1
|
Kerkman JN, Bekius A, Boonstra TW, Daffertshofer A, Dominici N. Muscle Synergies and Coherence Networks Reflect Different Modes of Coordination During Walking. Front Physiol 2020; 11:751. [PMID: 32792967 PMCID: PMC7394052 DOI: 10.3389/fphys.2020.00751] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/10/2020] [Indexed: 11/13/2022] Open
Abstract
When walking speed is increased, the frequency ratio between the arm and leg swing switches spontaneously from 2:1 to 1:1. We examined whether these switches are accompanied by changes in functional connectivity between multiple muscles. Subjects walked on a treadmill with their arms swinging along their body while kinematics and surface electromyography (EMG) of 26 bilateral muscles across the body were recorded. Walking speed was varied from very slow to normal. We decomposed EMG envelopes and intermuscular coherence spectra using non-negative matrix factorization (NMF), and the resulting modes were combined into multiplex networks and analyzed for their community structure. We found five relevant muscle synergies that significantly differed in activation patterns between 1:1 and 2:1 arm-leg coordination and the transition period between them. The corresponding multiplex network contained a single module indicating pronounced muscle co-activation patterns across the whole body during a gait cycle. NMF of the coherence spectra distinguished three EMG frequency bands: 4-8, 8-22, and 22-60 Hz. The community structure of the multiplex network revealed four modules, which clustered functional and anatomical linked muscles across modes of coordination. Intermuscular coherence at 4-22 Hz between upper and lower body and within the legs was particularly pronounced for 1:1 arm-leg coordination and was diminished when switching between modes of coordination. These findings suggest that the stability of arm-leg coordination is associated with modulations in long-distant neuromuscular connectivity.
Collapse
Affiliation(s)
- Jennifer N. Kerkman
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| | - Annike Bekius
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| | - Tjeerd W. Boonstra
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Andreas Daffertshofer
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| | - Nadia Dominici
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| |
Collapse
|
2
|
Battaglia D, Boudou T, Hansen ECA, Lombardo D, Chettouf S, Daffertshofer A, McIntosh AR, Zimmermann J, Ritter P, Jirsa V. Dynamic Functional Connectivity between order and randomness and its evolution across the human adult lifespan. Neuroimage 2020; 222:117156. [PMID: 32698027 DOI: 10.1016/j.neuroimage.2020.117156] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/25/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Functional Connectivity (FC) during resting-state or task conditions is not static but inherently dynamic. Yet, there is no consensus on whether fluctuations in FC may resemble isolated transitions between discrete FC states rather than continuous changes. This quarrel hampers advancing the study of dynamic FC. This is unfortunate as the structure of fluctuations in FC can certainly provide more information about developmental changes, aging, and progression of pathologies. We merge the two perspectives and consider dynamic FC as an ongoing network reconfiguration, including a stochastic exploration of the space of possible steady FC states. The statistical properties of this random walk deviate both from a purely "order-driven" dynamics, in which the mean FC is preserved, and from a purely "randomness-driven" scenario, in which fluctuations of FC remain uncorrelated over time. Instead, dynamic FC has a complex structure endowed with long-range sequential correlations that give rise to transient slowing and acceleration epochs in the continuous flow of reconfiguration. Our analysis for fMRI data in healthy elderly revealed that dynamic FC tends to slow down and becomes less complex as well as more random with increasing age. These effects appear to be strongly associated with age-related changes in behavioural and cognitive performance.
Collapse
Affiliation(s)
- Demian Battaglia
- Université Aix-Marseille, INSERM UMR 1106, Institut de Neurosciences des Systèmes, F-13005, Marseille, France.
| | - Thomas Boudou
- Université Aix-Marseille, INSERM UMR 1106, Institut de Neurosciences des Systèmes, F-13005, Marseille, France; ENSTA ParisTech, F-91762, Palaiseau, France.
| | - Enrique C A Hansen
- Université Aix-Marseille, INSERM UMR 1106, Institut de Neurosciences des Systèmes, F-13005, Marseille, France; Institut de biologie de l'Ecole normale supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, F-75005, Paris, France.
| | - Diego Lombardo
- Université Aix-Marseille, INSERM UMR 1106, Institut de Neurosciences des Systèmes, F-13005, Marseille, France.
