptomyces lividans TK24 batch fermentations. J Biotechnol 2010; 152:132-43. [PMID: 20797416 DOI: 10.1016/j.jbiotec.2010.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 08/12/2010] [Accepted: 08/17/2010] [Indexed: 11/19/2022]
Abstract
Streptomyces lividans is considered an interesting host for the secretory production of heterologous proteins. To obtain a good secretion yield of heterologous proteins, the availability of suitable nitrogen sources in the medium is required. Often, undefined mixtures of amino acids are used to improve protein yields. However, the understanding of amino acid utilization as well as their contribution to the heterologous protein synthesis is poor. In this paper, amino acid utilization by wild type and recombinant S. lividans TK24 growing on a minimal medium supplemented with casamino acids is profiled by intensive analysis of the exometabolome (metabolic footprint) as a function of time. Dynamics of biomass, substrates, by-products and heterologous protein are characterized, analyzed and compared. As an exemplary protein mouse Tumor Necrosis Factor Alpha (mTNF-α) is considered. Results unveil preferential glutamate and aspartate assimilation, together with glucose and ammonium, but the associated high biomass growth rate is unfavorable for protein production. Excretion of organic acids as well as alanine is observed. Pyruvate and alanine overflow point at an imbalance between carbon and nitrogen catabolism and biosynthetic fluxes. Lactate secretion is probably related to clump formation. Heterologous protein production induces a slowdown in growth, denser clump formation and a shift in metabolism, as reflected in the altered substrate requirements and overflow pattern. Besides glutamate and aspartate, most amino acids are catabolized, however, their exact contribution in heterologous protein production could not be seized from macroscopic quantities. The metabolic footprints presented in this paper provide a first insight into the impact and relevance of amino acids on biomass growth and protein production. Type and availability of substrates together with biomass growth rate and morphology affect the protein secretion efficiency and should be optimally controlled, e.g., by appropriate medium formulation and substrate dosing. Overflow metabolism as well as high biomass growth rates must be avoided because they reduce protein yields. Further investigation of the intracellular metabolic fluxes should be conducted to fully unravel and identify ways to relieve the metabolic burden of plasmid maintenance and heterologous protein production and to prevent overflow.
Collapse
Affiliation(s)
- Pieter-Jan D'Huys
- Chemical and Biochemical Process Technology and Control Section (BioTeC), Department of Chemical Engineering, Katholieke Universiteit Leuven, Willem de Croylaan 46, B-3001 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
28
|
New vector system for random, single-step integration of multiple copies of DNA into the Rhodococcus genome. Appl Environ Microbiol 2010; 76:2531-9. [PMID: 20154109 DOI: 10.1128/aem.02131-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We designed a new vector system for creating a random mutant library with multiple integrations of DNA fragments into the Rhodococcus genome in a single step. For this, we cotransformed two vectors into Rhodococcus by electroporation: pTip-istAB-sacB regulates the expression of the transposase (IstA) and its helper protein (IstB) under the influence of a thiostrepton-inducible promoter, and pRTSK-sacB provides the transposable-marker DNA. Both are multicopy vectors that are stable in the host cells; transposition of the transposable-marker DNA occurs only after the induction of IstA/IstB expression. With the addition of thiostrepton, all cultured cells harboring the two vectors, irrespective of the volume, can be mutated by random insertion of the transposable-marker DNA into their genome. Among the generated mutants examined, 30% showed multiple (two to five) insertion copies. The multiple integrated DNA copies were stable in the genome for more than 80 generations of serial growth without the addition of any selective antibiotics. This system can also be used for integrating various copy numbers of stably maintained protein expression cassettes in the host cell genome to modulate the expression level of biologically active recombinant proteins. We successfully applied this system to integrate multiple copies of expression cassettes for proline iminopeptidase and vitamin D(3) hydroxylase into the Rhodococcus genome and verified that the clones containing double or multiple copies of the integrated cassettes produced higher levels and showed higher enzymatic activities of the target protein than clones with only a single copy of integration.
Collapse
|
29
|
Kassama Y, Xu Y, Dunn WB, Geukens N, Anné J, Goodacre R. Assessment of adaptive focused acoustics versus manual vortex/freeze-thaw for intracellular metabolite extraction from Streptomyces lividans producing recombinant proteins using GC-MS and multi-block principal component analysis. Analyst 2010; 135:934-42. [PMID: 20419241 DOI: 10.1039/b918163f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We compared the gas chromatography-mass spectrometry (GC-MS) metabolite profiles of mouse tumour necrosis factor alpha (mTNF-alpha) secreting Streptomyces lividans TK24 to the non-secreting wild type and the wild type harbouring the empty pIJ486 plasmid by multi-block principal component analysis (PCA). The multi-block PCA model successfully identified peaks that were statistically different between the protein secreting and non-secreting strains, and at the same time also uncovered the efficiency of intracellular metabolite extraction by an ultrasonic adaptive focused acoustics (AFA) technique compared to a manual vortex/freeze-thaw method. Fifty-one metabolites were significantly different between the three biological strains and 17 of these were abundant in the mTNF-alpha secreting strain compared to the non-secreting strains. No significant differences in the number of detected metabolite peaks were observed between the two extraction techniques. However, from the loadings of the multi-block PCA model, as well as univariate statistical analysis, we observed that the relative peak response ratios to the internal standard of 10 metabolites were higher for the AFA extraction, suggesting a more efficient recovery of these metabolites than achieved with the manual vortex/freeze thaw method.
