Roy SB. First order magneto-structural phase transition and associated multi-functional properties in magnetic solids.
JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013;
25:183201. [PMID:
23598463 DOI:
10.1088/0953-8984/25/18/183201]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We show that the first order magneto-structural phase transitions observed in various classes of magnetic solids are often accompanied by useful multi-functional properties, namely giant magneto-resistance, magneto-caloric effect and magneto-striction. We highlight various characteristic features associated with a disorder influenced first order phase transition namely supercooling, superheating, phase-coexistence and metastability, in several magnetic materials and discuss how a proper understanding of the transition process can help in fine tuning of the accompanied functional properties. Magneto-elastic coupling is a key element in this first order phase transition, and methods need to be explored for maximizing the contributions from both the lattice and the magnetic degree of freedom while simultaneously minimizing the thermomagnetic hysteresis loss. An analogy is also drawn with the first order phase transition observed in dielectric materials and vortex matter of type-II superconductors.
Collapse