| | - Sabrina Chettouf
- Brain Simulation Section, Department of Neurology, Charité Universitätsmedizin and Berlin Institute of Health, D-10117, Berlin, Germany; Bernstein Center for Computational Neuroscience, D-10117, Berlin, Germany; Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, 1081 BT, Amsterdam, the Netherlands.
| | - Andreas Daffertshofer
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, 1081 BT, Amsterdam, the Netherlands.
| | - Anthony R McIntosh
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario, M6A 2E1, Canada.
| | - Joelle Zimmermann
- Brain Simulation Section, Department of Neurology, Charité Universitätsmedizin and Berlin Institute of Health, D-10117, Berlin, Germany; Rotman Research Institute, Baycrest Centre, Toronto, Ontario, M6A 2E1, Canada.
| | - Petra Ritter
- Brain Simulation Section, Department of Neurology, Charité Universitätsmedizin and Berlin Institute of Health, D-10117, Berlin, Germany; Bernstein Center for Computational Neuroscience, D-10117, Berlin, Germany.
| | - Viktor Jirsa
- Université Aix-Marseille, INSERM UMR 1106, Institut de Neurosciences des Systèmes, F-13005, Marseille, France.
| |
Collapse
|
3
|
Sinha N, Dewald JPA, Heckman CJ, Yang Y. Cross-Frequency Coupling in Descending Motor Pathways: Theory and Simulation. Front Syst Neurosci 2020; 13:86. [PMID: 31992973 PMCID: PMC6971171 DOI: 10.3389/fnsys.2019.00086] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/18/2019] [Indexed: 11/22/2022] Open
Abstract
Coupling of neural oscillations is essential for the transmission of cortical motor commands to motoneuron pools through direct and indirect descending motor pathways. Most studies focus on iso-frequency coupling between brain and muscle activities, i.e., cortico-muscular coherence, which is thought to reflect motor command transmission in the mono-synaptic corticospinal pathway. Compared to this direct pathway, indirect corticobulbospinal motor pathways involve multiple intermediate synaptic connections via spinal interneurons. Neuronal processing of synaptic inputs can lead to modulation of inter-spike intervals which produces cross-frequency coupling. This theoretical study aims to evaluate the effect of the number of synaptic layers in descending pathways on the expression of cross-frequency coupling between supraspinal input and the cumulative output of the motoneuron pool using a computer simulation. We simulated descending pathways as various layers of interneurons with a terminal motoneuron pool using Hogdkin–Huxley styled neuron models. Both cross- and iso-frequency coupling between the supraspinal input and the motorneuron pool output were computed using a novel generalized coherence measure, i.e., n:m coherence. We found that the iso-frequency coupling is only dominant in the mono-synaptic corticospinal tract, while the cross-frequency coupling is dominant in multi-synaptic indirect motor pathways. Furthermore, simulations incorporating both mono-synaptic direct and multi-synaptic indirect descending pathways showed that increased reliance on a multi-synaptic indirect pathway over a mono-synaptic direct pathway enhances the dominance of cross-frequency coupling between the supraspinal input and the motorneuron pool output. These results provide the theoretical basis for future human subject study quantitatively assessing motor command transmission in indirect vs. direct pathways and its changes after neurological disorders such as unilateral brain injury.
Collapse
Affiliation(s)
- Nirvik Sinha
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, United States
| | - Charles J Heckman
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yuan Yang
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
4
|
Rueda-Delgado LM, Heise KF, Daffertshofer A, Mantini D, Swinnen SP. Age-related differences in neural spectral power during motor learning. Neurobiol Aging 2019; 77:44-57. [DOI: 10.1016/j.neurobiolaging.2018.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 11/29/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022]
|
5
|
Babaeeghazvini P, Rueda-Delgado LM, Zivari Adab H, Gooijers J, Swinnen S, Daffertshofer A. A combined diffusion-weighted and electroencephalography study on age-related differences in connectivity in the motor network during bimanual performance. Hum Brain Mapp 2018; 40:1799-1813. [PMID: 30588749 DOI: 10.1002/hbm.24491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 11/12/2018] [Accepted: 11/27/2018] [Indexed: 01/02/2023] Open
Abstract
We studied the relationship between age-related differences in inter- and intra-hemispheric structural and functional connectivity in the bilateral motor network. Our focus was on the correlation between connectivity and declined motor performance in older adults. Structural and functional connectivity were estimated using diffusion weighted imaging and resting-state electro-encephalography, respectively. A total of 48 young and older healthy participants were measured. In addition, motor performances were assessed using bimanual coordination tasks. To pre-select regions-of-interest (ROIs), a neural model was adopted that accounts for intra-hemispheric functional connectivity between dorsal premotor area (PMd) and primary motor cortex (M1) and inter-hemispheric connections between left and right M1 (M1L and M1R ). Functional connectivity was determined via the weighted phase-lag index (wPLI) in the source-reconstructed beta activity during rest. We quantified structural connectivity using kurtosis anisotropy (KA) values of tracts derived from diffusion tensor-based fiber tractography between the aforementioned areas. In the group of older adults, wPLI values between M1L -M1R were negatively associated with the quality of bimanual motor performance. The additional association between wPLI values of PMdL --M1L and PMdR -M1L supports that functional connectivity with the left hemisphere mediated (bimanual) motor control in older adults. The correlational analysis between the selected structural and functional connections revealed a strong association between wPLI values in the left intra-hemispheric PMdL -M1L pathway and KA values in M1L -M1R and PMdR -M1L pathways in the group of older adults. This suggests that weaker structural connections in older adults correlate with stronger functional connectivity and, hence, poorer motor performance.
