1
|
Abotsi EE, Panagodage Y, English M. Plant-based seafood alternatives: Current insights on the nutrition, protein-flavour interactions, and the processing of these foods. Curr Res Food Sci 2024; 9:100860. [PMID: 39381133 PMCID: PMC11460494 DOI: 10.1016/j.crfs.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024] Open
Abstract
Fish are an important food source; however, the sustainability of current seafood supplies is a major concern for key stakeholders. The development of plant-based seafood alternatives may be suitable products to alleviate some of the pressures on aquatic ecosystems and help support environmental sustainability. However, the wide-spread adoption of these products weighs heavily on the ingredients used in the formulations which should not only satisfy nutritional and sustainability targets but must also meet consumer approval and functionality. In this review, we highlight recent advances in our understanding of the nutritional quality and sensory challenges in particular flavour (which includes taste and aroma), that have so far proven difficult to overcome in the development of plant-based seafood alternatives. Protein interactions that contribute to flavour development in plant-based seafood alternatives and the factors that impact these interactions are also discussed. We also review the recent advances in the innovative technologies used to improve the texture of products in this emerging food category. Finally, we highlight key areas for targeted research to advance the development of this growing segment of food products.
Collapse
Affiliation(s)
- Enoch Enorkplim Abotsi
- Boreal Ecosystems, Grenfell Campus, Memorial University of Newfoundland, Newfoundland, Canada
| | - Yashodha Panagodage
- Department of Human Nutrition, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Marcia English
- Department of Human Nutrition, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| |
Collapse
|
2
|
Li Q, Hu H, Tan X, Wang J, Mei R, Jiang F, Ling Y, Li X. Effects of Storage in an Active and Spontaneous Controlled O 2/CO 2 Atmosphere on Volatile Flavor Components and the Microbiome of Truffles. ACS OMEGA 2024; 9:9331-9347. [PMID: 38434872 PMCID: PMC10905597 DOI: 10.1021/acsomega.3c08375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
This study explored the potential to improve the storage quality and prolong the shelf life of truffles by storing them in a modified atmosphere fresh-keeping box with sealed gas components of Active Modified Atmosphere Packaging (AMAP, 40% O2 + 60% CO2) at 4 °C. During the storage period, a total of 63 volatile components in 10 categories were detected, with aldehydes being the most abundant and the relative content of ethers being the highest. The relative odor activity value and principal component analysis revealed that isovaleraldehyde, 1-octen-3-ol, 1-octen-3-one, and dimethyl sulfide were the characteristic flavor components of fresh truffles. However, 3-methylthiopropionaldehyde and (E, E)-2,4-nonadienal were the components that caused the deterioration of truffle flavor and could potentially serve as markers of truffle decay characteristics. 16S rDNA high-throughput sequencing showed that Leuconostoc and Lactococcus were dominant in the truffle samples stored for 14 days, but the abundance of putrefactive pathogenic bacteria showed an increasing trend in the truffle samples stored for 28 days. During the whole storage period, the common fungi detected in the different treatment groups were Candida and Aspergillus. The relative abundance of the former decreased, while the relative abundance of the latter decreased initially and then increased. The correlation between volatile components and the microbial flora was further analyzed, which indicated that Lactococcus and Lactobacillus had the same contributions to the same flavor, while Pseudomonas and Glutamicibacter had the opposite contributions to the same flavor. The results provide a reference for the storage and preservation of truffles.
Collapse
Affiliation(s)
- Qiang Li
- School of Food and Biological
Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Haiyang Hu
- School of Food and Biological
Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Xingyi Tan
- School of Food and Biological
Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Jianhui Wang
- School of Food and Biological
Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Ruhuai Mei
- School of Food and Biological
Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Fangguo Jiang
- School of Food and Biological
Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Yunkun Ling
- School of Food and Biological
Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Xiang Li
- School of Food and Biological
Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| |
Collapse
|
3
|
Wang L, Liu X, Chen W, Sun Z. Studies on the Inhibition Mechanism of Linalyl Alcohol against the Spoilage Microorganism Brochothrix thermosphacta. Foods 2024; 13:244. [PMID: 38254545 PMCID: PMC10814832 DOI: 10.3390/foods13020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 01/24/2024] Open
Abstract
The aim of this study was to investigate the bacterial inhibitory ability and mechanism of action of linalyl alcohol against B. thermosphacta. Linalyl alcohol causes the leakage of intracellular material by disrupting the cell wall and exposing the hydrophobic phospholipid bilayer, which binds to bacterial membrane proteins and alters their structure. In addition, linalyl alcohol causes cell membrane damage by affecting fatty acids and proteins in the cell membrane. By inhibiting the synthesis of macromolecular proteins, the normal physiological functions of the bacteria are altered. Linalyl alcohol binds to DNA in both grooved and embedded modes, affecting the normal functioning of B. thermosphacta, as demonstrated through a DNA interaction analysis.
Collapse
Affiliation(s)
| | | | | | - Zhichang Sun
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (L.W.); (X.L.); (W.C.)
| |
Collapse
|
4
|
Moser B, Steininger-Mairinger T, Jandric Z, Zitek A, Scharl T, Hann S, Troyer C. Spoilage markers for freshwater fish: A comprehensive workflow for non-targeted analysis of VOCs using DHS-GC-HRMS. Food Res Int 2023; 172:113123. [PMID: 37689889 DOI: 10.1016/j.foodres.2023.113123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Changes of volatile organic compounds (VOCs) patterns during 6 days of storage at +4 °C were investigated in different freshwater fish species, namely carp and trout, using dynamic headspace gas chromatography time-of-flight mass spectrometry (DHS-GC-TOFMS). DHS parameters were systematically optimized to establish optimum extraction and pre-concentration of VOCs. Moreover, different sample preparation methods were tested: mincing with a manual meat grinder, as well as mincing plus homogenization with a handheld homogenizer both without and with water addition. The addition of water during sample preparation led to pronounced changes of the volatile profiles, depending on the molecular structure and lipophilicity of the analytes, resulting in losses of up to 98 % of more lipophilic compounds (logP > 3). The optimized method was applied to trout and carp. Trout samples of different storage days were compared using univariate (Mann-Whitney U test, fold change calculation) and multivariate (OPLS-DA) statistics. 37 potential spoilage markers were selected; for 11 compounds identity could be confirmed via measurement of authentic standards and 10 compounds were identified by library spectrum match. 22 compounds were also found to be statistically significant spoilage markers in carp. Merging results of the different statistical approaches, the list of 37 compounds could be narrowed down to the 14 most suitable for trout spoilage assessment. This study comprises a systematic evaluation of the capabilities of DHS-GC coupled to high-resolution (HR) MS for studying spoilage in different freshwater fish species, including a comprehensive data evaluation workflow.
Collapse
Affiliation(s)
- Bernadette Moser
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria; FFoQSI GmbH, Technopark 1D, 3430 Tulln an der Donau, Austria
| | - Teresa Steininger-Mairinger
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Zora Jandric
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria; VinoStellar OG, Keplerplatz 13, Vienna, Austria
| | - Andreas Zitek
- FFoQSI GmbH, Technopark 1D, 3430 Tulln an der Donau, Austria
| | - Theresa Scharl
- University of Natural Resources and Life Sciences, Department of Landscape, Spatial and Infrastructure Sciences, Institute of Statistics, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - Stephan Hann
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria; FFoQSI GmbH, Technopark 1D, 3430 Tulln an der Donau, Austria
| | - Christina Troyer
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
5
|
Stupar J, Hoel S, Strømseth S, Lerfall J, Rustad T, Jakobsen AN. Selection of lactic acid bacteria for biopreservation of salmon products applying processing-dependent growth kinetic parameters and antimicrobial mechanisms. Heliyon 2023; 9:e19887. [PMID: 37810133 PMCID: PMC10559289 DOI: 10.1016/j.heliyon.2023.e19887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Biopreservation using lactic acid bacteria (LAB) is a promising technology to prevent the growth of pathogenic microorganisms in fresh and mildly processed food. The main aim of this study was to select LAB, originally isolated from ready-to-eat (RTE) seafood, for biopreservation of fresh salmon and processed salmon products. Ten LAB strains (five Carnobacterium and five Leuconostoc) were selected based on previously demonstrated bioprotective properties to investigate their antimicrobial mechanisms and temperature-dependent growth kinetics in a sterile salmon juice model system. Furthermore, five strains (three Carnobacterium and two Leuconostoc) were selected to test process-dependent growth kinetic parameters relevant to the secondary processing of salmon. Two strains (Carnobacterium maltaromaticum 35 and C. divergens 468) showed bacteriocin-like activity against Listeria innocua, while inhibitory effect of cell-free supernatants (CFS) was not observed against Escherichia coli. All selected strains were able to grow in sterile salmon juice at tested temperatures (4, 8, 12 and 16 °C), with specific growth rates (μ) ranging from 0.01 to 0.04/h at 4 °C and reaching a maximum population density of 8.4-9 log CFU/ml. All five strains tested for process-dependent growth kinetic parameters were able to grow in the range of 0.5-5% NaCl and 0.13-0.26% purified condensed smoke (VTABB and JJT01), with inter- and intraspecies variation in growth kinetics. According to the temperature-dependent growth kinetics and antimicrobial assay results, two strains, Leuconostoc mesenteroides 68 (Le.m.68) and C. divergens 468 (C d.468), were selected for in situ test to validate their ability to grow in vacuum-packed fresh salmon at 4 °C. Both strains were able to grow at maximum growth rates of 0.29 ± 0.04/d for Le. m.68 and 0.39 ± 0.06/d for C.d.468, and their final concentrations were 7.91 ± 0.31 and 8.02 ± 0.25 log CFU/g, respectively. This study shows that LAB, originally isolated from RTE seafood, have promising potential as bioprotective strains in fresh and processed salmon products.
