1
|
Antolík J, Cagnol R, Rózsa T, Monier C, Frégnac Y, Davison AP. A comprehensive data-driven model of cat primary visual cortex. PLoS Comput Biol 2024; 20:e1012342. [PMID: 39167628 PMCID: PMC11371232 DOI: 10.1371/journal.pcbi.1012342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/03/2024] [Accepted: 07/20/2024] [Indexed: 08/23/2024] Open
Abstract
Knowledge integration based on the relationship between structure and function of the neural substrate is one of the main targets of neuroinformatics and data-driven computational modeling. However, the multiplicity of data sources, the diversity of benchmarks, the mixing of observables of different natures, and the necessity of a long-term, systematic approach make such a task challenging. Here we present a first snapshot of a long-term integrative modeling program designed to address this issue in the domain of the visual system: a comprehensive spiking model of cat primary visual cortex. The presented model satisfies an extensive range of anatomical, statistical and functional constraints under a wide range of visual input statistics. In the presence of physiological levels of tonic stochastic bombardment by spontaneous thalamic activity, the modeled cortical reverberations self-generate a sparse asynchronous ongoing activity that quantitatively matches a range of experimentally measured statistics. When integrating feed-forward drive elicited by a high diversity of visual contexts, the simulated network produces a realistic, quantitatively accurate interplay between visually evoked excitatory and inhibitory conductances; contrast-invariant orientation-tuning width; center surround interactions; and stimulus-dependent changes in the precision of the neural code. This integrative model offers insights into how the studied properties interact, contributing to a better understanding of visual cortical dynamics. It provides a basis for future development towards a comprehensive model of low-level perception.
Collapse
Affiliation(s)
- Ján Antolík
- Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, Prague 1, Czechia
- Unit of Neuroscience, Information and Complexity (UNIC), CNRS FRE 3693, Gif-sur-Yvette, France
- INSERM UMRI S 968; Sorbonne Université, UPMC Univ Paris 06, UMR S 968; CNRS, UMR 7210, Institut de la Vision, Paris, France
| | - Rémy Cagnol
- Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, Prague 1, Czechia
| | - Tibor Rózsa
- Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, Prague 1, Czechia
| | - Cyril Monier
- Unit of Neuroscience, Information and Complexity (UNIC), CNRS FRE 3693, Gif-sur-Yvette, France
- Institut des neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
| | - Yves Frégnac
- Unit of Neuroscience, Information and Complexity (UNIC), CNRS FRE 3693, Gif-sur-Yvette, France
- Institut des neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
| | - Andrew P. Davison
- Unit of Neuroscience, Information and Complexity (UNIC), CNRS FRE 3693, Gif-sur-Yvette, France
- Institut des neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
| |
Collapse
|
2
|
Komiyama T, Takedomi H, Aoyama C, Goya R, Shimegi S. Acute exercise has specific effects on the formation process and pathway of visual perception in healthy young men. Eur J Neurosci 2023; 58:3239-3252. [PMID: 37424403 DOI: 10.1111/ejn.16082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023]
Abstract
Visual perception is formed over time through the formation process and visual pathway. Exercise improves visual perception, but it is unclear whether exercise modulates nonspecifically or specifically the formation process and pathway of visual perception. Healthy young men performed the visual detection task in a backward masking paradigm before and during cycling exercise at a mild intensity or rest (control). The task presented gratings of a circular patch (target) and annulus (mask) arranged concentrically as a visual stimulus and asked if the presence and striped pattern (feature) of the target were detected. The relationship between the orientations of the gratings of the target and the mask included iso-orientation and orthogonal orientation to investigate the orientation selectivity of the masking effect. The masking effect was evaluated by perceptual suppressive index (PSI). Exercise improved feature detection (∆PSI; Exercise: -20.6%, Control: 1.7%) but not presence detection (∆PSI; Exercise: 8.9%, Control: 29.6%) compared to the control condition, and the improving effect resulted from the attenuation of the non-orientation-selective (∆PSI; Exercise: -29.0%, Control: 16.8%) but not orientation-selective masking effect (∆PSI; Exercise: -3.1%, Control: 11.7%). These results suggest that exercise affects the formation process of the perceptual feature of the target stimulus by suppressively modulating the neural networks responsible for the non-orientation-selective surround interaction in the subcortical visual pathways, whose effects are inherited by the cortical visual pathways necessary for perceptual image formation. In conclusion, our findings suggest that acute exercise improves visual perception transiently through the modulation of a specific formation process of visual processing.
Collapse
Affiliation(s)
- Takaaki Komiyama
- Laboratory of Brain Information Science in Sports, Center for Education in Liberal Arts and Science, Osaka University, Toyonaka, Japan
| | - Hiromasa Takedomi
- Graduate School of Frontier of Biosciences, Osaka University, Toyonaka, Japan
| | - Chisa Aoyama
- Graduate School of Medicine, Osaka University, Toyonaka, Japan
| | - Ryoma Goya
- Graduate School of Frontier of Biosciences, Osaka University, Toyonaka, Japan
- Faculty of Sports Science, Fukuoka University, Fukuoka, Japan
| | - Satoshi Shimegi
- Laboratory of Brain Information Science in Sports, Center for Education in Liberal Arts and Science, Osaka University, Toyonaka, Japan
- Graduate School of Frontier of Biosciences, Osaka University, Toyonaka, Japan
- Graduate School of Medicine, Osaka University, Toyonaka, Japan
| |
Collapse
|
3
|
Mechanisms of Surround Suppression Effect on the Contrast Sensitivity of V1 Neurons in Cats. Neural Plast 2022; 2022:5677655. [PMID: 35299618 PMCID: PMC8923783 DOI: 10.1155/2022/5677655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/30/2022] [Accepted: 02/19/2022] [Indexed: 12/14/2022] Open
Abstract
Surround suppression (SS) is a phenomenon that a neuron’s response to visual stimuli within the classical receptive field (cRF) is suppressed by a concurrent stimulation in the surrounding receptive field (sRF) beyond the cRF. Studies show that SS affects neuronal response contrast sensitivity in the primary visual cortex (V1). However, the underlying mechanisms remain unclear. Here, we examined SS effect on the contrast sensitivity of cats’ V1 neurons with different preferred SFs using external noise-masked visual stimuli and perceptual template model (PTM) analysis at the system level. The contrast sensitivity was evaluated by the inverted threshold contrast of neurons in response to circular gratings of different contrasts in the cRF with or without an annular grating in the sRF. Our results showed that SS significantly reduced the contrast sensitivity of cats’ V1 neurons. The SS-induced reduction of contrast sensitivity was not correlated with SS strength but was dependent on neuron’s preferred SF, with a larger reduction for neurons with low preferred SFs than those with high preferred SFs. PTM analysis of threshold versus external noise contrast (TvC) functions indicated that SS decreased contrast sensitivity by increasing both the internal additive noise and impact of external noise for neurons with low preferred SFs, but improving only internal additive noise for neurons with high preferred SFs. Furthermore, the SS effect on the contrast-response function of low- and high-SF neurons also exhibited different mechanisms in contrast gain and response gain. Collectively, these results suggest that the mechanisms of SS effect on neuronal contrast sensitivity may depend on neuronal populations with different SFs.
Collapse
|
4
|
Niu X, Huang S, Zhu M, Wang Z, Shi L. Surround Modulation Properties of Tectal Neurons in Pigeons Characterized by Moving and Flashed Stimuli. Animals (Basel) 2022; 12:ani12040475. [PMID: 35203185 PMCID: PMC8868286 DOI: 10.3390/ani12040475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Surround modulation is a basic visual attribute of sensory neurons in many species and has been extensively characterized in mammal primary visual cortex, lateral geniculate nucleus, and superior colliculus. Little attention has been paid to birds, which have a highly developed visual system. We undertook a systematic analysis on surround modulation properties of tectal neurons in pigeons (Columba livia). This study complements existing studies on surrounding modulation properties in non-mammalian species and deepens the understanding of mechanisms of figure–background segmentation performed by avians. Abstract Surround modulation has been abundantly studied in several mammalian brain areas, including the primary visual cortex, lateral geniculate nucleus, and superior colliculus (SC), but systematic analysis is lacking in the avian optic tectum (OT, homologous to mammal SC). Here, multi-units were recorded from pigeon (Columba livia) OT, and responses to different sizes of moving, flashed squares, and bars were compared. The statistical results showed that most tectal neurons presented suppressed responses to larger stimuli in both moving and flashed paradigms, and suppression induced by flashed squares was comparable with moving ones when the stimuli center crossed the near classical receptive field (CRF) center, which corresponded to the full surrounding condition. Correspondingly, the suppression grew weaker when the stimuli center moved across the CRF border, equivalent to partially surrounding conditions. Similarly, suppression induced by full surrounding flashed squares was more intense than by partially surrounding flashed bars. These results suggest that inhibitions performed on tectal neurons appear to be full surrounding rather than locally lateral. This study enriches the understanding of surround modulation properties of avian tectum neurons and provides possible hypotheses about the arrangement of inhibitions from other nuclei, both of which are important for clarifying the mechanism of target detection against clutter background performed by avians.
Collapse
Affiliation(s)
- Xiaoke Niu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (X.N.); (S.H.); (M.Z.); (Z.W.)
| | - Shuman Huang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (X.N.); (S.H.); (M.Z.); (Z.W.)
| | - Minjie Zhu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (X.N.); (S.H.); (M.Z.); (Z.W.)
| | - Zhizhong Wang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (X.N.); (S.H.); (M.Z.); (Z.W.)
| | - Li Shi
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (X.N.); (S.H.); (M.Z.); (Z.W.)