Collapse
Affiliation(s)
- Parinaz Babaeeghazvini
- Amsterdam Movement Science Institute (AMS) and Institute for Brain and Behaviour Amsterdam (iBBA), Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Laura Milena Rueda-Delgado
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Hamed Zivari Adab
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Jolien Gooijers
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Stephan Swinnen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), Leuven, Belgium
| | - Andreas Daffertshofer
- Amsterdam Movement Science Institute (AMS) and Institute for Brain and Behaviour Amsterdam (iBBA), Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Yang Y, Solis-Escalante T, van der Helm FCT, Schouten AC. A Generalized Coherence Framework for Detecting and Characterizing Nonlinear Interactions in the Nervous System. IEEE Trans Biomed Eng 2016; 63:2629-2637. [DOI: 10.1109/tbme.2016.2585097] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Understanding bimanual coordination across small time scales from an electrophysiological perspective. Neurosci Biobehav Rev 2014; 47:614-35. [DOI: 10.1016/j.neubiorev.2014.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/16/2014] [Accepted: 10/01/2014] [Indexed: 01/20/2023]
|
8
|
Houweling S, Beek PJ, Daffertshofer A. Spectral changes of interhemispheric crosstalk during movement instabilities. ACTA ACUST UNITED AC 2010; 20:2605-13. [PMID: 20176689 DOI: 10.1093/cercor/bhq008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bimanual coordination requires the functional integration of the activity in various cortical, subcortical, spinal, and peripheral neural structures. We challenged this functional integration by destabilizing bimanual 5:8 tapping through an increase in movement tempo, while measuring brain and muscle activity using magnetoencephalography and electromyography. Movement instabilities were characterized by a drop in frequency locking. Time-frequency analysis revealed movement-related beta amplitude modulation in bilateral motor areas as well as movement-related corticospinal entrainment. Both of these synchronization patterns depended on movement tempo suggesting that the timescale needed for the upregulation and downregulation of beta synchrony in rhythmic tapping poses constraints on motor performance. Bilateral phase locking over movement cycles appeared to be mediated by beta-frequency oscillations and constrained by its phase dynamics. The timescale of beta synchrony thus seems to play a key role in achieving timed phase synchrony in the motor cortex and along the neural axis. Once event-related desynchronization-synchronization cycles cannot be build up properly, inhibition may become inadequate, resulting in a reduction of the stability of performance, which may eventually become unstable.
Collapse
Affiliation(s)
- Sanne Houweling
- Research Institute MOVE, VU University Amsterdam, Amsterdam, the Netherlands.
| | | | | |
Collapse
|
9
|
Houweling S, van Dijk BW, Beek PJ, Daffertshofer A. Cortico-spinal synchronization reflects changes in performance when learning a complex bimanual task. Neuroimage 2009; 49:3269-75. [PMID: 19922805 DOI: 10.1016/j.neuroimage.2009.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022] Open
Abstract
Motor performance is accompanied by neural activity in various cortical and sub-cortical areas. This intricate network has to be delicately orchestrated. We analyzed the role of beta synchronization in motor learning using magneto-encephalography combined with electromyography. Cortico-spinal synchronization in the beta band was found to be of particular importance in establishing bimanual movement patterns in the context of a 3:2 polyrhythmic (isometric) force production task. Its dynamics correlated highly with the learning of this complex bimanual motor skill. We submit that the cortical dynamics entrains the spinal motor system by which cortico-spinal beta synchrony serves higher-level motor control functions as primary means of information transfer along the neural axis.