Collapse
Affiliation(s)
- Jelena Stupar
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| | - Sunniva Hoel
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| | - Sigrid Strømseth
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| | - Jørgen Lerfall
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| | - Turid Rustad
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| | - Anita Nordeng Jakobsen
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| |
Collapse
|
6
|
Pellegrini M, Barbieri F, Montanari C, Iacumin L, Bernardi C, Gardini F, Comi G. Microbial Spoilage of Traditional Goose Sausages Produced in a Northern Region of Italy. Microorganisms 2023; 11:1942. [PMID: 37630502 PMCID: PMC10459116 DOI: 10.3390/microorganisms11081942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Recently, during the ripening of goose sausage, a defect consisting of ammonia and vinegar smell was noticed. The producer of the craft facility, located in Lombardia, a Northern region of Italy, asked us to identify the cause of that defect. Therefore, this study aimed to identify the potential responsible agents for the spoilage of this lot of goose sausages. Spoilage was first detected by sensory analysis using the "needle probing" technique; however, the spoiled sausages were not marketable due to the high ammonia and vinegar smell. The added starter culture did not limit or inhibit the spoilage microorganisms, which were represented by Levilactobacillus brevis, the predominant species, and by Enterococcus faecalis and E. faecium. These microorganisms grew during ripening and produced a large amount of biogenic amines, which could represent a risk for consumers. Furthermore, Lev. brevis, being a heterofermentative lactic acid bacteria (LAB), also produced ethanol, acetic acid, and a variation in the sausage colour. The production of biogenic amines was confirmed in vitro. Furthermore, as observed in a previous study, the second cause of spoilage can be attributed to moulds which grew during ripening; both the isolated strains, Penicillium nalgiovense, added as a starter culture, and P. lanosocoeruleum, present as an environmental contaminant, grew between the meat and casing, producing a large amount of total volatile nitrogen, responsible for the ammonia smell perceived in the ripening area and in the sausages. This is the first description of Levilactobacillus brevis predominance in spoiled goose sausage.
Collapse
Affiliation(s)
- Michela Pellegrini
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (M.P.); (L.I.)
| | - Federica Barbieri
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (F.B.); (C.M.); (F.G.)
| | - Chiara Montanari
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (F.B.); (C.M.); (F.G.)
| | - Lucilla Iacumin
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (M.P.); (L.I.)
| | - Cristian Bernardi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 20122 Lodi, Italy;
| | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (F.B.); (C.M.); (F.G.)
| | - Giuseppe Comi
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (M.P.); (L.I.)
| |
Collapse
|
7
|
Shang X, Wei Y, Guo X, Lei Y, Deng X, Zhang J. Dynamic Changes of the Microbial Community and Volatile Organic Compounds of the Northern Pike ( Esox lucius) during Storage. Foods 2023; 12:2479. [PMID: 37444217 DOI: 10.3390/foods12132479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, the quality (sensory evaluation, microbial enumerate, color, tvb-n (total volatile basic nitrogen), tca-soluble peptide (trichloroacetic acid-soluble peptide), muscle glucose, lactate, total sugar, Bas (Biogenic amines), VOCs (volatile organic compounds) and the microbial dynamic structure in samples stored at 4 °C were evaluated, and the relationship between VOCs and the diversity structure of microorganisms was also discussed. It was determined by sensory evaluation that the shelf life of samples was around 8 days. Protein and sugar were detected in large quantities by microorganisms in the later stage. At the same time, this also caused a large amount of Bas (biogenic amines) (tyramine, cadaverine, and putrescine). According to high-throughput amplicon sequencing, the initial microbiota of samples was mainly composed of Pseudomonas, Acinetobacter, Planifilum, Vagococcus, Hafnia, Mycobacterium, Thauera, and Yersinia. Among them, Pseudomonas was the most advantageous taxon of samples at the end of the shelf life. The minor fraction of the microbial consortium consisting of Vagococcus, Acinetobacter and Myroides was detected. The substances 3-methyl-1-butanol, ethyl acetate, and acetone were the main volatile components. The glucose, lactic acid, and total sugar were negatively correlated with Yersinia, Hafnia-Obesumbacterium, Thauera, Mycobacterium, and Planifilum; the proportion of these microorganisms was relatively high in the early stage. TVB-N and TCA-soluble peptides were positively correlated with Pseudomonas, Shewanella, Brochothrix, Vagococcus, Myroides, and Acinetobacter, and these microorganisms increased greatly in the later stage. The substance 3-methyl-1-butanol was positively correlated with Pseudomonas and negatively correlated with Mycobacterium. Ethyl acetate was associated with Hafnia-Obesumbacterium, Thauera, and Yersinia. Acetone was positively correlated with Acinetobacter.
Collapse
Affiliation(s)
- Xuejiao Shang
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and Ministerial Cooperation), School of Food Science and Technology Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| | - Yabo Wei
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and Ministerial Cooperation), School of Food Science and Technology Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| | - Xin Guo
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and Ministerial Cooperation), School of Food Science and Technology Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| | - Yongdong Lei
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and Ministerial Cooperation), School of Food Science and Technology Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| | - Xiaorong Deng
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and Ministerial Cooperation), School of Food Science and Technology Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and Ministerial Cooperation), School of Food Science and Technology Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| |
Collapse
|
8
|
Effect of High Hydrostatic Pressure Processing on the Microbiological Quality and Bacterial Diversity of Sous-Vide-Cooked Cod. Foods 2023; 12:foods12061206. [PMID: 36981133 PMCID: PMC10047930 DOI: 10.3390/foods12061206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
High hydrostatic pressure (HP) is a promising method to improve the microbiological quality of sous-vide foods. Monitoring the composition and behavior of the microbial communities in foods is of most importance for the production of high-quality and safe products. High-throughput sequencing (HTS) provides advanced approaches to determine food’s microbial community composition and structure. The aim of the present study was to determine the impact of different HP treatments on the microbial load and bacterial diversity of sous-vide Atlantic cod. Sous-vide cooking at 57.1 °C for 30 min followed by HP treatment at 500 MPa for 8 min reduced viable cell counts (total aerobic mesophiles) in the cod samples below detectable levels for 45 days of storage under refrigeration. In a second trial with cod cooked sous-vide at 52 °C for 20 min followed by HP treatments at 300 or 600 MPa (with HP treatment temperatures of 22 °C or 50 °C for 4 or 8 min, depending on treatment), only the treatments at 600 MPa delayed bacterial growth for at least 30 days under refrigeration. The optimal HP conditions to improve the microbiological quality of sous-vide cod cooked at low temperatures were obtained at 600 MPa for 4 min at a pressurization temperature of 50 °C. Bacterial diversity was studied in cod cooked sous-vide at 52 °C for 20 min by HTS. In the absence of HP treatment, Proteobacteria was the main bacterial group. A succession of Pseudomonadaceae (Pseudomonas) and Enterobacteriaceae was observed during storage. Firmicutes had low relative abundances and were represented mainly by Anoxybacillus (early storage) and Carnobacterium (late storage). The HP-treated sous-vide cod showed the greatest differences from controls during late storage, with Aerococcus and Enterococcus as predominant groups (depending on the HP conditions). The application of HTS provided new insights on the diversity and dynamics of the bacterial communities of sous-vide cod, revealing the presence of bacterial genera not previously described in this food, such as Anoxybacillus. The significance of Anoxybacillus as a contaminant of seafoods should be further investigated.