- Department of Automation, Tsinghua University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
5
|
Antolik J, Sabatier Q, Galle C, Frégnac Y, Benosman R. Assessment of optogenetically-driven strategies for prosthetic restoration of cortical vision in large-scale neural simulation of V1. Sci Rep 2021; 11:10783. [PMID: 34031442 PMCID: PMC8144184 DOI: 10.1038/s41598-021-88960-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/01/2021] [Indexed: 02/04/2023] Open
Abstract
The neural encoding of visual features in primary visual cortex (V1) is well understood, with strong correlates to low-level perception, making V1 a strong candidate for vision restoration through neuroprosthetics. However, the functional relevance of neural dynamics evoked through external stimulation directly imposed at the cortical level is poorly understood. Furthermore, protocols for designing cortical stimulation patterns that would induce a naturalistic perception of the encoded stimuli have not yet been established. Here, we demonstrate a proof of concept by solving these issues through a computational model, combining (1) a large-scale spiking neural network model of cat V1 and (2) a virtual prosthetic system transcoding the visual input into tailored light-stimulation patterns which drive in situ the optogenetically modified cortical tissue. Using such virtual experiments, we design a protocol for translating simple Fourier contrasted stimuli (gratings) into activation patterns of the optogenetic matrix stimulator. We then quantify the relationship between spatial configuration of the imposed light pattern and the induced cortical activity. Our simulations in the absence of visual drive (simulated blindness) show that optogenetic stimulation with a spatial resolution as low as 100 [Formula: see text]m, and light intensity as weak as [Formula: see text] photons/s/cm[Formula: see text] is sufficient to evoke activity patterns in V1 close to those evoked by normal vision.
Collapse
Affiliation(s)
- Jan Antolik
- Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, 118 00, Prague 1, Czechia.
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.
| | - Quentin Sabatier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Charlie Galle
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Yves Frégnac
- Unité de Neurosciences, Information et Complexité (UNIC), NeuroPSI, Gif-sur-Yvette, France
| | - Ryad Benosman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
- University of Pittsburgh, McGowan Institute, 3025 E Carson St, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Wang A, Chen L, Jiang Y. Anodal Occipital Transcranial Direct Current Stimulation Enhances Perceived Visual Size Illusions. J Cogn Neurosci 2020; 33:528-535. [PMID: 33326330 DOI: 10.1162/jocn_a_01664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human early visual cortex has long been suggested to play a crucial role in context-dependent visual size perception through either lateral interaction or feedback projections from higher to lower visual areas. We investigated the causal contribution of early visual cortex to context-dependent visual size perception using the technique of transcranial direct current stimulation and two well-known size illusions (i.e., the Ebbinghaus and Ponzo illusions) and further elucidated the underlying mechanism that mediates the effect of transcranial direct current stimulation over early visual cortex. The results showed that the magnitudes of both size illusions were significantly increased by anodal stimulation relative to sham stimulation but left unaltered by cathodal stimulation. Moreover, the anodal effect persisted even when the central target and surrounding inducers of the Ebbinghaus configuration were presented to different eyes, with the effect lasting no more than 15 min. These findings provide compelling evidence that anodal occipital stimulation enhances the perceived visual size illusions, which is possibly mediated by weakening the suppressive function of the feedback connections from higher to lower visual areas. Moreover, the current study provides further support for the causal role of early visual cortex in the neural processing of context-dependent visual size perception.
Collapse
Affiliation(s)
- Anqi Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University.,Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Lihong Chen
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University.,Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Yi Jiang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences.,Chinese Institute for Brain Research, Beijing, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| |
Collapse
|
7
|
Osaki H, Naito T, Soma S, Sato H. Receptive field properties of cat perigeniculate neurons correlate with excitatory and inhibitory connectivity to LGN relay neurons. Neurosci Res 2017; 132:26-36. [PMID: 28916470 DOI: 10.1016/j.neures.2017.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/21/2017] [Accepted: 09/06/2017] [Indexed: 11/19/2022]
Abstract
The cat perigeniculate nucleus (PGN) is a visual sector of the thalamic reticular nucleus that consists of GABAergic neurons. It receives excitatory axon-collateral input from relay neurons of the dorsal lateral geniculate nucleus (LGN) to which it provides inhibitory input. Thus, it is usually argued that the PGN works as feedback inhibition to the LGN. At the single neuron level, however, this circuit can also provide lateral inhibition. Which inhibition dominates in the visual circuit of the thalamus has yet to be well characterized. In this study, we conducted cross-correlation analysis of single spike trains simultaneously recorded from PGN and LGN neurons in anesthetized cats. For 12 pairs of functionally connected PGN and LGN neurons with overlapped receptive fields (RF), we quantitatively compared RF properties including the spatial frequency (SF) and temporal frequency (TF) tunings of each neuron. We found the SF and TF tunings of PGN neurons and LGN neurons were similar when there was only excitatory input from the LGN neuron to the PGN neuron, but different when the PGN neuron returned inhibitory inputs back, suggesting the circuit between PGN and LGN neurons works as lateral inhibition for these properties.
Collapse
Affiliation(s)
- Hironobu Osaki
- Graduate School of Medicine, Osaka University, Osaka 560-0043, Japan.
| | - Tomoyuki Naito
- Graduate School of Medicine, Osaka University, Osaka 560-0043, Japan
| | - Shogo Soma
- Graduate School of Frontier Biosciences, Osaka University, Osaka 560-0043, Japan
| | - Hiromichi Sato
- Graduate School of Medicine, Osaka University, Osaka 560-0043, Japan; Graduate School of Frontier Biosciences, Osaka University, Osaka 560-0043, Japan
| |
Collapse
|
8
|
Zarella MD, Ts'o DY. Contextual modulation revealed by optical imaging exhibits figural asymmetry in macaque V1 and V2. Eye Brain 2017; 9:1-12. [PMID: 28761385 PMCID: PMC5516621 DOI: 10.2147/eb.s105609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neurons in early visual cortical areas are influenced by stimuli presented well beyond the confines of their classical receptive fields, endowing them with the ability to encode fine-scale features while also having access to the global context of the visual scene. This property can potentially define a role for the early visual cortex to contribute to a number of important visual functions, such as surface segmentation and figure-ground segregation. It is unknown how extraclassical response properties conform to the functional architecture of the visual cortex, given the high degree of functional specialization in areas V1 and V2. We examined the spatial relationships of contextual activations in macaque V1 and V2 with intrinsic signal optical imaging. Using figure-ground stimulus configurations defined by orientation or motion, we found that extraclassical modulation is restricted to the cortical representations of the figural component of the stimulus. These modulations were positive in sign, suggesting a relative enhancement in neuronal activity that may reflect an excitatory influence. Orientation and motion cues produced similar patterns of activation that traversed the functional subdivisions of V2. The asymmetrical nature of the enhancement demonstrated the capacity for visual cortical areas as early as V1 to contribute to figure-ground segregation, and the results suggest that this information can be extracted from the population activity constrained only by retinotopy, and not the underlying functional organization.
Collapse
Affiliation(s)
- Mark D Zarella
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Daniel Y Ts'o
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
9
|
Liu YJ, Hashemi-Nezhad M, Lyon DC. Differences in orientation tuning between pinwheel and domain neurons in primary visual cortex depend on contrast and size. NEUROPHOTONICS 2017; 4:031209. [PMID: 28523280 PMCID: PMC5429862 DOI: 10.1117/1.nph.4.3.031209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Intrinsic signal optical imaging reveals a highly modular map of orientation preference in the primary visual cortex (V1) of several species. This orientation map is characterized by domains and pinwheels where local circuitry is either more or less orientation selective, respectively. It has now been repeatedly demonstrated that neurons in pinwheels tend to be more broadly tuned to orientation, likely due to the broad range of orientation preference of the neighboring neurons forming pinwheels. However, certain stimulus conditions, such as a decrease in contrast or an increase in size, significantly sharpen tuning widths of V1 neurons. Here, we find that pinwheel neuron tuning widths are broader than domain neurons only for high contrast, optimally sized stimuli, conditions that maximize excitation through feedforward, and local cortical processing. When contrast was lowered or size increased, orientation tuning width sharpened and became equal. These latter conditions are conducive to less local excitation either through lower feedforward drive or by surround suppression arising from long-range cortical circuits. Tuning width differences between pinwheel and domain neurons likely arise through more local circuitry and are overcome through recruitment of longer-range cortical circuits.
Collapse
Affiliation(s)
- Yong-Jun Liu
- University of California Irvine, School of Medicine, Department of Anatomy and Neurobiology, Irvine, California, United States
- Chinese Academy of Agricultural Sciences, Institute of Apicultural Research, Department of Honeybee Protection and Biosafety, Beijing, China
| | - Maziar Hashemi-Nezhad
- University of California Irvine, School of Medicine, Department of Anatomy and Neurobiology, Irvine, California, United States
- Technical University Berlin, Neuroinformatics Group, Department of Software Engineering and Theoretical Computer Science, Administrative Office MAR 5-6, Marchstraße, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - David C. Lyon
- University of California Irvine, School of Medicine, Department of Anatomy and Neurobiology, Irvine, California, United States
| |
Collapse
|
10
|
Harutiunian-Kozak BA, Ghazaryan AL, Momjian MM, Khachvankian DK, Aslanian HR. Contrast-Dependent Restructuring of Neuronal Visual Receptive Fields in the Cat Extrastriate Cortex. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9627-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Abstract
Neurons in early visual cortical areas encode the local properties of a stimulus in a number of different feature dimensions such as color, orientation, and motion. It has been shown, however, that stimuli presented well beyond the confines of the classical receptive field can augment these responses in a way that emphasizes these local attributes within the greater context of the visual scene. This mechanism imparts global information to cells that are otherwise considered local feature detectors and can potentially serve as an important foundation for surface segmentation, texture representation, and figure–ground segregation. The role of early visual cortex toward these functions remains somewhat of an enigma, as it is unclear how surface segmentation cues are integrated from multiple feature dimensions. We examined the impact of orientation- and motion-defined surface segmentation cues in V1 and V2 neurons using a stimulus in which the two features are completely separable. We find that, although some cells are modulated in a cue-invariant manner, many cells are influenced by only one cue or the other. Furthermore, cells that are modulated by both cues tend to be more strongly affected when both cues are presented together than when presented individually. These results demonstrate two mechanisms by which cue combinations can enhance salience. We find that feature-specific populations are more frequently encountered in V1, while cue additivity is more prominent in V2. These results highlight how two strongly interconnected areas at different stages in the cortical hierarchy can potentially contribute to scene segmentation.