Collapse
Affiliation(s)
- Yankuba Kassama
- School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | | | | | | | | | | |
Collapse
|
30
|
Adaptation of the highly productive T7 expression system to Streptomyces lividans. Appl Environ Microbiol 2009; 76:967-70. [PMID: 20023105 DOI: 10.1128/aem.02186-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces lividans is a Gram-positive bacterium known for its remarkable secretion efficiency and low extracellular protease activity. In the present work, we adapted the highly productive T7 expression system to S. lividans. A codon-optimized T7 RNA polymerase gene was chromosomally integrated, and a bifunctional T7 expression vector was constructed.
Collapse
|
31
|
Vrancken K, Anné J. Secretory production of recombinant proteins by Streptomyces. Future Microbiol 2009; 4:181-8. [DOI: 10.2217/17460913.4.2.181] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacterial systems are widely applied as production platforms for proteins of biopharmaceutical or therapeutic interest and industrial enzymes. Among these prokaryotic systems, streptomycetes are attractive host cells because several strains of these Gram-positive bacteria have a high innate secretion capacity and extensive knowledge on their fermentation is available. A survey of the literature and our own experience suggests that several proteins are secreted to commercially acceptable levels. However, many heterologous proteins, most often of eukaryotic origin, are currently only poorly secreted by this host, indicating the need for further optimization of Streptomyces as a production host. In this review, the considerable efforts and strategies made in recent years aimed at improving streptomycetes as a host for the production of recombinant proteins will be discussed.
Collapse
Affiliation(s)
- Kristof Vrancken
- Rega Institute, Laboratory of Bacteriology, KU Leuven, Minderbroedersstraat 10, Leuven, B-3000, Belgium
| | - Jozef Anné
- Rega Institute, Laboratory of Bacteriology, KU Leuven, Minderbroedersstraat 10, Leuven, B-3000, Belgium
| |
Collapse
|
32
|
Yang C, Glover JR. The SmpB-tmRNA tagging system plays important roles in Streptomyces coelicolor growth and development. PLoS One 2009; 4:e4459. [PMID: 19212432 PMCID: PMC2635970 DOI: 10.1371/journal.pone.0004459] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 12/31/2008] [Indexed: 11/19/2022] Open
Abstract
The ssrA gene encodes tmRNA that, together with a specialized tmRNA-binding protein, SmpB, forms part of a ribonucleoprotein complex, provides a template for the resumption of translation elongation, subsequent termination and recycling of stalled ribosomes. In addition, the mRNA-like domain of tmRNA encodes a peptide that tags polypeptides derived from stalled ribosomes for degradation. Streptomyces are unique bacteria that undergo a developmental cycle culminating at sporulation that is at least partly controlled at the level of translation elongation by the abundance of a rare tRNA that decodes UUA codons found in a relatively small number of open reading frames prompting us to examine the role of tmRNA in S. coelicolor. Using a temperature sensitive replicon, we found that the ssrA gene could be disrupted only in cells with an extra-copy wild type gene but not in wild type cells or cells with an extra-copy mutant tmRNA (tmRNA(DD)) encoding a degradation-resistant tag. A cosmid-based gene replacement method that does not include a high temperature step enabled us to disrupt both the ssrA and smpB genes separately and at the same time suggesting that the tmRNA tagging system may be required for cell survival under high temperature. Indeed, mutant cells show growth and sporulation defects at high temperature and under optimal culture conditions. Interestingly, even though these defects can be completely restored by wild type genes, the DeltassrA strain was only partially corrected by tmRNA(DD). In addition, wildtype tmRNA can restore the hygromycin-resistance to DeltassrA cells while tmRNA(DD) failed to do so suggesting that degradation of aberrant peptides is important for antibiotic resistance. Overall, these results suggest that the tmRNA tagging system plays important roles during Streptomyces growth and sporulation under both normal and stress conditions.