Collapse
|
9
|
Exploring the Diversity of Biofilm Formation by the Food Spoiler Brochothrix thermosphacta. Microorganisms 2022; 10:microorganisms10122474. [PMID: 36557727 PMCID: PMC9785830 DOI: 10.3390/microorganisms10122474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Brochothrix thermosphacta is considered as a major spoiler of meat and seafood products. This study explores the biofilm formation ability and the biofilm structural diversity of 30 multi-origin B. thermosphacta strains using a set of complementary biofilm assays (biofilm ring test, crystal violet staining, and confocal laser scanning microscopy). Two major groups corresponding to low and high biofilm producers were identified. High biofilm producers presented flat architectures characterized by high surface coverage, high cell biovolume, and high surface area.
Collapse
|
10
|
Sánchez-Parra M, Lopez A, Muñoz-Redondo JM, Montenegro-Gómez JC, Pérez-Aparicio J, Pereira-Caro G, Rodríguez-Solana R, Moreno-Rojas JM, Ordóñez-Díaz JL. Study of the influence of the fishing season and the storage temperature in the fishing vessel on the biogenic amine and volatile profiles in fresh yellowfin tuna (Thunnus albacares) and dry-cured mojama. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Weihe T, Wagner R, Schnabel U, Andrasch M, Su Y, Stachowiak J, Noll HJ, Ehlbeck J. Microbial Control of Raw and Cold-Smoked Atlantic Salmon ( Salmo salar) through a Microwave Plasma Treatment. Foods 2022; 11:3356. [PMID: 36359968 PMCID: PMC9655028 DOI: 10.3390/foods11213356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 09/08/2024] Open
Abstract
The control of the pathogenic load on foodstuffs is a key element in food safety. Particularly, seafood such as cold-smoked salmon is threatened by pathogens such as Salmonella sp. or Listeria monocytogenes. Despite strict existing hygiene procedures, the production industry constantly demands novel, reliable methods for microbial decontamination. Against that background, a microwave plasma-based decontamination technique via plasma-processed air (PPA) is presented. Thereby, the samples undergo two treatment steps, a pre-treatment step where PPA is produced when compressed air flows over a plasma torch, and a post-treatment step where the PPA acts on the samples. This publication embraces experiments that compare the total viable count (tvc) of bacteria found on PPA-treated raw (rs) and cold-smoked salmon (css) samples and their references. The tvc over the storage time is evaluated using a logistic growth model that reveals a PPA sensitivity for raw salmon (rs). A shelf-life prolongation of two days is determined. When cold-smoked salmon (css) is PPA-treated, the treatment reveals no further impact. When PPA-treated raw salmon (rs) is compared with PPA-untreated cold-smoked salmon (css), the PPA treatment appears as reliable as the cold-smoking process and retards the growth of cultivable bacteria in the same manner. The experiments are flanked by quality measurements such as color and texture measurements before and after the PPA treatment. Salmon samples, which undergo an overtreatment, solely show light changes such as a whitish surface flocculation. A relatively mild treatment as applied in the storage experiments has no further detected impact on the fish matrix.
Collapse
Affiliation(s)
- Thomas Weihe
- Leibniz-Institute for Plasma Science and Technology, 17489 Greifswald, Germany
| | - Robert Wagner
- Leibniz-Institute for Plasma Science and Technology, 17489 Greifswald, Germany
| | - Uta Schnabel
- Leibniz-Institute for Plasma Science and Technology, 17489 Greifswald, Germany
| | | | - Yukun Su
- Institute for Sports Science, University of Rostock, 18051 Rostock, Germany
| | - Jörg Stachowiak
- Leibniz-Institute for Plasma Science and Technology, 17489 Greifswald, Germany
| | | | - Jörg Ehlbeck
- Leibniz-Institute for Plasma Science and Technology, 17489 Greifswald, Germany
| |
Collapse
|
12
|
Feng H, Timira V, Zhao J, Lin H, Wang H, Li Z. Insight into the Characterization of Volatile Compounds in Smoke-Flavored Sea Bass ( Lateolabrax maculatus) during Processing via HS-SPME-GC-MS and HS-GC-IMS. Foods 2022; 11:2614. [PMID: 36076799 PMCID: PMC9455667 DOI: 10.3390/foods11172614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022] Open
Abstract
The present study aimed to ascertain how the volatile compounds changed throughout various processing steps when producing a smoke-flavored sea bass (Lateolabrax maculatus). The volatile compounds in different production steps were characterized by headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). A total of 85 compounds were identified, and 25 compounds that may be considered as potential key compounds were screened by principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). Results indicated that aldehydes were the major volatile compounds throughout the processing. The characteristic volatile compound in fresh samples was hexanol, and curing was an effective method to remove the fishy flavor. The concentration of volatile compounds was significantly higher in dried, smoked, and heated samples than in fresh and salted samples. Aldehydes accumulated because of the drying process, especially heptanal and hexanal. Smoke flavoring was an important stage in imparting smoked flavor, where phenols, furans and ketones were enriched, and heating leads to the breakdown of aldehydes and alcohols. This study will provide a theoretical basis for improving the quality of smoke-flavored sea bass products in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, China
| |
Collapse
|
13
|
Advances in the Formation and Control Methods of Undesirable Flavors in Fish. Foods 2022; 11:foods11162504. [PMID: 36010504 PMCID: PMC9407384 DOI: 10.3390/foods11162504] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Undesirable flavor formation in fish is a dynamic biological process, decreasing the overall flavor quality of fish products and impeding the sale of fresh fish. This review extensively summarizes chemical compounds contributing to undesirable flavors and their sources or formation. Specifically, hexanal, heptanal, nonanal, 1−octen−3−ol, 1−penten−3−ol, (E,E)−2,4−heptadienal, (E,E)−2,4−decadienal, trimethylamine, dimethyl sulfide, 2−methyl−butanol, etc., are characteristic compounds causing off−odors. These volatile compounds are mainly generated via enzymatic reactions, lipid autoxidation, environmentally derived reactions, and microbial actions. A brief description of progress in existing deodorization methods for controlling undesirable flavors in fish, e.g., proper fermenting, defatting, appropriate use of food additives, and packaging, is also presented. Lastly, we propose a developmental method regarding the multifunctional natural active substances made available during fish processing or packaging, which hold great potential in controlling undesirable flavors in fish due to their safety and efficiency in deodorization.
Collapse
|
14
|
Ekonomou S, Parlapani F, Kyritsi M, Hadjichristodoulou C, Boziaris I. Preservation status and microbial communities of vacuum-packed hot smoked rainbow trout fillets. Food Microbiol 2022; 103:103959. [DOI: 10.1016/j.fm.2021.103959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/05/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023]
|
15
|
Wang Z, de Jager LS, Begley T, Genualdi S. Large volume headspace GC/MS analysis for the identification of volatile compounds relating to seafood decomposition. Food Sci Nutr 2022; 10:1195-1210. [PMID: 35432958 PMCID: PMC9007289 DOI: 10.1002/fsn3.2751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/04/2022] Open
Abstract
Decomposition in seafood products in the United States is monitored by the Food and Drug Administration (FDA) laboratories using sensory testing, which requires highly trained analysts. A large‐volume headspace (LVHS) gas chromatography/mass spectrometry (GC/MS) method was developed to generate analytical results that can be directly compared to sensory evaluation. Headspace vapor was withdrawn from a 1‐L vial containing 50 g seafood sample using a large volume headspace autosampler. Various volatile compounds were collected simultaneously. Analytes were preconcentrated by a capillary column trapping system and then sent through a cryo‐focuser mounted onto the GC injector. A selected ion monitoring (SIM) MS acquisition method was used to selectively monitor 38 compounds of interest. Samples of red snapper, croaker, weakfish, mahi‐mahi, black tiger shrimp, yellowfin tuna, and sockeye salmon that have been assessed and scored by an FDA National Seafood Sensory Expert (NSSE) were used for method performance evaluation. Characteristic compounds potentially associated with seafood quality deterioration for each seafood species were identified by quantitative analysis using pooled matrix‐matched calibrations and two‐sample t‐test statistical analysis. Classification of fresh and decomposed samples was visualized on the analysis of variance (ANOVA)–principal component analysis (PCA) score plots. The results determined that the LVHS‐GC/MS technique appeared promising as a screening tool to identify compounds representative of sensory analysis.