Collapse
Affiliation(s)
- Mark D Zarella
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Daniel Y Ts'o
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
12
|
Casco C, Barollo M, Contemori G, Battaglini L. The Effects of Aging on Orientation Discrimination. Front Aging Neurosci 2017; 9:45. [PMID: 28303102 PMCID: PMC5332427 DOI: 10.3389/fnagi.2017.00045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/20/2017] [Indexed: 11/13/2022] Open
Abstract
Visual perception relies on low-level encoding of local orientation. Recent studies show an age-dependent impairment in orientation discrimination of stimuli embedded in external noise, suggesting that encoding of orientation is inefficient in older adults. In the present study we ask whether aging also reduces decoding, i.e., selecting the neural representations of target orientation while discarding those conflicting with it. We compared younger and older participants capability (mean age 24 and 68 years respectively) in discriminating whether the orientation of a Gabor target was left or right from the vertical. We measured (d′), an index of discrimination sensitivity, for orientation offset ranging from 1° to 12°. In the isolated target condition, d′ was reduced by aging and, in the older group, did not increase with orientation offset, thus resulting in a larger group difference at large than small orientation offsets from the vertical. Moreover, oriented elements in the background impaired more discrimination in the older group. However, distractors reduced more d′ when target-background orientation offset was large than when target and flanker had similar orientation, indicating that the effect of the background was not local, i.e., due to target inhibition by similarly oriented flankers. Altogether, these results indicate that aging reduces the efficiency in discarding the response to orientations differing from the target. Our results suggest that neural decision-making mechanisms, involving not only signal enhancement but also non-signal inhibition, become inefficient with age. This suggestion is consistent with the neurophysiological evidence of inefficient visual cortical inhibition in aging.
Collapse
Affiliation(s)
- Clara Casco
- Department of General Psychology, University of Padova Padova, Italy
| | - Michele Barollo
- Dipartimento di Beni Culturali, University of Padova Padova, Italy
| | - Giulio Contemori
- Department of General Psychology, University of Padova Padova, Italy
| | - Luca Battaglini
- Department of General Psychology, University of Padova Padova, Italy
| |
Collapse
|
13
|
Pinotsis DA, Perry G, Litvak V, Singh KD, Friston KJ. Intersubject variability and induced gamma in the visual cortex: DCM with empirical Bayes and neural fields. Hum Brain Mapp 2016; 37:4597-4614. [PMID: 27593199 PMCID: PMC5111616 DOI: 10.1002/hbm.23331] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
This article describes the first application of a generic (empirical) Bayesian analysis of between‐subject effects in the dynamic causal modeling (DCM) of electrophysiological (MEG) data. It shows that (i) non‐invasive (MEG) data can be used to characterize subject‐specific differences in cortical microcircuitry and (ii) presents a validation of DCM with neural fields that exploits intersubject variability in gamma oscillations. We find that intersubject variability in visually induced gamma responses reflects changes in the excitation‐inhibition balance in a canonical cortical circuit. Crucially, this variability can be explained by subject‐specific differences in intrinsic connections to and from inhibitory interneurons that form a pyramidal‐interneuron gamma network. Our approach uses Bayesian model reduction to evaluate the evidence for (large sets of) nested models—and optimize the corresponding connectivity estimates at the within and between‐subject level. We also consider Bayesian cross‐validation to obtain predictive estimates for gamma‐response phenotypes, using a leave‐one‐out procedure. Hum Brain Mapp 37:4597–4614, 2016. © The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dimitris A Pinotsis
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts.,The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London, WC1N 3BG
| | - Gavin Perry
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Park Place, Cardiff, Wales, CF10 3AT, United Kingdom
| | - Vladimir Litvak
- The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London, WC1N 3BG
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Park Place, Cardiff, Wales, CF10 3AT, United Kingdom
| | - Karl J Friston
- The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London, WC1N 3BG
| |
Collapse
|
14
|
Chen K, Wang Y, Liang X, Zhang Y, Ng TK, Chan LLH. Electrophysiology Alterations in Primary Visual Cortex Neurons of Retinal Degeneration (S334ter-line-3) Rats. Sci Rep 2016; 6:26793. [PMID: 27225415 PMCID: PMC4880896 DOI: 10.1038/srep26793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/10/2016] [Indexed: 11/23/2022] Open
Abstract
The dynamic nature of the brain is critical for the success of treatments aimed at restoring vision at the retinal level. The success of these treatments relies highly on the functionality of the surviving neurons along the entire visual pathway. Electrophysiological properties at the retina level have been investigated during the progression of retinal degeneration; however, little is known about the changes in electrophysiological properties that occur in the primary visual cortex (V1) during the course of retinal degeneration. By conducting extracellular recording, we examined the electrophysiological properties of V1 in S334ter-line-3 rats (a transgenic model of retinal degeneration developed to express a rhodopsin mutation similar to that found in human retinitis pigmentosa patients). We measured the orientation tuning, spatial and temporal frequency tunings and the receptive field (RF) size for 127 V1 neurons from 11 S334ter-3 rats and 10 Long-Evans (LE) rats. V1 neurons in the S334ter-3 rats showed weaker orientation selectivity, lower optimal spatial and temporal frequency values and a smaller receptive field size compared to the LE rats. These results suggest that the visual cognitive ability significantly changes during retinal degeneration.
Collapse
Affiliation(s)
- Ke Chen
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong
| | - Yi Wang
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong
| | - Xiaohua Liang
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yihuai Zhang
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong
| | - Tsz Kin Ng
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Leanne Lai Hang Chan
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong
| |
Collapse
|
15
|
Abstract
Human contrast sensitivity for narrowband Gabor targets is suppressed when superimposed on narrowband masks of the same spatial frequency and orientation (referred to as overlay suppression), with suppression being broadly tuned to orientation and spatial frequency. Numerous behavioral and neurophysiological experiments have suggested that overlay suppression originates from the initial lateral geniculate nucleus (LGN) inputs to V1, which is consistent with the broad tuning typically reported for overlay suppression. However, recent reports have shown narrowly tuned anisotropic overlay suppression when narrowband targets are masked by broadband noise. Consequently, researchers have argued for an additional form of overlay suppression that involves cortical contrast gain control processes. The current study sought to further explore this notion behaviorally using narrowband and broadband masks, along with a computational neural simulation of the hypothesized underlying gain control processes in cortex. Additionally, we employed transcranial direct current stimulation (tDCS) in order to test whether cortical processes are involved in driving narrowly tuned anisotropic suppression. The behavioral results yielded anisotropic overlay suppression for both broadband and narrowband masks and could be replicated with our computational neural simulation of anisotropic gain control. Further, the anisotropic form of overlay suppression could be directly modulated by tDCS, which would not be expected if the suppression was primarily subcortical in origin. Altogether, the results of the current study provide further evidence in support of an additional overlay suppression process that originates in cortex and show that this form of suppression is also observable with narrowband masks.
Collapse
|
16
|
Liu YJ, Hashemi-Nezhad M, Lyon DC. Contrast invariance of orientation tuning in cat primary visual cortex neurons depends on stimulus size. J Physiol 2015; 593:4485-98. [PMID: 26227285 DOI: 10.1113/jp271180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/27/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The process of orientation tuning is an important and well-characterized feature of neurons in primary visual cortex. The combination of ascending and descending circuits involved is not only relevant to understanding visual processing but the function of neocortex in general. The classic feed-forward model of orientation tuning predicts a broadening effect due to increasing contrast; yet, experimental results consistently report contrast invariance. We show here that contrast invariance actually depends on stimulus size such that large stimuli extending beyond the neuron's receptive field engage circuits that promote invariance, whereas optimally sized, smaller stimuli result in contrast variance that is more in line with the classical orientation tuning model. These results illustrate the importance of optimizing stimulus parameters to best reflect the sensory pathways under study and provide new clues about different circuits that may be involved in variant and invariant response properties. ABSTRACT Selective response to stimulus orientation is a key feature of neurons in primary visual cortex, yet the underlying mechanisms generating orientation tuning are not fully understood. The combination of feed-forward and cortical mechanisms involved is not only relevant to understanding visual processing but the function of neocortex in general. The classic feed-forward model predicts that orientation tuning should broaden considerably with increasing contrast; however, experimental results consistently report contrast invariance. We show here, in primary visual cortex of anaesthetized cats under neuromuscular blockade, that contrast invariance occurs when visual stimuli are large enough to include the extraclassical surround (ECS), which is likely to involve circuits of suppression that may not be entirely feed-forward in origin. On the other hand, when stimulus size is optimized to the classical receptive field of each neuron, the population average shows a statistically significant 40% increase in tuning width at high contrast, demonstrating that contrast variance of orientation tuning can occur. Conversely, our results also suggest that the phenomenon of contrast invariance relies in part on the presence of the ECS. Moreover, these results illustrate the importance of optimizing stimulus parameters to best reflect the neural pathways under study.