Collapse
Affiliation(s)
- Chunzhong Yang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - John R. Glover
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
33
|
Arias E, Li H, Morosoli R. Effect of protease mutations on the production of xylanases in Streptomyces lividans. Can J Microbiol 2007; 53:695-701. [PMID: 17668029 DOI: 10.1139/w07-024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three protease mutants--7 (tap-), 12 (tap-, ssp-), and 17 (multiple mutations)--of Streptomyces lividans were tested for their influence on protein secretion. Streptomyces lividans grown in xylan secretes 3 xylanases (A, B, and C). Xylanases A (XlnA) and B (XlnB) are secreted by the Sec pathway, whereas xylanase C (XlnC) is secreted by the Tat pathway. The production of XlnA and XlnC was affected in the mutants, suggesting that the mutations interfered with both Sec- and Tat-secretion systems. However, the processing rate for the Sec and Tat precursor was similar to the wild-type strain, indicating that the mutations had no direct effect on secretion. Streptomyces lividans naturally produced 2 forms of XlnB: XlnB1, which contains the catalytic and the xylan-binding domains, and XlnB2, which contains the catalytic domain only. There was no change from the wild-type strain in the ratio of XlnB1/XlnB2 produced by the mutants, indicating that these proteases are not involved in this process. Although XlnA1, partially truncated in its xylan-binding domain, was rapidly degraded to its catalytic domain (XlnA2) in the wild-type strain, the rate of conversion was reduced in the 3 mutants, indicating that the proteases participated to some extent in this proteolytic process.
Collapse
Affiliation(s)
- Eliana Arias
- INRS - Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | | | | |
Collapse
|
34
|
Jayapal KP, Lian W, Glod F, Sherman DH, Hu WS. Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans. BMC Genomics 2007; 8:229. [PMID: 17623098 PMCID: PMC1934918 DOI: 10.1186/1471-2164-8-229] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 07/10/2007] [Indexed: 11/20/2022] Open
Abstract
Background The genomes of Streptomyces coelicolor and Streptomyces lividans bear a considerable degree of synteny. While S. coelicolor is the model streptomycete for studying antibiotic synthesis and differentiation, S. lividans is almost exclusively considered as the preferred host, among actinomycetes, for cloning and expression of exogenous DNA. We used whole genome microarrays as a comparative genomics tool for identifying the subtle differences between these two chromosomes. Results We identified five large S. coelicolor genomic islands (larger than 25 kb) and 18 smaller islets absent in S. lividans chromosome. Many of these regions show anomalous GC bias and codon usage patterns. Six of them are in close vicinity of tRNA genes while nine are flanked with near perfect repeat sequences indicating that these are probable recent evolutionary acquisitions into S. coelicolor. Embedded within these segments are at least four DNA methylases and two probable methyl-sensing restriction endonucleases. Comparison with S. coelicolor transcriptome and proteome data revealed that some of the missing genes are active during the course of growth and differentiation in S. coelicolor. In particular, a pair of methylmalonyl CoA mutase (mcm) genes involved in polyketide precursor biosynthesis, an acyl-CoA dehydrogenase implicated in timing of actinorhodin synthesis and bldB, a developmentally significant regulator whose mutation causes complete abrogation of antibiotic synthesis belong to this category. Conclusion Our findings provide tangible hints for elucidating the genetic basis of important phenotypic differences between these two streptomycetes. Importantly, absence of certain genes in S. lividans identified here could potentially explain the relative ease of DNA transformations and the conditional lack of actinorhodin synthesis in S. lividans.
Collapse
Affiliation(s)
- Karthik P Jayapal
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE., Minneapolis, MN 55455, USA
| | - Wei Lian
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE., Minneapolis, MN 55455, USA
- Abbott Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Frank Glod
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 48109, USA
- Fonds National de la Recherche, 6 rue Antoine de Saint-Exupéry, L-1017 Kirchberg, Luxembourg
| | - David H Sherman
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 48109, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE., Minneapolis, MN 55455, USA
| |
Collapse
|
35
|
|
36
|
Ayadi DZ, Chouayekh H, Mhiri S, Zerria K, Fathallah DM, Bejar S. Expression by streptomyces lividans of the rat alpha integrin CD11b A-domain as a secreted and soluble recombinant protein. J Biomed Biotechnol 2006; 2007:54327. [PMID: 17497024 PMCID: PMC1791067 DOI: 10.1155/2007/54327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 09/22/2006] [Accepted: 10/24/2006] [Indexed: 11/17/2022] Open
Abstract
We already reported the use of a long synthetic signal peptide (LSSP) to secrete the Streptomyces sp. TO1 amylase by Streptomyces lividans strain. We herein report the expression and secretion of the rat CD11b A-domain using the same LSSP and S. lividans as host strain. We have used the Escherichia coli/Streptomyces shuttle vector pIJ699 for the cloning of the A-domain DNA sequence downstream of LSSP and under the control of the constitutive ermE-up promoter of Streptomyces erythraeus. Using this construct and S. lividans as a host strain, we achieved the expression of 8 mg/L of soluble secreted recombinant form of the A-domain of the rat leukocyte β2 integrin CD11/CD18 alpha M subunit (CD11b). This secreted recombinant CD11b A-domain reacted with a function blocking antibody showing that this protein is properly folded and probably functional. These data support the capability of Streptomyces to produce heterologous recombinant proteins as soluble secreted form using the “LSSP” synthetic signal peptide.