Collapse
Affiliation(s)
- Zhengfang Wang
- Joint Institute for Food Safety and Applied Nutrition University of Maryland College Park Maryland USA
| | - Lowri S de Jager
- Center for Food Safety and Applied Nutrition Office of Regulatory Science U.S. Food and Drug Administration College Park Maryland USA
| | - Timothy Begley
- Center for Food Safety and Applied Nutrition Office of Regulatory Science U.S. Food and Drug Administration College Park Maryland USA
| | - Susan Genualdi
- Center for Food Safety and Applied Nutrition Office of Regulatory Science U.S. Food and Drug Administration College Park Maryland USA
| |
Collapse
|
16
|
Xuan Nguyen NT, Daniel P, Pilard JF, Cariou R, Gigout F, Leroi F. Antibacterial activity of plasma-treated polypropylene membrane functionalized with living Carnobacterium divergens in cold-smoked salmon. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Kim HH, Ryu SH, Jeong SM, Kang WS, Lee JE, Kim SR, XU X, Lee GH, Ahn DH. Effect of High Hydrostatic Pressure Treatment on Urease Activity and Inhibition of Fishy Smell in Mackerel ( Scomber japonicus) during Storage. J Microbiol Biotechnol 2021; 31:1684-1691. [PMID: 34961752 PMCID: PMC9705973 DOI: 10.4014/jmb.2106.06052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022]
Abstract
In this study, the physicochemical changes related to fishy smell were determined by storing high hydrostatic pressure (HHP)-treated mackerel (Scomber japonicus) meat in a refrigerator for 20 days. The inhibition of crude urease activity from Vibrio parahaemolyticus using HHP treatment was also investigated. The mackerel meat storage experiment demonstrated that production of trimethylamine (TMA) and volatile basic nitrogen (VBN), the main components of fishy smell, was significantly reduced on the 20th day of storage after the HHP treatment compared to the untreated mackerels. The results demonstrated that the increased ammonia nitrogen rates in the 2000, 3000, and 4000 bar, HHP-treated groups decreased by 23.8%, 23.8%, and 31.0%, respectively, compared to the untreated groups. The enzyme activity of crude urease was significantly reduced in the HHP-treated group compared to that in the untreated group. Measurement of the volatile organic compounds (VOCs) in mackerel meat during storage indicated that the content of ethanol, 2-butanone, 3-methylbutanal, and trans-2-pentenal, which are known to cause off-flavor due to spoilage, were significantly reduced by HHP treatment. Collectively, our results suggested that HHP treatment would be useful for inhibiting the activity of urease, thereby reducing the fishy smells from fish and shellfish.
Collapse
Affiliation(s)
- Han-Ho Kim
- Department of Food Science and Technology and Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Si-Hyeong Ryu
- Department of Food Science and Technology and Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - So-Mi Jeong
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Woo-Sin Kang
- Department of Food Science and Technology and Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Ji-Eun Lee
- Department of Food Science and Technology and Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Su-Ryong Kim
- Department of Food Science and Technology and Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Xiaotong XU
- Department of Food Science and Technology and Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Ga-Hye Lee
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Dong-Hyun Ahn
- Department of Food Science and Technology and Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
18
|
Jérôme M, Passerini D, Chevalier F, Marchand L, Leroi F, Macé S. Development of a rapid qPCR method to quantify lactic acid bacteria in cold-smoked salmon. Int J Food Microbiol 2021; 363:109504. [PMID: 34959088 DOI: 10.1016/j.ijfoodmicro.2021.109504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/14/2021] [Accepted: 12/12/2021] [Indexed: 01/11/2023]
Abstract
Quantification of lactic acid bacteria (LAB) is essential to control quality of seafood products like cold-smoked salmon (CSS). In the present study, we report the design and optimization of a dual-labelled TaqMan ™ probe targeting the V7 region of 16S rRNA gene for the detection of LAB in CSS. This quantitative PCR (qPCR) assays is useful for the simultaneous detection of the ten LAB genera communally encountered in CSS as Aerococcus, Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Macrococcus, Streptococcus, Vagococcus and Weissella. The specificity of this method was demonstrated against 14 genera (44 isolates, 35 species) of Gram-positive bacteria and 19 genera of Gram-negative (40 isolates, 34 species). Calibration of the method was performed in CSS matrix using a mix of equimolar cultured solution of five LAB. Quantification with the qPCR method range from 3.5 to 8.5 Log CFU/g in CSS matrix, covering 5 orders of magnitude. On these artificially contaminated CSS slices, PCR method results correlated successfully (R2 = 0.9945) with the conventional enumeration on Elliker medium. In addition, the new method was successful on commercial CSS from five different origins with a quantification range from 3.7 Log CFU/g to 8.0 Log CFU/g. This one-step quantitative methodology is proposed as a rapid and complementary tool of the cultural methods to investigate the LAB microbiota and biodiversity of CSS.
Collapse
Affiliation(s)
- Marc Jérôme
- IFREMER, BRM, EM(3)B Laboratory, F-44000 Nantes 3, France
| | | | | | | | | | - Sabrina Macé
- IFREMER, BRM, EM(3)B Laboratory, F-44000 Nantes 3, France.
| |
Collapse
|
19
|
Iacumin L, Cappellari G, Pellegrini M, Basso M, Comi G. Analysis of the Bioprotective Potential of Different Lactic Acid Bacteria Against Listeria monocytogenes in Cold-Smoked Sea Bass, a New Product Packaged Under Vacuum and Stored at 6 ± 2°C. Front Microbiol 2021; 12:796655. [PMID: 34987492 PMCID: PMC8721034 DOI: 10.3389/fmicb.2021.796655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
The aim of the work was to monitor the presence of Listeria monocytogenes in cold-smoked fish products (trout, salmon, and sea bass) marketed in Italy. Cold-smoked sea bass is a new product that has not yet been commercialized and was collected from the production facility. Monitoring data have shown that cold-smoked products can be contaminated by L. monocytogenes, the presence of which has been highlighted mainly by enrichment culture (presence in 25 g). The isolated Listeria were serotyped and belonged mainly to low-virulence serotypes (1/2c), followed by serotypes 1/2a, 1/2b, and 4b. Furthermore, considering the ability of L. monocytogenes to grow in these products due to their chemical-physical characteristics (pH > 6.0, Aw > 0.97) and long shelf life at 4°C, an additional aim was to verify the activity of different bioprotective starters, including Lactilactobacillus sakei (LAK-23, Sacco srl, Via Alessandro Manzoni 29/A, 22071 Cadorago, CO, Italy), Carnobacterium spp., Lacticaseibacillus casei (SAL 106), and Lacticaseibacillus paracasei (SAL 211), in cold-smoked sea bass. All starters were bacteriocin producers. For this experiment, smoked sea bass samples were intentionally inoculated with a mixture of three different strains of L. monocytogenes and of each starter culture. After inoculation, the smoked sea bass were vacuum-packed and stored at 6 ± 2°C for 60 days, simulating the typical abuse storage temperature of markets and home refrigerators. At 0, 15, 30, 45, and 60 days, the sea bass samples were analyzed to evaluate the effectiveness of the starters against L. monocytogenes. Listeria monocytogenes growth was prevented only by the addition of the LAK-23 starter. Indeed, at the end of the shelf life, the amount of L. monocytogenes observed was similar to that in the inoculum. Consequently, the use of this starter can allow the inclusion of cold-smoked sea bass or smoked fish products in category 1.3 of Regolamento CE 2073/2005, which are products that do not support the growth of this microorganism. Finally, the activity of the LAK-23 starter did not produce an off flavor or off odor in the smoked sea bass.
Collapse
Affiliation(s)
| | | | | | | | - Giuseppe Comi
- Department of Agricultural, Food, Environmental and Animal Science, Università degli Studi di Udine, Udine, Italy
| |
Collapse
|
20
|
Syropoulou F, Parlapani FF, Anagnostopoulos DA, Stamatiou A, Mallouchos A, Boziaris IS. Spoilage Investigation of Chill Stored Meagre ( Argyrosomus regius) Using Modern Microbiological and Analytical Techniques. Foods 2021; 10:3109. [PMID: 34945660 PMCID: PMC8702202 DOI: 10.3390/foods10123109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 11/18/2022] Open
Abstract
Spoilage status of whole and filleted chill-stored meagre caught in January and July was evaluated using sensory, microbiological, 16S metabarcoding and Volatile Organic Compounds (VOCs) analysis. Based on the sensory analysis, shelf-life was 15 and 12 days for the whole fish taken in January and July, respectively, while 7 days for fish fillets of both months. For the whole fish, Total Viable Counts (TVC) at the beginning of storage was 2.90 and 4.73 log cfu/g for fish caught in January and July respectively, while it was found about 3 log cfu/g in fish fillets of both months. The 16S metabarcoding analysis showed different profiles between the two seasons throughout the storage. Pseudomonas (47%) and Psychrobacter (42.5%) dominated in whole meagre of January, while Pseudomonas (66.6%) and Shewanella (10.5%) dominated in fish of July, at the end of shelf-life. Regarding the fillets, Pseudomonas clearly dominated at the end of shelf-life for both months. The volatile profile of meagre was predominated by alcohols and carbonyl compounds. After univariate and multivariate testing, we observed one group of compounds (trimethylamine, 3-methylbutanoic acid, 3-methyl-1-butanol) positively correlating with time of storage and another group with a declining trend (such as heptanal and octanal). Furthermore, the volatile profile seemed to be affected by the fish culturing season. Our findings provide insights into the spoilage mechanism and give information that helps stakeholders to supply meagre products of a high-quality level in national and international commerce.