Collapse
Affiliation(s)
- Yong-Jun Liu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, 364 Med Surge II, Irvine, CA, 92697, USA
| | - Maziar Hashemi-Nezhad
- Department of Anatomy and Neurobiology, School of Medicine, University of California, 364 Med Surge II, Irvine, CA, 92697, USA
| | - David C Lyon
- Department of Anatomy and Neurobiology, School of Medicine, University of California, 364 Med Surge II, Irvine, CA, 92697, USA
| |
Collapse
|
17
|
Li P, Jin CH, Jiang S, Li MM, Wang ZL, Zhu H, Chen CY, Hua TM. Effects of surround suppression on response adaptation of V1 neurons to visual stimuli. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 35:411-9. [PMID: 25297081 DOI: 10.13918/j.issn.2095-8137.2014.5.411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The influence of intracortical inhibition on the response adaptation of visual cortical neurons remains in debate. To clarify this issue, in the present study the influence of surround suppression evoked through the local inhibitory interneurons on the adaptation effects of neurons in the primary visual cortex (V1) were observed. Moreover, the adaptations of V1 neurons to both the high-contrast visual stimuli presented in the classical receptive field (CRF) and to the costimulation presented in the CRF and the surrounding nonclassical receptive field (nCRF) were compared. The intensities of surround suppression were modulated with different sized grating stimuli. The results showed that the response adaptation of V1 neurons decreased significantly with the increase of surround suppression and this adaptation decrease was due to the reduction of the initial response of V1 neurons to visual stimuli. However, the plateau response during adaptation showed no significant changes. These findings indicate that the adaptation effects of V1 neurons may not be directly affected by surround suppression, but may be dynamically regulated by a negative feedback network and be finely adjusted by its initial spiking response to stimulus. This adaptive regulation is not only energy efficient for the central nervous system, but also beneficially acts to maintain the homeostasis of neuronal response to long-presenting visual signals.
Collapse
Affiliation(s)
- Peng Li
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Cai-Hong Jin
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - San Jiang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Miao-Miao Li
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Zi-Lu Wang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Hui Zhu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Cui-Yun Chen
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Tian-Miao Hua
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
18
|
Perry CJ, Sergio LE, Crawford JD, Fallah M. Hand placement near the visual stimulus improves orientation selectivity in V2 neurons. J Neurophysiol 2015; 113:2859-70. [PMID: 25717165 DOI: 10.1152/jn.00919.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/23/2015] [Indexed: 11/22/2022] Open
Abstract
Often, the brain receives more sensory input than it can process simultaneously. Spatial attention helps overcome this limitation by preferentially processing input from a behaviorally-relevant location. Recent neuropsychological and psychophysical studies suggest that attention is deployed to near-hand space much like how the oculomotor system can deploy attention to an upcoming gaze position. Here we provide the first neuronal evidence that the presence of a nearby hand enhances orientation selectivity in early visual processing area V2. When the hand was placed outside the receptive field, responses to the preferred orientation were significantly enhanced without a corresponding significant increase at the orthogonal orientation. Consequently, there was also a significant sharpening of orientation tuning. In addition, the presence of the hand reduced neuronal response variability. These results indicate that attention is automatically deployed to the space around a hand, improving orientation selectivity. Importantly, this appears to be optimal for motor control of the hand, as opposed to oculomotor mechanisms which enhance responses without sharpening orientation selectivity. Effector-based mechanisms for visual enhancement thus support not only the spatiotemporal dissociation of gaze and reach, but also the optimization of vision for their separate requirements for guiding movements.
Collapse
Affiliation(s)
- Carolyn J Perry
- Visual Perception and Attention Laboratory, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada; Centre for Vision Research, York University, Toronto, Ontario, Canada; School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada;
| | - Lauren E Sergio
- Centre for Vision Research, York University, Toronto, Ontario, Canada; School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - J Douglas Crawford
- Centre for Vision Research, York University, Toronto, Ontario, Canada; Department of Psychology, York University, Toronto, Ontario, Canada; and Canadian Action and Perception Network, York University, Toronto, Ontario, Canada
| | - Mazyar Fallah
- Visual Perception and Attention Laboratory, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada; Centre for Vision Research, York University, Toronto, Ontario, Canada; School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada; Canadian Action and Perception Network, York University, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Okazaki YO, De Weerd P, Haegens S, Jensen O. Hemispheric lateralization of posterior alpha reduces distracter interference during face matching. Brain Res 2014; 1590:56-64. [DOI: 10.1016/j.brainres.2014.09.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/16/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
|
20
|
Shimegi S, Ishikawa A, Kida H, Sakamoto H, Hara SI, Sato H. Spatiotemporal characteristics of surround suppression in primary visual cortex and lateral geniculate nucleus of the cat. J Neurophysiol 2014; 112:603-19. [DOI: 10.1152/jn.00221.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the primary visual cortex (V1), a neuronal response to stimulation of the classical receptive field (CRF) is predominantly suppressed by a stimulus presented outside the CRF (extraclassical receptive field, ECRF), a phenomenon referred to as ECRF suppression. To elucidate the neuronal mechanisms and origin of ECRF suppression in V1 of anesthetized cats, we examined the temporal properties of the spatial extent and orientation specificity of ECRF suppression in V1 and the lateral geniculate nucleus (LGN), using stationary-flashed sinusoidal grating. In V1, we found three components of ECRF suppression: 1) local and fast, 2) global and fast, and 3) global and late. The local and fast component, which resulted from within 2° of the boundary of the CRF, started no more than 10 ms after the onset of the CRF response and exhibited low specificity for the orientation of the ECRF stimulus. These spatiotemporal properties corresponded to those of geniculate ECRF suppression, suggesting that the local and fast component of V1 is inherited from the LGN. In contrast, the two global components showed rather large spatial extents ∼5° from the CRF boundary and high specificity for orientation, suggesting that their possible origin is the cortex, not the LGN. Correspondingly, the local component was observed in all neurons of the thalamocortical recipient layer, while the global component was biased toward other layers. Therefore, we conclude that both subcortical and cortical mechanisms with different spatiotemporal properties are involved in ECRF suppression.
Collapse
Affiliation(s)
- Satoshi Shimegi
- Graduate School of Medicine, Osaka University, Toyonaka, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka, Japan; and
| | - Ayako Ishikawa
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka, Japan; and
| | - Hiroyuki Kida
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Hiroshi Sakamoto
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka, Japan; and
| | - Sin-ichiro Hara
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka, Japan; and
| | - Hiromichi Sato
- Graduate School of Medicine, Osaka University, Toyonaka, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka, Japan; and
| |
Collapse
|
21
|
Naito T, Kasamatsu T, Sato H. Spike synchronization in cat primary visual cortex depends on similarity of surround-suppression magnitude. Eur J Neurosci 2014; 39:934-945. [PMID: 24393437 DOI: 10.1111/ejn.12469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 11/30/2022]
Abstract
In the primary visual cortex (V1), the spike synchronization seen in neuron pairs with non-overlapping receptive fields can be explained by similarities in their preferred orientation (PO). However, this is not true for pairs with overlapping receptive fields, as they can still exhibit spike synchronization even if their POs are only weakly correlated. Here, we investigated the relationship between spike synchronization and suppressive modulation derived from classical receptive-field surround (surround suppression). We found that layer 4 and layer 2/3 pairs exhibited mainly asymmetric spike synchronization that had non-zero time-lags and was dependent on both the similarity of the PO and the strength of surround suppression. In contrast, layer 2/3 and layer 2/3 pairs showed mainly symmetric spike synchronization that had zero time-lag and was dependent on the similarity of the strength of surround suppression but not on the similarity in POs. From these results, we propose that in cat V1 there exists a functional network that mainly depends on the similarity in surround suppression, and that in layer 2/3 neurons the network maintains surround suppression that is primarily inherited from layer 4 neurons.
Collapse
Affiliation(s)
- Tomoyuki Naito
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Health and Sport Science Building, 1-17 Machikaneyama, Osaka, Toyonaka, 560-0043, Japan
| | - Takuji Kasamatsu
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Health and Sport Science Building, 1-17 Machikaneyama, Osaka, Toyonaka, 560-0043, Japan
| | - Hiromichi Sato
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Health and Sport Science Building, 1-17 Machikaneyama, Osaka, Toyonaka, 560-0043, Japan
| |
Collapse
|
22
|
The detection of orientation continuity and discontinuity by cat V1 neurons. PLoS One 2013; 8:e79723. [PMID: 24278163 PMCID: PMC3836789 DOI: 10.1371/journal.pone.0079723] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 10/04/2013] [Indexed: 12/04/2022] Open
Abstract
The orientation tuning properties of the non-classical receptive field (nCRF or “surround”) relative to that of the classical receptive field (CRF or “center”) were tested for 119 neurons in the cat primary visual cortex (V1). The stimuli were concentric sinusoidal gratings generated on a computer screen with the center grating presented at an optimal orientation to stimulate the CRF and the surround grating with variable orientations stimulating the nCRF. Based on the presence or absence of surround suppression, measured by the suppression index at the optimal orientation of the cells, we subdivided the neurons into two categories: surround-suppressive (SS) cells and surround-non-suppressive (SN) cells. When stimulated with an optimally oriented grating centered at CRF, the SS cells showed increasing surround suppression when the stimulus grating was expanded beyond the boundary of the CRF, whereas for the SN cells, expanding the stimulus grating beyond the CRF caused no suppression of the center response. For the SS cells, strength of surround suppression was dependent on the relative orientation between CRF and nCRF: an iso-orientation grating over center and surround at the optimal orientation evoked strongest suppression and a surround grating orthogonal to the optimal center grating evoked the weakest or no suppression. By contrast, the SN cells showed slightly increased responses to an iso-orientation stimulus and weak suppression to orthogonal surround gratings. This iso-/orthogonal orientation selectivity between center and surround was analyzed in 22 SN and 97 SS cells, and for the two types of cells, the different center-surround orientation selectivity was dependent on the suppressive strength of the cells. We conclude that SN cells are suitable to detect orientation continuity or similarity between CRF and nCRF, whereas the SS cells are adapted to the detection of discontinuity or differences in orientation between CRF and nCRF.