Collapse
Affiliation(s)
- S Houweling
- Research Institute MOVE, VU University Amsterdam, 1081 BT, The Netherlands.
| | | | | | | |
Collapse
|
10
|
Houweling S, Daffertshofer A, van Dijk B, Beek P. Synchronization in perceptual motor integration. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ics.2007.01.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Boonstra TW, Daffertshofer A, Breakspear M, Beek PJ. Multivariate time–frequency analysis of electromagnetic brain activity during bimanual motor learning. Neuroimage 2007; 36:370-7. [PMID: 17462913 DOI: 10.1016/j.neuroimage.2007.03.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 03/12/2007] [Accepted: 03/13/2007] [Indexed: 11/21/2022] Open
Abstract
Although the relationship between brain activity and motor performance is reasonably well established, the manner in which this relationship changes with motor learning remains incompletely understood. This paper presents a study of cortical modulations of event-related beta activity when participants learned to perform a complex bimanual motor task: 151 channel MEG data were acquired from nine healthy adults whilst learning a bimanual 3:5 polyrhythm. Sources of MEG activity were determined by means of synthetic aperture magnetometry that yielded locations and time courses of beta activities. The relationship between changes in performance and corresponding changes in event-related power were assessed using partial least squares. Behavioral data revealed that participants successfully learned to perform the 3:5 polyrhythm and that performance improvement was mainly achieved through the proper timing of the finger producing the slow rhythm. We found event-related modulation of beta power in the contralateral motor cortex that was inversely related to force output. The degree of beta modulation increased during the experiment - although the force level remained constant - and was positively correlated with motor performance, in particular for the motor cortex contralateral to the slow hand. These electrophysiological findings support the view that activity in motor cortex co-varies closely with behavioral changes over the course of learning.
Collapse
|
12
|
Boonstra TW, Daffertshofer A, Peper CE, Beek PJ. Amplitude and phase dynamics associated with acoustically paced finger tapping. Brain Res 2006; 1109:60-9. [PMID: 16860292 DOI: 10.1016/j.brainres.2006.06.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 06/12/2006] [Accepted: 06/13/2006] [Indexed: 11/17/2022]
Abstract
To gain insight into the brain activity associated with the performance of an acoustically paced synchronization task, we analyzed the amplitude and phase dynamics inherent in magnetoencephalographic (MEG) signals across frequency bands in order to discriminate between evoked and induced responses. MEG signals were averaged with respect to motor and auditory events (tap and tone onsets). Principal component analysis was used to compare amplitude and phase changes during listening and during paced and unpaced tapping, allowing a separation of brain activity related to motor and auditory processes, respectively. Motor performance was accompanied by phasic amplitude changes and increased phase locking in the beta band. Auditory processing of acoustic stimuli resulted in a simultaneous increase of amplitude and phase locking in the theta and alpha band. The temporal overlap of auditory-related amplitude changes and phase locking indicated an evoked response, in accordance with previous studies on auditory perception. The temporal difference of movement-related amplitude and phase dynamics in the beta band, on the other hand, suggested a change in ongoing brain activity, i.e., an induced response supporting previous results on motor-related brain dynamics in the beta band.
Collapse
Affiliation(s)
- T W Boonstra
- Institute for Fundamental and Clinical Human Movement Sciences, Faculty of Human Movement Sciences, Vrije Universiteit, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
13
|
Breakspear M, Roberts JA, Terry JR, Rodrigues S, Mahant N, Robinson PA. A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. ACTA ACUST UNITED AC 2005; 16:1296-313. [PMID: 16280462 DOI: 10.1093/cercor/bhj072] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The aim of this paper is to explain critical features of the human primary generalized epilepsies by investigating the dynamical bifurcations of a nonlinear model of the brain's mean field dynamics. The model treats the cortex as a medium for the propagation of waves of electrical activity, incorporating key physiological processes such as propagation delays, membrane physiology, and corticothalamic feedback. Previous analyses have demonstrated its descriptive validity in a wide range of healthy states and yielded specific predictions with regards to seizure phenomena. We show that mapping the structure of the nonlinear bifurcation set predicts a number of crucial dynamic processes, including the onset of periodic and chaotic dynamics as well as multistability. Quantitative study of electrophysiological data supports the validity of these predictions. Hence, we argue that the core electrophysiological and cognitive differences between tonic-clonic and absence seizures are predicted and interrelated by the global bifurcation diagram of the model's dynamics. The present study is the first to present a unifying explanation of these generalized seizures using the bifurcation analysis of a dynamical model of the brain.