Collapse
Affiliation(s)
- Faidra Syropoulou
- Laboratory of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (F.S.); (F.F.P.); (D.A.A.)
| | - Foteini F. Parlapani
- Laboratory of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (F.S.); (F.F.P.); (D.A.A.)
| | - Dimitrios A. Anagnostopoulos
- Laboratory of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (F.S.); (F.F.P.); (D.A.A.)
| | - Anastasios Stamatiou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Athanasios Mallouchos
- Laboratory of Food Chemistry and Analysis, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Ioannis S. Boziaris
- Laboratory of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (F.S.); (F.F.P.); (D.A.A.)
| |
Collapse
|
21
|
Wiernasz N, Gigout F, Cardinal M, Cornet J, Rohloff J, Courcoux P, Vigneau E, Skírnisdottír S, Passerini D, Pilet MF, Leroi F. Effect of the Manufacturing Process on the Microbiota, Organoleptic Properties and Volatilome of Three Salmon-Based Products. Foods 2021; 10:foods10112517. [PMID: 34828798 PMCID: PMC8623285 DOI: 10.3390/foods10112517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023] Open
Abstract
Lightly preserved seafood products, such as cold-smoked fish and fish gravlax, are traditionally consumed in Europe and are of considerable economic importance. This work aimed to compare three products that were obtained from the same batch of fish: cold-smoked salmon (CSS) stored under vacuum packaging (VP) or a modified atmosphere packaging (MAP) and VP salmon dill gravlax (SG). Classical microbiological analyses and 16S rRNA metabarcoding, biochemical analyses (trimethylamine, total volatile basic nitrogen (TVBN), biogenic amines, pH, volatile organic compounds (VOCs)) and sensory analyses (quantitative descriptive analysis) were performed on each product throughout their storage at a chilled temperature. The three products shared the same initial microbiota, which were mainly dominated by Photobacterium, Lactococcus and Lactobacillus genera. On day 28, the VP CSS ecosystem was mainly composed of Photobacterium and, to a lesser extent, Lactococcus and Lactobacillus genera, while Lactobacillus was dominant in the MAP CSS. The diversity was higher in the SG, which was mainly dominated by Enterobacteriaceae, Photobacterium, Lactobacillus and Lactococcus. Although the sensory spoilage was generally weak, gravlax was the most perishable product (slight increase in amine and acidic off-odors and flavors, fatty appearance, slight discoloration and drop in firmness), followed by the VP CSS, while the MAP CSS did not spoil. Spoilage was associated with an increase in the TVBN, biogenic amines and spoilage associated VOCs, such as decanal, nonanal, hexadecanal, benzaldehyde, benzeneacetaldehyde, ethanol, 3-methyl-1-butanol, 2,3-butanediol, 1-octen-3-ol, 2-butanone and 1-octen-3-one. This study showed that the processing and packaging conditions both had an effect on the microbial composition and the quality of the final product.
Collapse
Affiliation(s)
- Norman Wiernasz
- IFREMER, BRM, EM3B Laboratory, F-44300 Nantes, France; (N.W.); (F.G.); (M.C.); (J.C.); (D.P.)
- UMR 1014, Secalim, INRAE, Oniris, 44307 Nantes, France;
| | - Frédérique Gigout
- IFREMER, BRM, EM3B Laboratory, F-44300 Nantes, France; (N.W.); (F.G.); (M.C.); (J.C.); (D.P.)
| | - Mireille Cardinal
- IFREMER, BRM, EM3B Laboratory, F-44300 Nantes, France; (N.W.); (F.G.); (M.C.); (J.C.); (D.P.)
| | - Josiane Cornet
- IFREMER, BRM, EM3B Laboratory, F-44300 Nantes, France; (N.W.); (F.G.); (M.C.); (J.C.); (D.P.)
| | - Jens Rohloff
- NTNU, Department of Biology, 7491 Trondheim, Norway;
| | | | | | - Sigurlaug Skírnisdottír
- Matıs, Research and Innovation, Exploitation and Utilization of Genetic Resources, 101-155 Reykjavik, Iceland;
| | - Delphine Passerini
- IFREMER, BRM, EM3B Laboratory, F-44300 Nantes, France; (N.W.); (F.G.); (M.C.); (J.C.); (D.P.)
| | | | - Françoise Leroi
- IFREMER, BRM, EM3B Laboratory, F-44300 Nantes, France; (N.W.); (F.G.); (M.C.); (J.C.); (D.P.)
- Correspondence:
| |
Collapse
|
22
|
Li X, Xiong Q, Zhou H, Xu B, Sun Y. Analysis of Microbial Diversity and Dynamics During Bacon Storage Inoculated With Potential Spoilage Bacteria by High-Throughput Sequencing. Front Microbiol 2021; 12:713513. [PMID: 34650526 PMCID: PMC8506151 DOI: 10.3389/fmicb.2021.713513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022] Open
Abstract
Staphylococcus xylosus, Leuconostoc mesenteroides, Carnobacterium maltaromaticum, Leuconostoc gelidum, and Serratia liquefaciens were investigated for their roles in in the spoilage of sterilized smoked bacon. These five strains, individually and in combination, were applied as starters on sliced bacon at 4–5 log10 CFU/g using a hand-operated spraying bottle and stored for 45 days at 0–4°C. Dynamics, diversity, and succession of microbial community during storage of samples were studied by high-throughput sequencing (HTS) of the V3–V4 region of the 16S rRNA gene. A total of 367 bacterial genera belonging to 21 phyla were identified. Bacterial counts in all the inoculated specimens increased significantly within the first 15 days while the microbiota developed into more similar communities with increasing storage time. At the end of the storage time, the highest abundance of Serratia (96.46%) was found in samples inoculated with S. liquefaciens. Similarly, for samples inoculated with C. maltaromaticum and L. mesenteroides, a sharp increase in Carnobacterium and Leuconostoc abundance was observed as they reached a maximum relative abundance of 97.95 and 81.6%, respectively. Hence, these species were not only the predominant ones but could also have been the more competitive ones, potentially inhibiting the growth of other microorganisms. By analyzing the bacterial load of meat products using the SSO model, the relationships between the microbial communities involved in spoilage can be understood to assist further research.