Collapse
|
23
|
Effects of stimulus spatial frequency, size, and luminance contrast on orientation tuning of neurons in the dorsal lateral geniculate nucleus of cat. Neurosci Res 2013; 77:143-54. [PMID: 24055599 DOI: 10.1016/j.neures.2013.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 11/22/2022]
Abstract
It is generally thought that orientation selectivity first appears in the primary visual cortex (V1), whereas neurons in the lateral geniculate nucleus (LGN), an input source for V1, are thought to be insensitive to stimulus orientation. Here we show that increasing both the spatial frequency and size of the grating stimuli beyond their respective optimal values strongly enhance the orientation tuning of LGN neurons. The resulting orientation tuning was clearly contrast-invariant. Furthermore, blocking intrathalamic inhibition by iontophoretically administering γ-aminobutyric acid (GABA)A receptor antagonists, such as bicuculline and GABAzine, slightly but significantly weakened the contrast invariance. Our results suggest that orientation tuning in the LGN is caused by an elliptical classical receptive field and orientation-tuned surround suppression, and that its contrast invariance is ensured by local GABAA inhibition. This contrast-invariant orientation tuning in LGN neurons may contribute to the contrast-invariant orientation tuning seen in V1 neurons.
Collapse
|
24
|
Kimura A, Shimegi S, Hara S, Okamoto M, Sato H. Role of GABAergic inhibition in shaping the spatial frequency tuning of neurons and its contrast dependency in the dorsal lateral geniculate nucleus of cat. Eur J Neurosci 2013; 37:1270-83. [DOI: 10.1111/ejn.12149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 11/30/2012] [Accepted: 01/08/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Akihiro Kimura
- Graduate School of Medicine; Osaka University; Toyonaka; Osaka; Japan
| | | | - Shin'ichiro Hara
- Graduate School of Frontier Biosciences; Osaka University; Toyonaka; Osaka; Japan
| | - Masahiro Okamoto
- Graduate School of Frontier Biosciences; Osaka University; Toyonaka; Osaka; Japan
| | | |
Collapse
|
25
|
Liu YJ, Hashemi-Nezhad M, Lyon DC. Sharper orientation tuning of the extraclassical suppressive-surround due to a neuron's location in the V1 orientation map emerges late in time. Neuroscience 2012; 229:100-17. [PMID: 23159311 DOI: 10.1016/j.neuroscience.2012.10.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/13/2012] [Accepted: 10/15/2012] [Indexed: 11/17/2022]
Abstract
Neuronal responses in primary visual cortex (V1) can be suppressed by a stimulus presented to the extraclassical surround, and such interactions are thought to be critical for figure ground segregation and form perception. While surround suppression likely originates from both feedforward afferents and multiple cortical circuits, it is unclear what role each circuit plays in the surround's orientation tuning. To investigate this we recorded from single units in V1 of anesthetized cat and analyzed the orientation tuning of the suppressive-surround over time. In addition, based on orientation maps derived through optical imaging prior to recording, neurons were classified as being located in domains or pinwheels. For both types of neurons, shortly after response onset (10 ms) the suppressive-surround is broadly tuned to orientation, but this is followed by a steep improvement in tuning over the next ∼30 ms. While the tuning of the pinwheel cells plateaus at this point, tuning is enhanced further for domain cells, especially those located superficially in the cortex, reaching a peak at 80 ms from response onset. This relatively slow evolution of the orientation tuning of the suppressive surround suggests that fast-arriving feedforward circuits (10 ms) likely only provide broadly tuned suppression, but that feedback from higher visual areas which is likely to arrive over the next 30 ms and can cover both the receptive field center and the extraclassical surround contributes to the initial steep rise in tuning for both cell types. Moreover, we speculate that the even later enhancement in tuning for domain neurons could mean the involvement of inputs from relatively long-range lateral connections, which not only propagate slowly but also link like-oriented domains corresponding to the receptive field of only the extraclassical surround.
Collapse
Affiliation(s)
- Y-J Liu
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, USA
| | | | | |
Collapse
|
26
|
Spiegel DP, Hansen BC, Byblow WD, Thompson B. Anodal transcranial direct current stimulation reduces psychophysically measured surround suppression in the human visual cortex. PLoS One 2012; 7:e36220. [PMID: 22563485 PMCID: PMC3341359 DOI: 10.1371/journal.pone.0036220] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/30/2012] [Indexed: 02/01/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a safe, non-invasive technique for transiently modulating the balance of excitation and inhibition within the human brain. It has been reported that anodal tDCS can reduce both GABA mediated inhibition and GABA concentration within the human motor cortex. As GABA mediated inhibition is thought to be a key modulator of plasticity within the adult brain, these findings have broad implications for the future use of tDCS. It is important, therefore, to establish whether tDCS can exert similar effects within non-motor brain areas. The aim of this study was to assess whether anodal tDCS could reduce inhibitory interactions within the human visual cortex. Psychophysical measures of surround suppression were used as an index of inhibition within V1. Overlay suppression, which is thought to originate within the lateral geniculate nucleus (LGN), was also measured as a control. Anodal stimulation of the occipital poles significantly reduced psychophysical surround suppression, but had no effect on overlay suppression. This effect was specific to anodal stimulation as cathodal stimulation had no effect on either measure. These psychophysical results provide the first evidence for tDCS-induced reductions of intracortical inhibition within the human visual cortex.
Collapse
Affiliation(s)
- Daniel P. Spiegel
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - Bruce C. Hansen
- Department of Psychology & Neuroscience Program, Colgate University, Hamilton, New York, United States of America
| | - Winston D. Byblow
- Department of Sport and Exercise Science, University of Auckland, Auckland, New Zealand
| | - Benjamin Thompson
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
27
|
Appelbaum LG, Ales JM, Norcia AM. The time course of segmentation and cue-selectivity in the human visual cortex. PLoS One 2012; 7:e34205. [PMID: 22479566 PMCID: PMC3313990 DOI: 10.1371/journal.pone.0034205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 02/23/2012] [Indexed: 11/29/2022] Open
Abstract
Texture discontinuities are a fundamental cue by which the visual system segments objects from their background. The neural mechanisms supporting texture-based segmentation are therefore critical to visual perception and cognition. In the present experiment we employ an EEG source-imaging approach in order to study the time course of texture-based segmentation in the human brain. Visual Evoked Potentials were recorded to four types of stimuli in which periodic temporal modulation of a central 3° figure region could either support figure-ground segmentation, or have identical local texture modulations but not produce changes in global image segmentation. The image discontinuities were defined either by orientation or phase differences across image regions. Evoked responses to these four stimuli were analyzed both at the scalp and on the cortical surface in retinotopic and functional regions-of-interest (ROIs) defined separately using fMRI on a subject-by-subject basis. Texture segmentation (tsVEP: segmenting versus non-segmenting) and cue-specific (csVEP: orientation versus phase) responses exhibited distinctive patterns of activity. Alternations between uniform and segmented images produced highly asymmetric responses that were larger after transitions from the uniform to the segmented state. Texture modulations that signaled the appearance of a figure evoked a pattern of increased activity starting at ∼143 ms that was larger in V1 and LOC ROIs, relative to identical modulations that didn't signal figure-ground segmentation. This segmentation-related activity occurred after an initial response phase that did not depend on the global segmentation structure of the image. The two cue types evoked similar tsVEPs up to 230 ms when they differed in the V4 and LOC ROIs. The evolution of the response proceeded largely in the feed-forward direction, with only weak evidence for feedback-related activity.
Collapse
Affiliation(s)
- Lawrence G Appelbaum
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina, United States of America.
| | | | | |
Collapse
|
28
|
Chen K, Song XM, Li CY. Contrast-dependent variations in the excitatory classical receptive field and suppressive nonclassical receptive field of cat primary visual cortex. Cereb Cortex 2012; 23:283-92. [PMID: 22302117 DOI: 10.1093/cercor/bhs012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In area V1 of cat and monkey, there is a surround region beyond the classical receptive field (CRF) which alone is unresponsive but may modulate the cell's response. This field is referred to as the "nonclassical receptive field" (nCRF). It has been reported in monkey that the extent of CRF and/or nCRF of V1 neurons is not fixed but varies with stimulus contrast. We reexamined the contrast dependence of V1 neurons in cat to determine whether this differs from previous studies in macaque. By fitting the spatial summation curves obtained at different contrasts with a difference of Gaussians model, we estimated quantitatively the effect of contrast on the spatial extent of the CRF and nCRF as well as the strength of surround suppression. Our results showed that both the CRF and nCRF expanded at low contrast, but the expansion is more marked for the CRF than for the nCRF. Although the effect of contrast on surround suppression was varied, the overall suppression increased significantly at high contrast. Moreover, the contrast-dependent change in the extent of CRF is independent of the change in suppression strength. Overall, our results in cat are in agreement with those obtained in macaque money.
Collapse
Affiliation(s)
- Ke Chen
- Key Laboratory for Neuroinformatics, Ministry of Education of China, University of Electronic Sciences and Technology, Chengdu 610054, China
| | | | | |
Collapse
|
29
|
Okamoto T, Ikezoe K, Tamura H, Watanabe M, Aihara K, Fujita I. Predicted contextual modulation varies with distance from pinwheel centers in the orientation preference map. Sci Rep 2011; 1:114. [PMID: 22355631 PMCID: PMC3216596 DOI: 10.1038/srep00114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/28/2011] [Indexed: 11/23/2022] Open
Abstract
In the primary visual cortex (V1) of some mammals, columns of neurons with the full range of orientation preferences converge at the center of a pinwheel-like arrangement, the ‘pinwheel center' (PWC). Because a neuron receives abundant inputs from nearby neurons, the neuron's position on the cortical map likely has a significant impact on its responses to the layout of orientations inside and outside its classical receptive field (CRF). To understand the positional specificity of responses, we constructed a computational model based on orientation preference maps in monkey V1 and hypothetical neuronal connections. The model simulations showed that neurons near PWCs displayed weaker but detectable orientation selectivity within their CRFs, and strongly reduced contextual modulation from extra-CRF stimuli, than neurons distant from PWCs. We suggest that neurons near PWCs robustly extract local orientation within their CRF embedded in visual scenes, and that contextual information is processed in regions distant from PWCs.