Collapse
Affiliation(s)
- M Breakspear
- School of Physics, University of Sydney, NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|
14
|
Huys R, Williams AM, Beek PJ. Visual perception and gaze control in judging versus producing phase relations. Hum Mov Sci 2005; 24:403-28. [PMID: 16126292 DOI: 10.1016/j.humov.2005.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We studied visual perception and gaze control in nine participants while they judged the relative phase between two oscillating stimuli (Experiment 1), and while they moved their hand--and therewith a concurrent feedback signal--in-phase or in antiphase with an oscillating stimulus (Experiment 2). As in previous studies, the mean relative phase judgements in Experiment 1 corresponded to the presented phase relations (0 degree, 45 degrees, 90 degrees, 135 degrees, and 180 degrees), whereas their standard deviations followed an inverted U-function of relative phase. The relative phase judgements were hardly affected by the degree of visibility (fully visible, inner parts occluded, outer parts occluded) and the amplitude (5 degrees, 10 degrees, and 20 degrees) of the stimuli. Stimulus-gaze coupling decreased as relative phase increased, and its variability correlated with that of the relative phase judgements. Taken together, task performance and gaze behaviour suggested that the judgement of relative phase might be flexibly based on different variables, rather than a single variable like relative direction of motion. In Experiment 2, the production of the antiphase relation was less stable than that of the in-phase relation. Performance deteriorated when the outer parts of the signals were occluded and when their amplitudes were reduced. Stimulus-gaze coupling was stronger during in-phase than during antiphase tracking and weaker when the signals were partially occluded and when their amplitudes were reduced. Stimulus-gaze coupling at 0 degrees and 180 degrees was stronger in Experiment 2 than in Experiment 1, suggesting that the visual perception of relative phase may benefit from its active production. Overall, the results clearly indicated that visual perception of relative phase and the corresponding gaze control are strongly task-dependent.
Collapse
Affiliation(s)
- Raoul Huys
- Liverpool John Moores University, Research Institute for Sport and Exercise Sciences, Henry Cotton Campus, L3 2ET Liverpool, UK.
| | | | | |
Collapse
|
15
|
Huys R, Daffertshofer A, Beek PJ. Multiple time scales and subsystem embedding in the learning of juggling. Hum Mov Sci 2005; 23:315-36. [PMID: 15541520 DOI: 10.1016/j.humov.2004.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To gain insight into the multiform dynamics and integration of remote yet pertinent subsystems into the performance of complex perceptual-motor skills, we recently conducted a series of longitudinal and cross-sectional experiments on the acquisition of 3-ball cascade juggling in which we measured, next to the ball trajectories, postural sway, eye and head movements and respiration. The aim of the present paper is to review the main results and theoretical implications of these experimental studies for understanding skill acquisition. As regards the evolution of the quality of the juggling itself, we found that only certain aspects of throwing and catching were adjusted, while the goal behavior of sustained juggling (operationalized as the number of consecutive throws) and the degree of frequency and phase locking between the ball trajectories, indexing pattern stability, increased monotonically. The latter three aspects evolved at different rates, reflecting the existence of a temporal hierarchy in learning. Postural sway exhibited initial manifestations of task-specific, possibly mechanically induced, modes of 3:1 and 3:2 frequency locking with the ball trajectories and only few transitions between those modes. Functional stability appeared to be enhanced during practice by minimizing the sway amplitudes rather than by adjusting the sway dynamics itself. Eye and point-of-gaze movements also showed instances of 3:1 and 3:2 frequency locking with the ball trajectories; especially establishing a 3:1 locking (horizontal eye movements) appeared to be important. Expert behavior suggested that extended practice promotes reliance on multiple sources of information, allowing the proficient juggler to switch adaptively between functional organizations involving distinct perceptual systems. No consistent coordination between breathing and juggling was found. It was concluded that multiform dynamics, involving hierarchically ordered time scales, underlie the acquisition of complex skills and that the subsystems subserving realization of the task goal become assembled and embedded in a task- and subsystem-specific manner.