Collapse
Affiliation(s)
- Dorra Zouari Ayadi
- Laboratory of Enzymes and Metabolites of Prokaryotes, Center of Biotechnology of Sfax, BP “K”, 3038 Sfax, Tunisia
| | - Hichem Chouayekh
- Laboratory of Enzymes and Metabolites of Prokaryotes, Center of Biotechnology of Sfax, BP “K”, 3038 Sfax, Tunisia
| | - Sonda Mhiri
- Laboratory of Enzymes and Metabolites of Prokaryotes, Center of Biotechnology of Sfax, BP “K”, 3038 Sfax, Tunisia
| | - Khaled Zerria
- Molecular Biotechnology Group, Laboratory of Immunology, Institute Pasteur of Tunis, BP 74, 1002 Belvédère, Tunis, Tunisia
| | - Dahmani M. Fathallah
- Molecular Biotechnology Group, Laboratory of Immunology, Institute Pasteur of Tunis, BP 74, 1002 Belvédère, Tunis, Tunisia
| | - Samir Bejar
- Laboratory of Enzymes and Metabolites of Prokaryotes, Center of Biotechnology of Sfax, BP “K”, 3038 Sfax, Tunisia
- *Samir Bejar:
| |
Collapse
|
37
|
Escutia MR, Val G, Palacín A, Geukens N, Anné J, Mellado RP. Compensatory effect of the minorStreptomyces lividans type I signal peptidases on the SipY major signal peptidase deficiency as determined by extracellular proteome analysis. Proteomics 2006; 6:4137-46. [PMID: 16786486 DOI: 10.1002/pmic.200500927] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The developmentally complex bacterium Streptomyces lividans has the ability to produce and secrete a significant amount of protein and possesses four different type I signal peptidase genes (sipW, sipX, sipY and sipZ) that are unusually clustered in its chromosome. 2-DE and subsequent MS of extracellular proteins showed that proteins with typical export signals for type I and type II signal peptidases are the main components of the S. lividans secretome. Secretion of extracellular proteins is severely reduced in a strain deficient in the major type I signal peptidase (SipY). This deficiency was efficiently compensated by complementation with any of the other three signal peptidases as deduced from a comparison of the corresponding 2-D PAGE patterns with that of the wild-type strain.
Collapse
Affiliation(s)
- Marta R Escutia
- Centro Nacional de Biotecnología, Campus de la Universidad Autónoma, Cantoblanco, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Nisole A, Lussier FX, Morley KL, Shareck F, Kazlauskas RJ, Dupont C, Pelletier JN. Extracellular production of Streptomyces lividans acetyl xylan esterase A in Escherichia coli for rapid detection of activity. Protein Expr Purif 2006; 46:274-84. [PMID: 16256365 DOI: 10.1016/j.pep.2005.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 09/02/2005] [Accepted: 09/08/2005] [Indexed: 11/20/2022]
Abstract
Acetyl xylan esterase A (AxeA) from Streptomyces lividans belongs to a large family of industrially relevant polysaccharide esterases. AxeA and its truncated form containing only the catalytically competent domain, AxeA(tr), catalyze both the deacetylation of xylan and the N-deacetylation of chitosan. This broad substrate specificity lends additional interest to their characterization and production. Here, we report three systems for extracellular production of AxeA(tr): secretion from the native host S. lividans with the native signal peptide, extracellular production in Escherichia coli with the native signal peptide, and in E. coli with the OmpA signal peptide. Over five to seven days of a shake flask culture, the native host S. lividans with the native signal peptide secreted AxeA(tr) into the extracellular medium in high yield (388 mg/L) with specific activity of 19 U/mg corresponding to a total of 7000 U/L. Over one day of shake flask culture, E. coli with the native secretion signal peptide produced 84-fold less in the extracellular medium (4.6 mg/L), but the specific activity was higher (100 U/mg) corresponding to a total of 460 U/L. A similar E. coli culture using the OmpA signal peptide, produced 10mg/L with a specific activity of 68 U/mg, corresponding to a total of 680 U/L. In 96-well microtiter plates, extracellular production with E. coli gave approximately 30 and approximately 86 microg/mL in S. lividans. Expression in S. lividans with the native signal peptide is best for high level production, while expression in E. coli using the OmpA secretion signal peptide is best for high-throughput expression and screening of variants in microtiter plate format.