Collapse
Affiliation(s)
- Xinfu Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Qiang Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hui Zhou
- School of Food Science and Biology Engineering, Hefei University of Technology, Hefei, China
| | - Baocai Xu
- School of Food Science and Biology Engineering, Hefei University of Technology, Hefei, China
| | - Yun Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
23
|
Fan Y, Odabasi A, Sims CA, Schneider KR, Gao Z, Sarnoski PJ. Determination of aquacultured whiteleg shrimp (Litopanaeus vannemei) quality using a sensory method with chemical standard references. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5236-5244. [PMID: 33611806 DOI: 10.1002/jsfa.11172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/14/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Fresh shrimp are highly perishable seafood and a reliable spoilage assessment method is necessary to ensure sufficient quality control. The current quality evaluation method employed by the US Food and Drug Administration (FDA)/National Oceanic and Atmospheric Administration (NOAA) uses subjective terms 'odor of decomposition' to reject shrimp shipments, which lacks reference standards to anchor the concept and can cause ambiguity. The present study aimed to develop chemical reference standards to assist in a more objective and consistent sensory evaluation of shrimp quality. RESULTS Chemical references were developed and used by the descriptive panel to demonstrate the aroma quality indicators of shrimp. The most important aroma attributes describing shrimp quality changes were 'salty water-like', 'natto water-like' and 'sour milk-like' based on the results of multiple linear regression analysis. The overall rating consistency of the key quality indicators was confirmed by trained a descriptive panel such that the intensity scores in two separated evaluation sessions (30 days apart) were not significant different (P > 0.05). The sensory ratings also corresponded well with presumed FDA/NOAA grades of shrimp. An untrained panel also confirmed 'salty water-like' as the main indicator of freshness and 'natto water-like' as the main indicator of spoilage, whereas the discriminative capacity was lower compared to the trained panel. CONCLUSION The developed chemical references of key aroma quality indicators allowed the trained and untrained panels to distinguish shrimp of different freshness levels. The results indicate the potential of using chemical references as a new evaluation tool for on-site quality inspection or industrial quality assurance/quality control of shrimp with improved objectivity and consistency. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Fan
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Asli Odabasi
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Charles A Sims
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Keith R Schneider
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Zhifeng Gao
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
- Department of Food and Resource Economics, University of Florida, Gainesville, FL, USA
| | - Paul J Sarnoski
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| |
Collapse
|
24
|
Bouju-Albert A, Saltaji S, Dousset X, Prévost H, Jaffrès E. Quantification of Viable Brochothrix thermosphacta in Cold-Smoked Salmon Using PMA/PMAxx-qPCR. Front Microbiol 2021; 12:654178. [PMID: 34335490 PMCID: PMC8316974 DOI: 10.3389/fmicb.2021.654178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to develop a rapid and accurate PMA-qPCR method to quantify viable Brochothrix thermosphacta in cold-smoked salmon. B. thermosphacta is one of the main food spoilage bacteria. Among seafood products, cold-smoked salmon is particularly impacted by B. thermosphacta spoilage. Specific and sensitive tools that detect and quantify this bacterium in food products are very useful. The culture method commonly used to quantify B. thermosphacta is time-consuming and can underestimate cells in a viable but not immediately culturable state. We designed a new PCR primer set from the single-copy rpoC gene. QPCR efficiency and specificity were compared with two other published primer sets targeting the rpoC and rpoB genes. The viability dyes PMA or PMAxx were combined with qPCR and compared with these primer sets on viable and dead B. thermosphacta cells in BHI broth and smoked salmon tissue homogenate (SSTH). The three primer sets displayed similar specificity and efficiency. The efficiency of new designed rpoC qPCR on viable B. thermosphacta cells in SSTH was 103.50%, with a linear determination coefficient (r2) of 0.998 and a limit of detection of 4.04 log CFU/g. Using the three primer sets on viable cells, no significant difference was observed between cells treated or untreated with PMA or PMAxx. When dead cells were used, both viability dyes suppressed DNA amplification. Nevertheless, our results did not highlight any difference between PMAxx and PMA in their efficiency to discriminate viable from unviable B. thermosphacta cells in cold-smoked salmon. Thus, this study presents a rapid, specific and efficient rpoC-PMA-qPCR method validated in cold-smoked salmon to quantify viable B. thermosphacta in foods.
Collapse
|
25
|
Begrem S, Jérôme M, Leroi F, Delbarre-Ladrat C, Grovel O, Passerini D. Genomic diversity of Serratia proteamaculans and Serratia liquefaciens predominant in seafood products and spoilage potential analyses. Int J Food Microbiol 2021; 354:109326. [PMID: 34247024 DOI: 10.1016/j.ijfoodmicro.2021.109326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/03/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022]
Abstract
Serratia sp. cause food losses and waste due to spoilage; it is noteworthy that they represent a dominant population in seafood. The main spoilage associated species comprise S. liquefaciens, S. grimesii, S. proteamaculans and S. quinivorans, also known as S. liquefaciens-like strains. These species are difficult to discriminate since classical 16S rRNA gene-based sequences do not possess sufficient resolution. In this study, a phylogeny based on the short-length luxS gene was able to speciate 47 Serratia isolates from seafood, with S. proteamaculans being the main species from fresh salmon and tuna, cold-smoked salmon, and cooked shrimp while S. liquefaciens was only found in cold-smoked salmon. The genome of the first S. proteamaculans strain isolated from the seafood matrix (CD3406 strain) was sequenced. Pangenome analyses of S. proteamaculans and S. liquefaciens indicated high adaptation potential. Biosynthetic pathways involved in antimicrobial compounds production and in the main seafood spoilage compounds were also identified. The genetic equipment highlighted in this study contributed to gain further insights into the predominance of Serratia in seafood products and their capacity to spoil.
Collapse
Affiliation(s)
- Simon Begrem
- IFREMER, BRM, EM(3)B Laboratory, Rue de l'Île d'Yeu, BP 21105, F-44300 Nantes Cedex 3, France; Université de Nantes, MMS - EA2160, 44000 Nantes, France
| | - Marc Jérôme
- IFREMER, BRM, EM(3)B Laboratory, Rue de l'Île d'Yeu, BP 21105, F-44300 Nantes Cedex 3, France
| | - Françoise Leroi
- IFREMER, BRM, EM(3)B Laboratory, Rue de l'Île d'Yeu, BP 21105, F-44300 Nantes Cedex 3, France
| | | | - Olivier Grovel
- Université de Nantes, MMS - EA2160, 44000 Nantes, France
| | - Delphine Passerini
- IFREMER, BRM, EM(3)B Laboratory, Rue de l'Île d'Yeu, BP 21105, F-44300 Nantes Cedex 3, France.
| |
Collapse
|
26
|
Self RL, McLendon MG, Lock CM, Hu J. Analysis of decomposition in 23 seafood products by liquid chromatography with high-resolution mass spectrometry with sensory-driven modeling. Food Sci Nutr 2021; 9:2658-2667. [PMID: 34026079 PMCID: PMC8116845 DOI: 10.1002/fsn3.2223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/10/2022] Open
Abstract
Samples of 23 seafood products were obtained internationally in processing plants and subjected to controlled decomposition to produce seven discrete quality increments. A sensory expert evaluated each sample for decomposition, using a scale of 1-100. Samples were then extracted and analyzed by liquid chromatography with high-resolution mass spectrometry (LC-HRMS). Untargeted data processing was performed, and a sensory-driven Random Forest model in the R programming language for each product was created. Five samples of each quality increment were analyzed in duplicate on separate days. Scores analogous to those obtained through sensory analysis were calculated by this approach, and these were compared to the original sensory findings. Correlation values (r) were calculated from these plots and ranged from 0.971 to 0.999. The finding of decomposition state of each sample was consistent with sensory for 548 of 550 test samples (99.6%). Of the two misidentified samples, one was a false negative, and one false positive (0.2% each). One additional sample from each of the 1st, 4th, and 7th increments of each product was extracted and analyzed on a third separate day to evaluate reproducibility. The range of these triplicate calculated scores was 15 or less for all samples tested, 10 or less for 63 of the 69 triplicate tests (91%), and five or less for 41 (59%). From the models, the most predictive compounds of interest were selected, and many of these were identified using MS2 data with standard or database comparison, allowing identification of compounds indicative of decomposition in these products which have not previously been explored for this purpose.
Collapse
Affiliation(s)
- Randy L. Self
- Pacific Northwest LaboratoryOffice of Regulatory AffairsU.S. Food and Drug AdministrationBothellWAUSA
| | - Michael G. McLendon
- Pacific Northwest LaboratoryOffice of Regulatory AffairsU.S. Food and Drug AdministrationBothellWAUSA
| | - Christopher M. Lock
- Pacific Northwest LaboratoryOffice of Regulatory AffairsU.S. Food and Drug AdministrationBothellWAUSA
| | - Jinxin Hu
- Pacific Northwest LaboratoryOffice of Regulatory AffairsU.S. Food and Drug AdministrationBothellWAUSA
| |
Collapse
|
27
|
Bai J, Baker SM, Goodrich-Schneider RM, Montazeri N, Sarnoski PJ. Development of a rapid colorimetric strip method for determination of volatile bases in mahi-mahi and tuna. J Food Sci 2021; 86:2398-2409. [PMID: 33928640 DOI: 10.1111/1750-3841.15737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022]
Abstract
Tuna (Thunnus albacares) and mahi-mahi (Coryphaena hippurus) are two major fish species responsible for scombroid poisoning in the United States. The purpose of this research was to develop a low-cost and easily operated colorimetric strip method for the rapid determination of spoilage degree via amine response in mahi-mahi and tuna. The color strip method was developed by investigating different types of dyes, filter papers, sample volume, water bath temperature, and other parameters. Ultimately rose bengal and bromophenol blue (BPB) dyes were chosen. These two dyes produced standard curves with good linearity (0-50 mg/L for the total biogenic amines) and uniformity of color change. The r2 values for the standard curves of the rose Bengal and BPB were 0.9535 and 0.8883, respectively. Significant positive Pearson correlations coefficients (r) between the volatile biogenic amine levels detected by these two colorimetric strip methods with increasing spoilage grade of mahi-mahi (rose bengal: r = 0.8907, p < 0.0001; BPB: r = 0.8711, p < 0.0001) and tuna (rose bengal: r = 0.8351, p < 0.0001; BPB: r = 0.7362, p = 0.0001) were observed. For mahi-mahi, the volatile amines detected by the colorimetric strips correlated positively with increasing levels of eight biogenic amines, free alanine, four aldehydes, isoamyl alcohol, two ketones, and dimethyl disulfide. For tuna, the results determined by colorimetric strips positively correlated with three biogenic amines, three free amino acids, four aldehydes, and ethanol. The two validated colorimetric strips could rapidly monitor the spoilage degree of mahi-mahi and tuna at low-cost. PRACTICAL APPLICATION: Rose bengal strips and BPB strips were developed as a rapid, objective, analytical method that can serve as an alternative to sensory grading methods. These two nonspecific colorimetric strip methods provided good linear response and uniformity of color change. Volatile amine levels in fish determined by these colorimetric strip methods were statistically significant and positively correlated with the spoilage grade of fish.