Collapse
Affiliation(s)
- Tsuyoshi Okamoto
- Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Romo PA, Wang C, Zeater N, Solomon SG, Dreher B. Phase sensitivities, excitatory summation fields, and silent suppressive receptive fields of single neurons in the parastriate cortex of the cat. J Neurophysiol 2011; 106:1688-712. [DOI: 10.1152/jn.00894.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have recorded single-neuron activity from cytoarchitectonic area 18 of anesthetized (0.4–0.7% isoflurane in 65% N2O-35% O2 gaseous mixture) domestic cats. Neurons were identified as simple or complex on the basis of the ratios between the phase-variant (F1) component and the mean firing rate (F0) of spike responses to optimized (orientation, direction, spatial and temporal frequencies, size) high-contrast, luminance-modulated, sine-wave drifting gratings (simple: F1/F0 spike-response ratios > 1; complex: F1/F0 spike-response ratios < 1). The predominance (∼80%) of simple cells among the neurons recorded from the principal thalamorecipient layers supports the idea that most simple cells in area 18 might constitute a putative early stage in the visual information processing. Apart from the “spike-generating” regions (the classical receptive fields, CRFs), the receptive fields of three-quarters of area 18 neurons contain silent, extraclassical suppressive regions (ECRFs). The spatial extent of summation areas of excitatory responses was negatively correlated with the strength of the ECRF-induced suppression of spike responses. Lowering the stimulus contrast resulted in an expansion of the summation areas of excitatory responses accompanied by a reduction in the strength of the ECRF-induced suppression. The spatial and temporal frequency and orientation tunings of the ECRFs were much broader than those of the CRFs. Hence, the ECRFs of area 18 neurons appear to be largely “inherited” from their dorsal thalamic inputs. In most area 18 cells, costimulation of CRFs and ECRFs resulted in significant increases in F1/F0 spike-response ratios, and thus there was a contextually modulated functional continuum between the simple and complex cells.
Collapse
Affiliation(s)
- Phillip A. Romo
- Discipline of Anatomy and Histology, School of Medical Sciences and Bosch Institute, and University of Sydney Node of the Australian Research Council Centre of Excellence in Vision Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Chun Wang
- Discipline of Anatomy and Histology, School of Medical Sciences and Bosch Institute, and University of Sydney Node of the Australian Research Council Centre of Excellence in Vision Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Natalie Zeater
- Discipline of Anatomy and Histology, School of Medical Sciences and Bosch Institute, and University of Sydney Node of the Australian Research Council Centre of Excellence in Vision Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Samuel G. Solomon
- Discipline of Anatomy and Histology, School of Medical Sciences and Bosch Institute, and University of Sydney Node of the Australian Research Council Centre of Excellence in Vision Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Bogdan Dreher
- Discipline of Anatomy and Histology, School of Medical Sciences and Bosch Institute, and University of Sydney Node of the Australian Research Council Centre of Excellence in Vision Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Hashemi-Nezhad M, Lyon DC. Orientation tuning of the suppressive extraclassical surround depends on intrinsic organization of V1. ACTA ACUST UNITED AC 2011; 22:308-26. [PMID: 21666124 DOI: 10.1093/cercor/bhr105] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The intrinsic functional architecture of early cortical areas in highly visual mammals is characterized by the presence of domains and pinwheels, with orientation preference of the inputs to these regions being more and less selective, respectively. We exploited this organizational feature to investigate mechanisms supporting extraclassical surround suppression, a process thought to be critical for figure ground segregation and form vision. Combining intrinsic signal optical imaging and single-unit recording in V1 of anesthetized cats, we show for the first time that the orientation tuning of the suppressive surround is sharper for domain than for pinwheel neurons. This difference depends on high center gain and is more pronounced in superficial cortex. In addition, when we remove the near component of the surround stimulus, the strength of suppression induced by the iso-oriented surround is significantly reduced for domain neurons but is unchanged for orthogonal oriented surrounds. This leads to broader orientation tuning of suppression that renders domain cells indistinguishable from pinwheel cells. Because the limited receptive field of the near surround can be accounted for by the lateral spread of long-range connections in V1, our findings suggest that intrinsic V1 circuits play a key role in the orientation tuning of extraclassical surround suppression.
Collapse
Affiliation(s)
- Maziar Hashemi-Nezhad
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
32
|
Liu YJ, Hashemi-Nezhad M, Lyon DC. Dynamics of extraclassical surround modulation in three types of V1 neurons. J Neurophysiol 2011; 105:1306-17. [DOI: 10.1152/jn.00692.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Visual stimuli outside of the classical receptive field (CRF) can influence the response of neurons in primary visual cortex (V1). While recording single units in cat, we presented drifting sinusoidal gratings in circular apertures of different sizes to investigate this extraclassical surround modulation over time. For the full 2-s stimulus time course, three types of neurons were found: 1) 68% of the cells were “suppressive,” 2) 25% were “plateau” cells that showed response saturation with no suppression, and 3) the remaining 6% of cells were “facilitative.” Analysis of the response dynamics revealed that at response onset, activity of one-half of facilitative cells, 70% of plateau cells, and all suppressive cells is suppressed by the surround. However, over the next 20–30 ms, surround modulation changes to stronger suppression for suppressive cells, substantial facilitation for facilitative cells, and weak facilitation for plateau cells. For all three cell types, these modulatory effects then stabilize between 100 and 200 ms from stimulus onset. Thus our findings illustrate two stages of surround modulation. Early modulation is mainly suppressive regardless of cell type and, because of rapid onset, may rely on feedforward mechanisms. Surround modulation that evolves later in time is not always suppressive, depending on cell type, and may be generated through different combinations of cortical circuits. Additional analysis of modulation throughout the cortical column suggests the possibility that the larger excitatory fields of facilitative cells, primarily found in infragranular layers, may contribute to the second stage of suppression through intracolumnar circuitry.
Collapse
Affiliation(s)
- Yong-Jun Liu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
| | - Maziar Hashemi-Nezhad
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
| | - David C. Lyon
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
| |
Collapse
|
33
|
Osaki H, Naito T, Sadakane O, Okamoto M, Sato H. Surround suppression by high spatial frequency stimuli in the cat primary visual cortex. Eur J Neurosci 2011; 33:923-32. [PMID: 21255126 DOI: 10.1111/j.1460-9568.2010.07572.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surround suppression is a phenomenon whereby stimulation of the extraclassical receptive field suppressively modulates the visual responses of neurons in the primary visual cortex (V1) (also known as area 17). It is known that surround suppression tunes to spatial frequencies (SFs) that are much lower and broader than the frequencies to which the classical receptive field tunes. In this study, we tested the effects of varying SFs on surround suppression by using a circular sinusoidal grating patch that covered both the classical receptive field and the extraclassical receptive field. Using area-summation tuning curves, we found high-SF-tuned surround suppression in the cat V1. This high-SF-tuned surround suppression causes the SF tuning to shift to low SF for large stimuli. By simulating a model neuron lacking a suppressive surround mechanism, we confirmed that these preferred SF shifts do not occur in the absence of surround suppression. We surmise that the high-SF-tuned suppression, which shifts the preferred SF according to size, functionally contributes to the scale-invariant processing of visual images in V1.
Collapse
Affiliation(s)
- Hironobu Osaki
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine Osaka University, Health and Sport Science Building, Machikaneyama 1-17, Toyonaka, Osaka, 560-0043, Japan
| | | | | | | | | |
Collapse
|
34
|
Song XM, Wang Y, Zhu Z, Li CY. Morphological bases of suppressive and facilitative spatial summation in the striate cortex of the cat. PLoS One 2010; 5:e15025. [PMID: 21151335 PMCID: PMC2994074 DOI: 10.1371/journal.pone.0015025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/04/2010] [Indexed: 11/20/2022] Open
Abstract
In V1 of cats and monkeys, activity of neurons evoked by stimuli within the receptive field can be modulated by stimuli in the extra-receptive field (ERF). This modulating effect can be suppressive (S-ERF) or facilitatory (F-ERF) and plays different roles in visual information processing. Little is known about the cellular bases underlying the different types of ERF modulating effects. Here, we focus on the morphological differences between the S-ERF and F-ERF neurons. Single unit activities were recorded from V1 of the cat. The ERF properties of each neuron were assessed by area-response functions using sinusoidal grating stimuli. On completion of the functional tests, the cells were injected intracellularly with biocytin. The labeled cells were reconstructed and morphologically characterized in terms of the ERF modulation effects. We show that the vast majority of S-ERF neurons and F-ERF neurons are pyramidal cells and that the two types of cells clearly differ in the size of the soma, in complexity of dendrite branching, in spine size and density, and in the range of innervations of the axon collaterals. We propose that different pyramidal cell phenotypes reflect a high degree of specificity of neuronal connections associated with different types of spatial modulation.
Collapse
Affiliation(s)
- Xue-Mei Song
- Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ye Wang
- Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhao Zhu
- Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chao-Yi Li
- Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory for Neuroinformatics, Ministry of Education of China, University of Electronic Sciences and Technology, Chengdu, China
- * E-mail:
| |
Collapse
|
35
|
Ishikawa A, Shimegi S, Kida H, Sato H. Temporal properties of spatial frequency tuning of surround suppression in the primary visual cortex and the lateral geniculate nucleus of the cat. Eur J Neurosci 2010; 31:2086-100. [DOI: 10.1111/j.1460-9568.2010.07235.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Alberti CF, Pavan A, Campana G, Casco C. Segmentation by single and combined features involves different contextual influences. Vision Res 2010; 50:1065-73. [PMID: 20353798 DOI: 10.1016/j.visres.2010.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 03/08/2010] [Accepted: 03/25/2010] [Indexed: 11/29/2022]
Abstract
Orientation discrimination of a texture line having orientation different from that of static background lines is facilitated when the lines are aligned along their orientation axis and when their separation is small (Experiment 1a). The facilitation by alignment remains when motion is added to the target (Experiment 1b). However, when the motion rather than the orientation has to be judged, alignment reduces sensitivity (d') regardless of whether the target has orientation the same as (iso-oriented) or different from background elements (Experiment 2). The inhibitory effect of alignment is confirmed when subjects have to discriminate the motion direction of an iso-oriented target (Experiment 3). Such inhibition by alignment is stronger when elements are close and may reflect a property of lateral interactions of motion detectors, since it is only present when observers have to judge the target motion direction. Overall, our results indicate an opposite role of the lateral interactions that facilitate grouping of iso-oriented and collinear elements, in segmentation by orientation contrast and motion contrast. In other words, global grouping (i) facilitates discrimination of orientation contrast, indicating a global process, and (ii) inhibits both detection and discrimination of motion contrast, suggesting the presence of a local process.