Collapse
Affiliation(s)
- Audrey Nisole
- Département de chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Qué., Canada H3C 3J7
| | | | | | | | | | | | | |
Collapse
|
39
|
Li YD, Li YQ, Chen JS, Dong HJ, Guan WJ, Zhou H. Whole genome analysis of non-optimal codon usage in secretory signal sequences of Streptomyces coelicolor. Biosystems 2006; 85:225-30. [PMID: 16644095 DOI: 10.1016/j.biosystems.2006.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 01/24/2006] [Accepted: 02/15/2006] [Indexed: 11/26/2022]
Abstract
Non-optimal (rare) codons have been suggested to reduce translation rate and facilitate secretion in Escherichia coli. In this study, the complete genome analysis of non-optimal codon usage in secretory signal sequences and non-secretory sequences of Streptomyces coelicolor was performed. The result showed that there was a higher proportion of non-optimal codons in secretory signal sequences than in non-secretory sequences. The increased tendency was more obvious when tested with the experimental data of secretory proteins from proteomics analysis. Some non-optimal codons for Arg (AGA, CGU and CGA), Ile (AUA) and Lys (AAA) were significantly over presented in the secretary signal sequences. It may reveal that a balanced non-optimal codon usage was necessary for protein secretion and expression in Streptomyces.
Collapse
Affiliation(s)
- Yu-Dong Li
- Zhejiang University, College of Life, Hangzhou, PR China
| | | | | | | | | | | |
Collapse
|
40
|
Hong B, Wang L, Lammertyn E, Geukens N, Van Mellaert L, Li Y, Anné J. Inactivation of the 20S proteasome in Streptomyces lividans and its influence on the production of heterologous proteins. Microbiology (Reading) 2005; 151:3137-3145. [PMID: 16151224 DOI: 10.1099/mic.0.28034-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteasomes are self-compartmentalizing proteases first discovered in eukaryotes but also occurring in archaea and in bacteria belonging to the order Actinomycetales. In bacteria, proteasomes have so far no known function. In order to evaluate the influence of the 20S proteasome on the production of heterologous proteins by Streptomyces lividans TK24, the production of a number of heterologous proteins, including soluble human tumour necrosis factor receptor II (shuTNFRII) and salmon calcitonin (sCT), was compared with the wild-type TK24, a proteasome-deficient mutant designated PRO41 and a strain complemented for the disrupted proteasome genes (strain PRO41R). S. lividans cells lacking intact proteasome genes are phenotypically indistinguishable from the wild-type or the complemented strain containing functional proteasomes. Using the expression and secretion signals of the subtilisin inhibitor of Streptomyces venezuelae CBS762.70 (Vsi) for shuTNFRII and those of tyrosinase of Streptomyces antibioticus (MelC1) for the production of sCT, both proteins were secreted in significantly higher amounts in the strain PRO41 than in the wild-type S. lividans TK24 or the complemented strain PRO41R. However, the secretion of other heterologous proteins such as shuTNFRI was not enhanced in the proteasome-deficient strain. This suggests that S. lividans TK24 can degrade some heterologous proteins in a proteasome-dependent fashion. The proteasome-deficient strain may therefore be useful for the efficient production of these heterologous proteins.
Collapse
Affiliation(s)
- Bin Hong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical University, No. 1 Tiantanxili, Beijing 100050, China
| | - Lifei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical University, No. 1 Tiantanxili, Beijing 100050, China
| | - Elke Lammertyn
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Nick Geukens
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Lieve Van Mellaert
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Yuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical University, No. 1 Tiantanxili, Beijing 100050, China
| | - Jozef Anné
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| |
Collapse
|
41
|
Gauthier C, Li H, Morosoli R. Increase in xylanase production by Streptomyces lividans through simultaneous use of the Sec- and Tat-dependent protein export systems. Appl Environ Microbiol 2005; 71:3085-92. [PMID: 15933005 PMCID: PMC1151826 DOI: 10.1128/aem.71.6.3085-3092.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xylanase B1 (XlnB1) from Streptomyces lividans is a protein consisting of two discrete structural and functional units, an N-terminal catalytic domain and a C-terminal substrate binding domain. In the culture medium, two forms of xylanase B are present, namely, XlnB1 and XlnB2, the latter of which corresponds to the catalytic domain of XlnB1 deprived of the substrate binding domain. Both forms of the xylanase have the same activity on xylan. The enzyme is secreted through the Sec-dependent pathway with a better yield of XlnB1 than XlnB2. Interestingly, XlnB2 exhibits 80% identity with XlnC which is secreted exclusively through the Tat-dependent pathway. To demonstrate whether XlnB1 and XlnB2 could also be secreted through the Tat-dependent pathway, the Tat-targeting xlnC signal sequence was fused to the structural genes of xlnB1 and xlnB2. Both XlnB1 and XlnB2 were secreted through the Tat-dependent pathway, but XlnB2 was better produced than XlnB1. As XlnB1 and XlnB2 could be better secreted through the Sec- and Tat-dependent systems, respectively, a copy of the structural gene of xlnB1 fused to a Sec signal sequence and a copy of the structural gene of xlnB2 fused to a Tat signal sequence were inserted into the same plasmid under the control of the xlnA promoter. The transformant produced xylanase activity which corresponded approximately to the sum of activities of the individual strain producing xylanase by either the Sec- or Tat-dependent secretion system. This indicated that both secretion systems are functional and independent of each other in the recombinant strain. This is the first report on the efficient secretion of a protein using two different secretion systems at the same time. Assuming that the protein to be secreted could be properly folded prior to and after translocation via the Tat- and Sec-dependent pathways, respectively, the simultaneous use of the Sec- and Tat-dependent pathways provides an efficient means to increase the production of a given protein.