Collapse
Affiliation(s)
- Jing Bai
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, 32611, USA
| | - Shirley M Baker
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida, 32611, USA
| | | | - Naim Montazeri
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, 32611, USA
| | - Paul J Sarnoski
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, 32611, USA
| |
Collapse
|
28
|
Lopez A, Bellagamba F, Tirloni E, Vasconi M, Stella S, Bernardi C, Pazzaglia M, Moretti VM. Evolution of Food Safety Features and Volatile Profile in White Sturgeon Caviar Treated with Different Formulations of Salt and Preservatives during a Long-Term Storage Time. Foods 2021; 10:850. [PMID: 33919708 PMCID: PMC8070692 DOI: 10.3390/foods10040850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Caviar is a semi-preserved fish preparation in which cold storage (around 0 °C) and packaging under anaerobic conditions are fundamental to guarantee adequate safety parameters. Consumers seem to prefer caviar prepared with food salt only, but according to the needs of the different distribution channels, some preservatives are used in order to prolong its shelf life and to allow less restrictive storage conditions. Traditionally, the most common preservative was sodium tetraborate (borax), a salt that contributes to the sensory profile of caviar. However, due to its toxicity, borax has been banned in many countries, and the current trend is to reduce or eliminate its use. In this study, we evaluated the evolution of food safety parameters (pH, water activity, microbiological parameters) and the volatile profile during 14 months of storage in caviar samples treated with three different preservatives: I. exclusively NaCl, II. a mixture of borax and NaCl, and III. a mixture of organic acids and salts. Microbial presence was studied by means of plate counts; volatile organic compounds were identified on the sample headspace by means of solid phase microextraction with gas-chromatography and mass spectrometry. Results showed relevant differences among the three treatments investigated, with salt samples characterized by the highest viable counts and the greatest presence of volatile products driven by oxidative and spoilage processes, mainly occurring toward lipid and amino acids. On the contrary, the mixture of organic acids and salts showed the best response during the entire storage period. Finally, the employment of a multiparametric statistic model allowed the identification of different clusters based on the time of ripening and the preservative treatments used.
Collapse
Affiliation(s)
- Annalaura Lopez
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy; (F.B.); (M.V.); (V.M.M.)
| | - Federica Bellagamba
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy; (F.B.); (M.V.); (V.M.M.)
| | - Erica Tirloni
- Department of Health, Animal Science and Food Safety, University of Milan, 26900 Lodi, Italy; (E.T.); (S.S.); (C.B.)
| | - Mauro Vasconi
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy; (F.B.); (M.V.); (V.M.M.)
| | - Simone Stella
- Department of Health, Animal Science and Food Safety, University of Milan, 26900 Lodi, Italy; (E.T.); (S.S.); (C.B.)
| | - Cristian Bernardi
- Department of Health, Animal Science and Food Safety, University of Milan, 26900 Lodi, Italy; (E.T.); (S.S.); (C.B.)
| | | | - Vittorio Maria Moretti
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy; (F.B.); (M.V.); (V.M.M.)
| |
Collapse
|
29
|
Characterization of Bacterial Communities of Cold-Smoked Salmon during Storage. Foods 2021; 10:foods10020362. [PMID: 33562402 PMCID: PMC7914861 DOI: 10.3390/foods10020362] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 02/03/2023] Open
Abstract
Cold-smoked salmon is a widely consumed ready-to-eat seafood product that is a fragile commodity with a long shelf-life. The microbial ecology of cold-smoked salmon during its shelf-life is well known. However, to our knowledge, no study on the microbial ecology of cold-smoked salmon using next-generation sequencing has yet been undertaken. In this study, cold-smoked salmon microbiotas were investigated using a polyphasic approach composed of cultivable methods, V3—V4 16S rRNA gene metabarcoding and chemical analyses. Forty-five cold-smoked salmon products processed in three different factories were analyzed. The metabarcoding approach highlighted 12 dominant genera previously reported as fish spoilers: Firmicutes Staphylococcus, Carnobacterium, Lactobacillus, β-Proteobacteria Photobacterium, Vibrio, Aliivibrio, Salinivibrio, Enterobacteriaceae Serratia,Pantoea, γ-Proteobacteria Psychrobacter, Shewanella and Pseudomonas. Specific operational taxonomic units were identified during the 28-day storage study period. Operational taxonomic units specific to the processing environment were also identified. Although the 45 cold-smoked salmon products shared a core microbiota, a processing plant signature was found. This suggest that the bacterial communities of cold-smoked salmon products are impacted by the processing environment, and this environment could have a negative effect on product quality. The use of a polyphasic approach for seafood products and food processing environments could provide better insights into residential bacteria dynamics and their impact on food safety and quality.
Collapse
|
30
|
Maillet A, Bouju-Albert A, Roblin S, Vaissié P, Leuillet S, Dousset X, Jaffrès E, Combrisson J, Prévost H. Impact of DNA extraction and sampling methods on bacterial communities monitored by 16S rDNA metabarcoding in cold-smoked salmon and processing plant surfaces. Food Microbiol 2020; 95:103705. [PMID: 33397623 DOI: 10.1016/j.fm.2020.103705] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/15/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022]
Abstract
Amplicon sequencing approaches have been widely used in food bacterial ecology. However, choices regarding the methodology can bias results. In this study, bacterial communities associated with cold-smoked salmon products and their processing plant surfaces were monitored via sequencing of the V3-V4 region of the 16S rRNA gene. The impact of DNA extraction protocols, sampling methods (swabbing or sponging) and surface materials on bacterial communities were investigated. α and β diversity analyses revealed that DNA extraction methods mainly influence the observed cold-smoked salmon microbiota composition. Moreover, different DNA extraction methods revealed significant differences in observed community richness and evenness. β-Proteobacteria: Photobacterium, Serratia and Firmicutes: Brochothrix, Carnobacterium and Staphylococcus were identified as the dominant genera. Surface microbiota richness, diversity and composition were mainly affected by cleaning and disinfection procedures but not by DNA extraction methods. Surface community richness and evenness appeared higher when sampled by sponging compared to swabbing. β-diversity analyses highlighted that surface topology, cleaning and disinfection and sampling devices seemed to affect the bacterial community composition. The dominant surface bacteria identified were mainly Flavobacteriaceae, β-Proteobacteria and γ-Proteobacteria described as fish spoilers such as Acinetobacter, Pseudomonas and Shewanella. DNA extraction and sampling methods can have an impact on sequencing results and the ecological analysis of bacterial community structures. This study confirmed the importance of methodology standardization and the need for analytical validation before 16S rDNA metabarcoding surveys.