Collapse
|
37
|
Fu Y, Wang XS, Wang YC, Zhang J, Liang Z, Zhou YF, Ma YY. The effects of aging on the strength of surround suppression of receptive field of V1 cells in monkeys. Neuroscience 2010; 169:874-81. [PMID: 20472034 DOI: 10.1016/j.neuroscience.2010.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 04/13/2010] [Accepted: 05/07/2010] [Indexed: 10/19/2022]
Abstract
The surround suppression of the receptive field is important for basic visual information processing, such as orientation specificity. To date, the effects of aging on the strength of surround suppression are not clear. To address this issue, we carried out extracellular single-unit studies of the receptive field properties of cells in the primary visual cortex (area V1) in young and old rhesus (Macaca mulatta) monkeys. When presented with the oriented central stimulus, we found that cells in old animals showed reduced orientation and direction selectivity compared with those in young animals. When presented with the oriented central stimulus together with the optimal surround stimulus, more selective cells {orientation bias (OB) >/=0.1; a bias of 0.1 is significant at the P<0.005 level} in animals of both ages showed reduced orientation selectivity compared with the experiment that presented only the oriented central stimulus. When presented with the optimal central stimulus together with the oriented surround stimulus, cells in old animals showed reduced orientation and direction selectivity compared with young animals. Moreover, broadly tuned cells (OB<0.1) in old animals exhibited significantly reduced suppression indices that quantified the strength of the surround suppression of the receptive field, when compared with those in young animals. These results suggest that aging may seriously affect the surround suppression of the receptive field of V1 cells. Thus, the decreased strength of surround suppression of the receptive field may be one possible reason for the decreased stimulus selectivity of V1 cells previously found in the senescent brain. This work will contribute to an understanding of the physiological mechanisms mediating surround suppression of the receptive field.
Collapse
Affiliation(s)
- Y Fu
- State Key Laboratory of Brain and Cognitive Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, PR China
| | | | | | | | | | | | | |
Collapse
|
38
|
Influence of 'feedback' signals on spatial integration in receptive fields of cat area 17 neurons. Brain Res 2010; 1328:34-48. [PMID: 20206150 DOI: 10.1016/j.brainres.2010.02.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 11/20/2022]
Abstract
'Feedback' signals from mammalian extrastriate visual cortices are reported to exert primarily an excitatory influence on the classical receptive field (CRF) of neurons in the primary visual cortex (V1). However, given the much larger CRFs of neurons in extrastriate visual cortices it is not yet understood how feedback signals influence the spatial integration of visual signals by V1 neurons. To investigate this, we reversibly inactivated one of the 'form-processing' extrastriate visual cortices, the postero-temporal visual (PTV) cortex, and examined changes in responses of V1 neurons to drifting grating patches up to 28 degrees in diameter. We found that during inactivation of PTV cortex the magnitude of the responses to CRF-confined stimuli and that to large stimuli inducing maximum suppression (i.e. minimum responses) was significantly reduced, while the spatial extent of the CRF remained largely unaffected. As a result, the relative strength of the surround suppression increased marginally. This effect was apparent in both simple and complex cells. It was also strong and consistent in cells located in supragranular and infragranular layers. For those cells exhibiting some relief from surround suppression or 'counter-suppression' when large stimuli patches were applied, the effect on counter-suppression was heterogeneous. Overall, the relative integrated responses to the 28 degrees grating patches were also decreased when PTV cortex was inactivated. Thus, a substantial reduction in the CRF response and the largely unaffected spatial extent of the CRF as well as a weak surround effect observed in the present study are consistent with a multiplicative scaling effect.
Collapse
|
39
|
Sasaki H, Satoh S, Usui S. Neural implementation of coarse-to-fine processing in V1 simple neurons. Neurocomputing 2010. [DOI: 10.1016/j.neucom.2009.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Watakabe A, Komatsu Y, Sadakane O, Shimegi S, Takahata T, Higo N, Tochitani S, Hashikawa T, Naito T, Osaki H, Sakamoto H, Okamoto M, Ishikawa A, Hara SI, Akasaki T, Sato H, Yamamori T. Enriched expression of serotonin 1B and 2A receptor genes in macaque visual cortex and their bidirectional modulatory effects on neuronal responses. Cereb Cortex 2009; 19:1915-28. [PMID: 19056862 PMCID: PMC2705701 DOI: 10.1093/cercor/bhn219] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To study the molecular mechanism how cortical areas are specialized in adult primates, we searched for area-specific genes in macaque monkeys and found striking enrichment of serotonin (5-hydroxytryptamine, 5-HT) 1B receptor mRNA, and to a lesser extent, of 5-HT2A receptor mRNA, in the primary visual area (V1). In situ hybridization analyses revealed that both mRNA species were highly concentrated in the geniculorecipient layers IVA and IVC, where they were coexpressed in the same neurons. Monocular inactivation by tetrodotoxin injection resulted in a strong and rapid (<3 h) downregulation of these mRNAs, suggesting the retinal activity dependency of their expression. Consistent with the high expression level in V1, clear modulatory effects of 5-HT1B and 5-HT2A receptor agonists on the responses of V1 neurons were observed in in vivo electrophysiological experiments. The modulatory effect of the 5-HT1B agonist was dependent on the firing rate of the recorded neurons: The effect tended to be facilitative for neurons with a high firing rate, and suppressive for those with a low firing rate. The 5-HT2A agonist showed opposite effects. These results suggest that this serotonergic system controls the visual response in V1 for optimization of information processing toward the incoming visual inputs.
Collapse
Affiliation(s)
- Akiya Watakabe
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
- Department of Basic Biology, Graduate University for Advanced Studies, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Yusuke Komatsu
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Osamu Sadakane
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Satoshi Shimegi
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Toru Takahata
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Noriyuki Higo
- System Neuroscience Group, Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Shiro Tochitani
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
- Department of Basic Biology, Graduate University for Advanced Studies, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Tsutomu Hashikawa
- Laboratory for Neural Architecture, Brain Science Institute, RIKEN, Wako 351-0198, Japan
| | - Tomoyuki Naito
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Hironobu Osaki
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Hiroshi Sakamoto
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Masahiro Okamoto
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Ayako Ishikawa
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Shin-ichiro Hara
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Takafumi Akasaki
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Hiromichi Sato
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
- Department of Basic Biology, Graduate University for Advanced Studies, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
- National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
41
|
Inhibitory stabilization of the cortical network underlies visual surround suppression. Neuron 2009; 62:578-92. [PMID: 19477158 DOI: 10.1016/j.neuron.2009.03.028] [Citation(s) in RCA: 314] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 01/02/2009] [Accepted: 03/20/2009] [Indexed: 11/20/2022]
Abstract
In what regime does the cortical circuit operate? Our intracellular studies of surround suppression in cat primary visual cortex (V1) provide strong evidence on this question. Although suppression has been thought to arise from an increase in lateral inhibition, we find that the inhibition that cells receive is reduced, not increased, by a surround stimulus. Instead, suppression is mediated by a withdrawal of excitation. Thalamic recordings and previous work show that these effects cannot be explained by a withdrawal of thalamic input. We find in theoretical work that this behavior can only arise if V1 operates as an inhibition-stabilized network (ISN), in which excitatory recurrence alone is strong enough to destabilize visual responses but feedback inhibition maintains stability. We confirm two strong tests of this scenario experimentally and show through simulation that observed cell-to-cell variability in surround effects, from facilitation to suppression, can arise naturally from variability in the ISN.
Collapse
|
42
|
Okamoto M, Naito T, Sadakane O, Osaki H, Sato H. Surround suppression sharpens orientation tuning in the cat primary visual cortex. Eur J Neurosci 2009; 29:1035-46. [PMID: 19291228 DOI: 10.1111/j.1460-9568.2009.06645.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the primary visual cortex (V1), the response of a neuron to stimulation of its classical receptive field (CRF) is suppressed by concurrent stimulation of the extraclassical receptive field (ECRF), a phenomenon termed 'surround suppression'. It is also known that the orientation tuning of V1 neurons becomes sharper as the size of the stimulus increases beyond the CRF. However, there have been few quantitative investigations of the relationship between sharpening of orientation tuning and surround suppression. We examined this relationship in 73 V1 neurons recorded from anesthetized and paralysed cats using sinusoidal grating patches as stimuli. We found that sharpening of orientation tuning was significantly correlated with the strength of surround suppression for large stimuli that cover both CRF and ECRF. Furthermore, simulation analysis using a variety of tuning widths and most suppressive orientation of orientation-tuned surround suppression demonstrated that broadly orientation-tuned surround suppression sharpens orientation tuning for large gratings without shift in optimal orientation. Our findings suggest that one of the functional roles of surround suppression in V1 is enhancement of orientation discrimination for large and uniformly patterned objects.