Collapse
Affiliation(s)
- Céline Gauthier
- INRS-Institut Armand-Frappier, Université du Québec, Ville de Laval, Québec H7V 1B7, Canada
| | | | | |
Collapse
|
42
|
Nakashima N, Mitani Y, Tamura T. Actinomycetes as host cells for production of recombinant proteins. Microb Cell Fact 2005; 4:7. [PMID: 15788099 PMCID: PMC1079934 DOI: 10.1186/1475-2859-4-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 03/23/2005] [Indexed: 11/23/2022] Open
Abstract
Actinomycetes (Actinobacteria) are highly attractive as cell factories or bioreactors for applications in industrial, agricultural, environmental, and pharmaceutical fields. Genome sequencing of several species of actinomycetes has paved the way for biochemical and structural analysis of important proteins and the production of such proteins as recombinants on a commercial scale. In this regard, there is a need for improved expression vectors that will be applicable to actinomycetes. Recent advancements in gene expression systems, knowledge regarding the intracellular environment, and identification and characterization of plasmids has made it possible to develop practicable recombinant expression systems in actinomycetes as described in this review.
Collapse
Affiliation(s)
- Nobutaka Nakashima
- Proteolysis and Protein Turnover Research Group, Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
- Center for Genomics and Bioinformatics (CGB), Karolinska Institute, Berzelius väg 35, Stockholm 171 77, Sweden
| | - Yasuo Mitani
- Proteolysis and Protein Turnover Research Group, Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Tomohiro Tamura
- Proteolysis and Protein Turnover Research Group, Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
- Laboratory of Molecular Environmental Microbiology, Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| |
Collapse
|
43
|
Schaerlaekens K, Lammertyn E, Geukens N, De Keersmaeker S, Anné J, Van Mellaert L. Comparison of the Sec and Tat secretion pathways for heterologous protein production by Streptomyces lividans. J Biotechnol 2004; 112:279-88. [PMID: 15313005 DOI: 10.1016/j.jbiotec.2004.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 05/07/2004] [Accepted: 05/11/2004] [Indexed: 10/26/2022]
Abstract
Streptomyces is an interesting host for the secretory production of recombinant proteins because of its natural ability to secrete high levels of active proteins into the culture broth and the availability of extensive fermentation knowledge. In bacterial expression systems, heterologous protein secretion has, so far, almost exclusively been investigated using signal peptides that direct the secretion to the Sec pathway. In this study, we assessed the possibility of the Streptomyces lividans twin-arginine translocation (Tat) pathway to secrete the human proteins tumor necrosis factor (TNF) alpha and interleukin (IL) 10 by fusing the coding sequences of mature hTNFalpha and hIL10 to the twin-arginine signal peptides of S. lividans xylanase C (XlnC) and Streptomyces antibioticus tyrosinase. Both proteins were secreted and this secretion was blocked in the DeltatatB and DeltatatC single mutants, indicating that the transport of hTNFalpha and hIL10 could be directed through the Tat pathway. Secretion levels of hTNFalpha and hIL10, however, were lower for Tat-dependent than for Sec-dependent transport using the Sec-dependent signal peptide of the Streptomyces venezuelae subtilisin inhibitor. Surprisingly, Sec-dependent transport was enhanced in the tatB deletion strain. This was especially interesting in the case of hIL10, where Sec-dependent transport of hIL10 was at least 15 times higher in the DeltatatB mutant than in the wild-type strain.
Collapse
Affiliation(s)
- Kristien Schaerlaekens
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
44
|
Herai S, Hashimoto Y, Higashibata H, Maseda H, Ikeda H, Omura S, Kobayashi M. Hyper-inducible expression system for streptomycetes. Proc Natl Acad Sci U S A 2004; 101:14031-5. [PMID: 15377796 PMCID: PMC521115 DOI: 10.1073/pnas.0406058101] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptomycetes produce useful enzymes and a wide variety of secondary metabolites with potent biological activities (e.g., antibiotics, immunosuppressors, pesticides, etc.). Despite their importance in the pharmaceutical and agrochemical fields, there have been no reports for practical expression systems in streptomycetes. Here, we developed a "P(nitA)-NitR" system for regulatory gene expression in streptomycetes based on the expression mechanism of Rhodococcus rhodochrous J1 nitrilase, which is highly induced by an inexpensive and safe inducer, epsilon-caprolactam. Heterologous protein expression experiments demonstrated that the system allowed suppressed basal expression and hyper-inducible expression, yielding target protein levels of as high as approximately 40% of all soluble protein. Furthermore, the system functioned in important streptomycete strains. Thus, the P(nitA)-NitR system should be a powerful tool for improving the productivity of various useful products in streptomycetes.