Collapse
Affiliation(s)
- Raoul Huys
- Faculty of Human Movement Sciences, Institute for Fundamental and Clinical Human Movement Sciences, Vrije Universiteit, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands.
| | | | | |
Collapse
|
16
|
Daffertshofer A, Peper CLE, Beek PJ. Stabilization of bimanual coordination due to active interhemispheric inhibition: a dynamical account. BIOLOGICAL CYBERNETICS 2005; 92:101-109. [PMID: 15685391 DOI: 10.1007/s00422-004-0539-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 12/01/2004] [Indexed: 05/24/2023]
Abstract
Based on recent brain-imaging data and congruent theoretical insights, a dynamical model is derived to account for the patterns of brain activity observed during stable performance of bimanual multifrequency patterns, as well as during behavioral instabilities in the form of phase transitions between such patterns. The model incorporates four dynamical processes, defined over both motor and premotor cortices, which are coupled through inhibitory and excitatory inter- and intrahemispheric connections. In particular, the model underscores the crucial role of interhemispheric inhibition in reducing the interference between disparate frequencies during stable performance, as well as the failure of this reduction during behavioral transitions. As an aside, the model also accounts for in- and antiphase preferences during isofrequency movements. The viability of the proposed model is illustrated by magnetoencephalographic signals that were recorded from an experienced subject performing a polyrhythmic tapping task that was designed to induce transitions between multifrequency patterns. Consistent with the models dynamics, contra- and ipsilateral cortical areas of activation were frequency- and phase-locked, while their activation strength changed markedly in the vicinity of transitions in coordination.
Collapse
Affiliation(s)
- A Daffertshofer
- Institute for Fundamental and Clinical Human Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
17
|
Peper CLE, Ridderikhoff A, Daffertshofer A, Beek PJ. Explanatory limitations of the HKB model: Incentives for a two-tiered model of rhythmic interlimb coordination. Hum Mov Sci 2004; 23:673-97. [PMID: 15589628 DOI: 10.1016/j.humov.2004.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The HKB model for rhythmic interlimb coordination has highlighted the importance of coordinative stability and loss of stability, and introduced, with this focus, a new set of explanatory constructs. However, the phenomenological character of both parts of this model (i.e., the potential and the associated system of coupled oscillators) precludes an understanding of how the observed stability characteristics are related to more specific (e.g., biomechanical and neurophysiological) aspects of the movement system. A two-tiered model (involving a distinction between 'neural' and 'effector' dynamics) is discussed that offers handles for addressing such underpinnings of the identified coordination dynamics. The promise of the model in this regard is illustrated by two recent studies showing how explicit accounts of the effector dynamics may help disclose why (and how) particular properties of the peripheral system affect the overall coordination dynamics.
Collapse
Affiliation(s)
- C Lieke E Peper
- Institute for Fundamental and Clinical Human Movement Sciences, Faculty of Human Movement Sciences, Vrije Universiteit, van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
18
|
Huys R, Daffertshofer A, Beek PJ. Multiple time scales and multiform dynamics in learning to juggle. Motor Control 2004; 8:188-212. [PMID: 15118202 DOI: 10.1123/mcj.8.2.188] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To study the acquisition of perceptual-motor skills as an instance of dynamic pattern formation, we examined the evolution of postural sway and eye and head movements in relation to changes in performance, while 13 novices practiced 3-ball cascade juggling for 9 weeks. Ball trajectories, postural sway, and eye and head movements were recorded repeatedly. Performance improved exponentially, both in terms of the number of consecutive throws and the degree of frequency and phase locking between the ball trajectories. These aspects of performance evolved at different time scales, indicating the presence of a temporal hierarchy in learning. Postural sway, and eye and head movements were often 3:2 and sometimes 3:1 frequency locked to the ball trajectories. As a rule, the amplitudes of these oscillatory processes decreased exponentially at rates similar to that of the increase in the degree of phase locking between the balls. In contrast, the coordination between these oscillatory processes evolved exponentially at different time scales, apart from some erratic evolutions. Collectively, these findings indicate that skill acquisition in the perceptual-motor domain involves multiple time scales and multiform dynamics, both in terms of the development of the goal behavior itself and the evolution of the processes subserving this goal behavior.
Collapse
Affiliation(s)
- Raoul Huys
- Institute for Fundamental and Clinical Human Movement Sciences, Faculty of Human Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | |
Collapse
|