Collapse
Affiliation(s)
- Masahiro Okamoto
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka, Japan
| | | | | | | | | |
Collapse
|
43
|
Casco C, Campana G, Han S, Guzzon D. Psychophysical and electrophysiological evidence of independent facilitation by collinearity and similarity in texture grouping and segmentation. Vision Res 2009; 49:583-93. [DOI: 10.1016/j.visres.2009.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 01/30/2009] [Accepted: 02/03/2009] [Indexed: 11/15/2022]
|
44
|
McDonald JS, Seymour KJ, Schira MM, Spehar B, Clifford CWG. Orientation-specific contextual modulation of the fMRI BOLD response to luminance and chromatic gratings in human visual cortex. Vision Res 2009; 49:1397-405. [PMID: 19167419 DOI: 10.1016/j.visres.2008.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 08/11/2008] [Accepted: 12/22/2008] [Indexed: 11/29/2022]
Abstract
The responses of orientation-selective neurons in primate visual cortex can be profoundly affected by the presence and orientation of stimuli falling outside the classical receptive field. Our perception of the orientation of a line or grating also depends upon the context in which it is presented. For example, the perceived orientation of a grating embedded in a surround tends to be repelled from the predominant orientation of the surround. Here, we used fMRI to investigate the basis of orientation-specific surround effects in five functionally-defined regions of visual cortex: V1, V2, V3, V3A/LO1 and hV4. Test stimuli were luminance-modulated and isoluminant gratings that produced responses similar in magnitude. Less BOLD activation was evident in response to gratings with parallel versus orthogonal surrounds across all the regions of visual cortex investigated. When an isoluminant test grating was surrounded by a luminance-modulated inducer, the degree of orientation-specific contextual modulation was no larger for extrastriate areas than for V1, suggesting that the observed effects might originate entirely in V1. However, more orientation-specific modulation was evident in extrastriate cortex when both test and inducer were luminance-modulated gratings than when the test was isoluminant; this difference was significant in area V3. We suggest that the pattern of results in extrastriate cortex may reflect a refinement of the orientation-selectivity of surround suppression specific to the colour of the surround or, alternatively, processes underlying the segmentation of test and inducer by spatial phase or orientation when no colour cue is available.
Collapse
Affiliation(s)
- J Scott McDonald
- School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
45
|
Sasaki H, Satoh S. Super resolution: another computational role of short-range horizontal connection in the primary visual cortex. Neural Netw 2009; 22:362-72. [PMID: 19150217 DOI: 10.1016/j.neunet.2008.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 08/21/2008] [Accepted: 12/16/2008] [Indexed: 10/21/2022]
Abstract
Recent physiological data related to the primary visual cortex (V1) have shown various contextual effects in the non-classical receptive field (nCRF). Contextual modulation, size tuning and altered sensitivity of orientation are typical examples of such contextual effects in the nCRF. These phenomena in the nCRF have been thought to be caused by short-range horizontal connection (SHC). However, SHC does not necessarily contribute only to these phenomena. These phenomena might be merely secondary phenomena by the fundamental role of SHC. In this paper, we specifically address the overcomplete properties in V1. Then the fundamental role of SHC is examined from image-processing points of view. Super resolution is proposed as a strong candidate for the fundamental role of SHC. Super resolution is an engineering method that obtains a high-resolution image from a low-resolution image(s). The distribution of SHC is deductively derived by adopting a reverse diffusion technique, which is one of various available super-resolution techniques. The spatial distribution of our proposed SHC is isotropic on the orientation map. This characteristic is consistent with physiological data. In addition to that, contextual modulation, size tuning and altered sensitivity of orientation in numerical experiments using our proposed SHC can be reproduced qualitatively. These results indicate that these phenomena are secondary phenomena by super-resolution processing.
Collapse
Affiliation(s)
- Hiroaki Sasaki
- Research Institute of Electrical Communication, Tohoku University, Japan.
| | | |
Collapse
|
46
|
Tanaka H, Ohzawa I. Surround suppression of V1 neurons mediates orientation-based representation of high-order visual features. J Neurophysiol 2008; 101:1444-62. [PMID: 19109456 DOI: 10.1152/jn.90749.2008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons with surround suppression have been implicated in processing high-order visual features such as contrast- or texture-defined boundaries and subjective contours. However, little is known regarding how these neurons encode high-order visual information in a systematic manner as a population. To address this issue, we have measured detailed spatial structures of classical center and suppressive surround regions of receptive fields of primary visual cortex (V1) neurons and examined how a population of such neurons allow encoding of various high-order features and shapes in visual scenes. Using a novel method to reconstruct structures, we found that the center and surround regions are often both elongated parallel to each other, reminiscent of on and off subregions of simple cells without surround suppression. These structures allow V1 neurons to extract high-order contours of various orientations and spatial frequencies, with a variety of optimal values across neurons. The results show that a wide range of orientations and widths of the high-order features are systematically represented by the population of V1 neurons with surround suppression.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Graduate School of Frontier Biosciences and School of Engineering Science, Osaka University, Osaka, Japan
| | | |
Collapse
|
47
|
Bardy C, Huang JY, Wang C, Fitzgibbon T, Dreher B. 'Top-down' influences of ipsilateral or contralateral postero-temporal visual cortices on the extra-classical receptive fields of neurons in cat's striate cortex. Neuroscience 2008; 158:951-68. [PMID: 18976693 DOI: 10.1016/j.neuroscience.2008.09.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/12/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022]
Abstract
In anesthetized and immobilized domestic cats, we have studied the effects of brief reversible inactivation (by cooling to 10 degrees C) of the ipsilateral or contralateral postero-temporal visual (PTV) cortices on: 1) the magnitude of spike-responses of neurons in striate cortex (cytoarchitectonic area 17, area V1) to optimized sine-wave modulated contrast-luminosity gratings confined to the classical receptive fields (CRFs) and 2) the relative strengths of modulation of CRF-induced spike-responses by gratings extending into the extra-classical receptive field (ECRF). Consistent with our previous reports (Bardy et al., 2006; Huang et al., 2007), inactivation of ipsilateral PTV cortex (presumed homologue of primate infero-temporal cortex) resulted in significant reversible changes (almost all substantial reductions) in the magnitude of spike-responses to CRF-confined stimuli in about half of the V1 neurones. Similarly, in half of the present sample, inactivation of ipsilateral PTV cortex resulted in significant reversible changes (in over 70% of cases, reduction) in the relative strength of ECRF modulation of the CRF-induced spike-responses. By contrast, despite the fact that receptive fields of all V1 cells tested were located within 5 degrees of representation of the zero vertical meridian, inactivation of contralateral PTV cortex only rarely resulted in significant (yet invariably small) changes in the magnitude of spike-responses to CRF-confined stimuli or significant (again invariably small) changes in the relative strength of ECRF modulation of spike-responses. Thus, the ipsilateral, but not contralateral, 'higher-order' visual cortical areas make significant contribution not only to the magnitude of CRF-induced spike-responses but also to the relative strengths of ECRF-induced modulation of the spike-responses of V1 neurons. Therefore, the feedback signals originating from the ipsilateral higher-order cortical areas appear to make an important contribution to contextual modulation of responses of neurons in the primary visual cortices.
Collapse
Affiliation(s)
- C Bardy
- Discipline of Anatomy and Histology, School of Medical Sciences and Bosch Institute (F13), The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
48
|
Schmid AM. The processing of feature discontinuities for different cue types in primary visual cortex. Brain Res 2008; 1238:59-74. [PMID: 18771659 DOI: 10.1016/j.brainres.2008.08.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 08/11/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
This study examines whether neurons in the primary visual cortex (V1) of the cat (also referred to as area 17) are sensitive to boundaries that are delineated by a difference in features other than luminance contrast. Most research on this issue has concentrated on the responses to texture borders (e.g. 'illusory contours') and has found neurons that are sensitive to such borders in V2 and to a lesser extent in V1. Here neurons in cat area 17 (V1) were exposed to borders that were oblique to the orientation preference of the neuron and that were created by differences in phase, orientation or direction of motion of two drifting sinewave gratings. Nearby phase borders evoked increased firing in 15 out of 98 neurons, orientation borders in 18 out of 98, and direction borders in 15 out of 70 neurons recorded in area 17 (V1) of anesthetized cats. The firing rates of these neurons were enhanced when a feature border was presented close to their receptive field, partly independent of the cue involved. Control experiments with a contrast border showed that the enhanced firing was due to a release of suppression rather than facilitation. A conceptual model is presented that can describe the data and uncovers a peculiarity of the phase domain compared to the orientation and direction domain. The model unifies the knowledge gained here about orientation-specific center-surround interactions, contextual effects, and end-stopping. The data and model suggest that these phenomena are part of a single mechanism that enables the brain to detect feature discontinuities across a range of features.
Collapse
Affiliation(s)
- Anita M Schmid
- Institute of Neuroinformatics, ETH Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
49
|
Naito T, Sadakane O, Okamoto M, Sato H. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat. Neuroscience 2007; 149:962-75. [DOI: 10.1016/j.neuroscience.2007.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2006] [Revised: 06/28/2007] [Accepted: 08/29/2007] [Indexed: 11/27/2022]
|
50
|
Shen ZM, Xu WF, Li CY. Cue-invariant detection of centre-surround discontinuity by V1 neurons in awake macaque monkey. J Physiol 2007; 583:581-92. [PMID: 17599965 PMCID: PMC2277020 DOI: 10.1113/jphysiol.2007.130294] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Visual perception of an object depends on the discontinuity between the object and its background, which can be defined by a variety of visual features, such as luminance, colour and motion. While human object perception is largely cue invariant, the extent to which neural mechanisms in the primary visual cortex contribute to cue-invariant perception has not been examined extensively. Here we report that many V1 neurons in the awake monkey are sensitive to the stimulus discontinuity between their classical receptive field (CRF) and non-classical receptive field (nCRF) regardless of the visual feature that defines the discontinuity. The magnitude of this sensitivity is strongly dependent on the strength of nCRF suppression of the cell. These properties of V1 neurons may contribute significantly to cue-invariant object perception.
Collapse
Affiliation(s)
- Zhi-Ming Shen
- Institute of Neuroscience, Key Laboratory for Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | | | |
Collapse
|