Collapse
Affiliation(s)
- Sachio Herai
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Díaz M, Adham SAI, Ramón D, Gil JA, Santamaría RI. Streptomyces lividans and Brevibacterium lactofermentum as heterologous hosts for the production of X22 xylanase from Aspergillus nidulans. Appl Microbiol Biotechnol 2004; 65:401-6. [PMID: 15168093 DOI: 10.1007/s00253-004-1633-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 03/31/2004] [Accepted: 04/04/2004] [Indexed: 11/25/2022]
Abstract
The Aspergillus nidulans gene xlnA coding for the fungal xylanase X22 has been cloned and expressed in two heterologous bacterial hosts: Streptomyces lividans and Brevibacterium lactofermentum. Streptomyces strains yielded 10 units/ml of xylanase when the protein was produced with its own signal peptide, and 19 units/ml when its signal peptide was replaced by the one for xylanase Xys1 from Streptomyces halstedii. B. lactofermentum was also able to produce xylanase X22, affording 6 units/ml upon using either the Aspergillus xlnA signal peptide or Streptomyces xysA. These production values are higher than those previously reported for the heterologous expression of the A. nidulans xlnA gene in Saccharomyces cerevisiae (1 unit/ml). Moreover, the X22 enzyme produced by Streptomyces lividans showed oenological properties, indicating that this Streptomyces recombinant strain is a good candidate for the production of this enzyme at the industrial scale.
Collapse
Affiliation(s)
- M Díaz
- Instituto de Microbiología Bioquímica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | | | | | | | | |
Collapse
|
46
|
Schaerlaekens K, Van Mellaert L, Lammertyn E, Geukens N, Anné J. The importance of the Tat-dependent protein secretion pathway in Streptomyces as revealed by phenotypic changes in tat deletion mutants and genome analysis. Microbiology (Reading) 2004; 150:21-31. [PMID: 14702394 DOI: 10.1099/mic.0.26684-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptomyces are Gram-positive soil bacteria that are used industrially, not only as a source of medically important natural compounds, but also as a host for the secretory production of a number of heterologous proteins. A good understanding of the different secretion processes in this organism is therefore of major importance. The functionality of the recently discovered bacterial twin-arginine translocation (Tat) pathway has already been shown in Streptomyces lividans. Here, the aberrant phenotype of S. lividans DeltatatB and DeltatatC single mutants is described. Both mutants are characterized by a dispersed growth in liquid medium, an impaired morphological differentiation on solid medium and growth retardation. To reveal the extent to which the Tat pathway is used in Streptomyces, putative Tat-dependent precursor proteins of Streptomyces coelicolor, a very close relative of S. lividans, and of Streptomyces avermitilis, of which the genomes have been completely sequenced, were identified by a modified version of the TATFIND computer program designed by Rose and colleagues [Rose, R. W., Brüser, T., Kissinger, J. C. & Pohlschröder, M. (2002). Mol Microbiol 45, 943-950]. A list of 230 precursor proteins was obtained; this is the highest number of putative Tat substrates found in any genome so far. In addition to the Streptomyces antibioticus tyrosinase, it was also demonstrated that the secretion of the S. lividans xylanase C is Tat-dependent. The predicted Tat substrates belong to a variety of protein classes, with a high number of proteins functioning in degradation of macromolecules, in binding and transport, and in secondary metabolism. Only a minor fraction of the proteins seem to bind a cofactor. The aberrant phenotype of the DeltatatB and DeltatatC mutants together with the high number of putative Tat-dependent substrates suggests that the Streptomyces Tat pathway has a distinct and more important role in protein secretion than in most other bacteria.
Collapse
Affiliation(s)
- Kristien Schaerlaekens
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Lieve Van Mellaert
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Elke Lammertyn
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Nick Geukens
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Jozef Anné
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
47
|
DeSanti CL, Strohl WR. Characterization of the Streptomyces sp. strain C5 snp locus and development of snp-derived expression vectors. Appl Environ Microbiol 2003; 69:1647-54. [PMID: 12620855 PMCID: PMC150044 DOI: 10.1128/aem.69.3.1647-1654.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Streptomyces sp. strain C5 snp locus is comprised of two divergently oriented genes: snpA, a metalloproteinase gene, and snpR, which encodes a LysR-like activator of snpA transcription. The transcriptional start point of snpR is immediately downstream of a strong T-N(11)-A inverted repeat motif likely to be the SnpR binding site, while the snpA transcriptional start site overlaps the ATG start codon, generating a leaderless snpA transcript. By using the aphII reporter gene of pIJ486 as a reporter, the plasmid-borne snpR-activated snpA promoter was ca. 60-fold more active than either the nonactivated snpA promoter or the melC1 promoter of pIJ702. The snpR-activated snpA promoter produced reporter protein levels comparable to those of the up-mutated ermE* promoter. The SnpR-activated snpA promoter was built into a set of transcriptional and translational fusion expression vectors which have been used for the intracellular expression of numerous daunomycin biosynthesis pathway genes from Streptomyces sp. strain C5 as well as the expression and secretion of soluble recombinant human endostatin.
Collapse
Affiliation(s)
- Charles L DeSanti
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
48
|
Joosten V, Lokman C, van den Hondel CAMJJ, Punt PJ. The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. Microb Cell Fact 2003; 2:1. [PMID: 12605725 PMCID: PMC149433 DOI: 10.1186/1475-2859-2-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2002] [Accepted: 01/30/2003] [Indexed: 12/02/2022] Open
Abstract
In this review we will focus on the current status and views concerning the production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. We will focus on single-chain antibody fragment production (scFv and VHH) by these lower eukaryotes and the possible applications of these proteins. Also the coupling of fragments to relevant enzymes or other components will be discussed. As an example of the fusion protein strategy, the 'magic bullet' approach for industrial applications, will be highlighted.
Collapse
Affiliation(s)
- Vivi Joosten
- TNO Nutrition and Food Research, Department of Applied Microbiology and Gene Technology, P.O. Box 360, 3700 AJ Zeist, The Netherlands
| | - Christien Lokman
- TNO Nutrition and Food Research, Department of Applied Microbiology and Gene Technology, P.O. Box 360, 3700 AJ Zeist, The Netherlands
| | - Cees AMJJ van den Hondel
- TNO Nutrition and Food Research, Department of Applied Microbiology and Gene Technology, P.O. Box 360, 3700 AJ Zeist, The Netherlands
| | - Peter J Punt
- TNO Nutrition and Food Research, Department of Applied Microbiology and Gene Technology, P.O. Box 360, 3700 AJ Zeist, The Netherlands
| |
Collapse
|
49
|
Palacín A, Parro V, Geukens N, Anné J, Mellado RP. SipY Is the Streptomyces lividans type I signal peptidase exerting a major effect on protein secretion. J Bacteriol 2002; 184:4875-80. [PMID: 12169613 PMCID: PMC135301 DOI: 10.1128/jb.184.17.4875-4880.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2001] [Accepted: 06/10/2002] [Indexed: 11/20/2022] Open
Abstract
Most bacteria contain one type I signal peptidase (SPase) for cleavage of signal peptides from secreted proteins. The developmental complex bacterium Streptomyces lividans has the ability to produce and secrete a significant amount of proteins and has four different type I signal peptidases genes (sipW, sipX, sipY, and sipZ) unusually clustered in its chromosome. Functional analysis of the four SPases was carried out by phenotypical and molecular characterization of the different individual sip mutants. None of the sip genes seemed to be essential for bacterial growth. Analysis of total extracellular proteins indicated that SipY is likely to be the major S. lividans SPase, since the sipY mutant strain is highly deficient in overall protein secretion and extracellular protease production, showing a delayed sporulation phenotype when cultured in solid medium.
Collapse
Affiliation(s)
- Arantxa Palacín
- Centro Nacional de Biotecnología, Campus de la Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
50
|
Tremblay D, Lemay J, Gilbert M, Chapdelaine Y, Dupont C, Morosoli R. High-level heterologous expression and secretion in Streptomyces lividans of two major antigenic proteins from Mycobacterium tuberculosis. Can J Microbiol 2002; 48:43-8. [PMID: 11888162 DOI: 10.1139/w01-133] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two major antigens from Mycobacterium tuberculosis were produced by Streptomyces lividans as secreted extracellular proteins. An expression-secretion vector had been constructed that contained the promoter of xylanase A and the signal sequence of cellulase A. The latter contained two initiation codons preceded by a Shine-Dalgarno sequence plus eight nucleotides complementary to the 16S rRNA. The genes encoding the 38-kDa (Rv0934) and 19-kDa (Rv3763) proteins, respectively, were amplified by polymerase chain reaction and cloned into that vector. The recombinant proteins were then purified from the culture supernatants of the clones. The yields after purification were 80 mg/L for the 38-kDa protein and 200 mg/L for the 19-kDa protein. Sequence analysis of the N-terminal sequences showed a deletion of seven or eight amino acids for the 38-kDa protein, while in the 19-kDa protein 22 or 23 amino acids were lost, as compared with the respective wild-type proteins. However, the 19 kDa recombinant protein had the same N-terminal sequence as the one recovered from the M. tuberculosis culture supernatant. The high yields obtained for these two proteins demonstrated the potential of S. lividans as an alternative host for the production of recombinant proteins from M. tuberculosis. The culture conditions have yet to be worked out to minimize proteolytic degradation and to recover intact products.
Collapse
Affiliation(s)
- Donald Tremblay
- Centre de recherche en microbiologie et biotechnologie, INRS-Institut Armand-Frappier, Université du Québec, Ville de Laval, Canada
| | | | | | | | | | | |
Collapse
|