Collapse
Affiliation(s)
- Aurélien Maillet
- Mérieux NutriSciences, Biofortis, 3 route de la Chatterie, 44800, Saint-Herblain, France; UMR 1014, Secalim, INRAE, Oniris, 101, Route de Gachet, 44300, Nantes, France
| | - Agnès Bouju-Albert
- UMR 1014, Secalim, INRAE, Oniris, 101, Route de Gachet, 44300, Nantes, France
| | - Steven Roblin
- Mérieux NutriSciences, Biofortis, 3 route de la Chatterie, 44800, Saint-Herblain, France
| | - Pauline Vaissié
- Mérieux NutriSciences, Biofortis, 3 route de la Chatterie, 44800, Saint-Herblain, France
| | - Sébastien Leuillet
- Mérieux NutriSciences, Biofortis, 3 route de la Chatterie, 44800, Saint-Herblain, France
| | - Xavier Dousset
- UMR 1014, Secalim, INRAE, Oniris, 101, Route de Gachet, 44300, Nantes, France
| | - Emmanuel Jaffrès
- UMR 1014, Secalim, INRAE, Oniris, 101, Route de Gachet, 44300, Nantes, France
| | - Jérôme Combrisson
- Mérieux NutriSciences, Biofortis, 3 route de la Chatterie, 44800, Saint-Herblain, France
| | - Hervé Prévost
- UMR 1014, Secalim, INRAE, Oniris, 101, Route de Gachet, 44300, Nantes, France.
| |
Collapse
|
31
|
Zhuang S, Hong H, Zhang L, Luo Y. Spoilage‐related microbiota in fish and crustaceans during storage: Research progress and future trends. Compr Rev Food Sci Food Saf 2020; 20:252-288. [DOI: 10.1111/1541-4337.12659] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Shuai Zhuang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University Beijing China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University Beijing China
| | - Longteng Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University Beijing China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University Beijing China
| |
Collapse
|
32
|
Fan Y, Odabasi A, Sims C, Schneider K, Gao Z, Sarnoski P. Utilization of Descriptive Sensory Analysis and Volatile Analysis to Determine Quality Indicators of Aquacultured Whiteleg Shrimp (Litopanaeus vannemei) during Refrigerated Storage. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2020. [DOI: 10.1080/10498850.2020.1799470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ying Fan
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, USA
| | - Asli Odabasi
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, USA
| | - Charles Sims
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, USA
| | - Keith Schneider
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, USA
| | - Zhifeng Gao
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, USA
| | - Paul Sarnoski
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, USA
| |
Collapse
|
33
|
Jakobsen AN, Shumilina E, Lied H, Hoel S. Growth and spoilage metabolites production of a mesophilic Aeromonas salmonicida strain in Atlantic salmon (Salmo salar L.) during cold storage in modified atmosphere. J Appl Microbiol 2020; 129:935-946. [PMID: 32350918 DOI: 10.1111/jam.14680] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 11/28/2022]
Abstract
AIMS The aim of the study was to quantify the growth kinetic parameters and spoilage-associated metabolites of an inoculated strain of Aeromonas salmonicida in pre-rigor filleted Atlantic salmon (Salmo salar L.) stored in vacuum (VP) or modified atmosphere (MAP 60/40% CO2 /N2 ) at 4 and 8°C. METHODS AND RESULTS The maximum growth rate of A. salmonicida in VP salmon stored at 4°C was 0·56 ± 0·04 day-1 with no detectable lag-phase and the concentration of Aeromonas reached 8·33 log CFU per g after 10 days. The growth rates and maximum population density of Aeromonas in MAP salmon were lower but the applied atmosphere did not inhibit the growth. A selection of metabolites associated with fish spoilage were quantified using 1 H nuclear magnetic resonance (NMR) spectroscopy. The concentration of trimethylamine (TMA) was significantly affected by storage time and temperature, packaging atmosphere and inoculation with A. salmonicida (General Linear Model (GLM), P < 0·001 for all factors). CONCLUSION The study presents preliminary results on A. salmonicida as a potential spoilage organism in vacuum-packaged salmon during cold storage. The combination of refrigeration and a packaging atmosphere consisting of 60/40 % CO2 /N2 did not completely inhibit the growth but prevented the formation of TMA. SIGNIFICANCE AND IMPACT OF THE STUDY Little information is available on the spoilage potential of Aeromonas spp. in minimally processed salmon products under different packaging conditions. The study clearly demonstrates the importance of hurdle technology and provides data to further elucidate the significance of Aeromonas spp. as a spoilage organism.
Collapse
Affiliation(s)
- A N Jakobsen
- Department of Biotechnology and Food Science, Trondheim, N-7491, Norway
| | - E Shumilina
- Department of Biotechnology and Food Science, Trondheim, N-7491, Norway
| | - H Lied
- Department of Biotechnology and Food Science, Trondheim, N-7491, Norway
| | - S Hoel
- Department of Biotechnology and Food Science, Trondheim, N-7491, Norway
| |
Collapse
|
34
|
Microbial, chemico-physical and volatile aromatic compounds characterization of Pitina PGI, a peculiar sausage-like product of North East Italy. Meat Sci 2020; 163:108081. [DOI: 10.1016/j.meatsci.2020.108081] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/28/2019] [Accepted: 02/05/2020] [Indexed: 11/20/2022]
|
35
|
Volatilome of Chill-Stored European Seabass ( Dicentrarchus labrax) Fillets and Atlantic Salmon ( Salmo salar) Slices under Modified Atmosphere Packaging. Molecules 2020; 25:molecules25081981. [PMID: 32340305 PMCID: PMC7221811 DOI: 10.3390/molecules25081981] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 11/17/2022] Open
Abstract
Fish spoilage occurs due to production of metabolites during storage, from bacterial action and chemical reactions, which leads to sensory rejection. Investigating the volatilome profile can reveal the potential spoilage markers. The evolution of volatile organic molecules during storage of European seabass (Dicentrarchus labrax) fillets and Atlantic salmon (Salmo salar) slices under modified atmosphere packaging at 2 °C was recorded by solid-phase microextraction combined with gas chromatography-mass spectrometry. Total volatile basic nitrogen (TVB-N), microbiological, and sensory changes were also monitored. The shelf life of seabass fillets and salmon slices was 10.5 days. Pseudomonas and H2S-producing bacteria were the dominant microorganisms in both fish. TVB-N increased from the middle of storage, but never reached concentrations higher than the regulatory limit of 30–35 mg N/100 g. The volatilome consisted of a number of aldehydes, ketones, alcohols and esters, common to both fish species. However, different evolution patterns were observed, indicating the effect of fish substrate on microbial growth and eventually the generation of volatiles. The compounds 3-hydroxy-2-butanone, 2,3-butanediol, 2,3-butanedione and acetic acid could be proposed as potential spoilage markers. The identification and quantification of the volatilities of specific fish species via the development of a database with the fingerprint of fish species stored under certain storage conditions can help towards rapid spoilage assessment.
Collapse
|
36
|
Identification of the bacteria and their metabolic activities associated with the microbial spoilage of custard cream desserts. Food Microbiol 2020; 86:103317. [DOI: 10.1016/j.fm.2019.103317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/26/2019] [Accepted: 09/01/2019] [Indexed: 11/18/2022]
|
37
|
Lopez A, Vasconi M, Bellagamba F, Mentasti T, Pazzaglia M, Moretti VM. Volatile Organic Compounds Profile in White Sturgeon (Acipenser transmontanus) Caviar at Different Stages of Ripening by Multiple Headspace Solid Phase Microextraction. Molecules 2020; 25:molecules25051074. [PMID: 32121013 PMCID: PMC7179139 DOI: 10.3390/molecules25051074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/16/2022] Open
Abstract
Caviar is considered a delicacy by luxury product consumers, but few data are available about its flavour chemistry to date. In this study, a multiple headspace-solid phase microextraction (MHS-SPME) followed by gas chromatography and mass spectrometry (GC-MS) approach was developed and employed to identify and quantitatively estimate key volatile organic compounds (VOCs) representative in white sturgeon (A. transmontanus) caviar at five different stages of ripening: raw eggs (t0), after 60 days (t1), 120 days (t2), 180 days (t3), and 240 days (t4) of ripening. The method showed the ability to detect and estimate the quantity of 25 flavour compounds, without any severe alteration of the matrix before the analysis and in a short time. The VOCs detected as representative in caviar samples were primarily aldehydes and alcohols, already well known as responsible of fresh fish and seafood flavours, and mainly deriving from lipid peroxidation processes and microbial activity against lipids and amino acids. We found a significant (p < 0.01) increase in the amount of total aldehydes within t0 (29.64 ng/g) and t4 (121.96 ng/g); moreover, an interesting, great arise of 3-hydroxy-2-butanone at the final stage of storage (48.17 ng/g) was recorded. Alcohols were not detected in raw eggs (t0) and then a decrease from t1 (17.77 ng/g) to t4 (10.18 ng/g) was recorded in their amount, with no statistical significance.
Collapse
Affiliation(s)
- Annalaura Lopez
- Department of Veterinary Medicine – Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (M.V.); (F.B.); (T.M.); (V.M.M.)
- Correspondence: ; Tel.:+39−0250315759
| | - Mauro Vasconi
- Department of Veterinary Medicine – Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (M.V.); (F.B.); (T.M.); (V.M.M.)
| | - Federica Bellagamba
- Department of Veterinary Medicine – Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (M.V.); (F.B.); (T.M.); (V.M.M.)
| | - Tiziana Mentasti
- Department of Veterinary Medicine – Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (M.V.); (F.B.); (T.M.); (V.M.M.)
| | - Mario Pazzaglia
- Agroittica Lombarda S.p.A. - Via J.F. Kennedy, 25012 Calvisano (BS), Italy;
| | - Vittorio Maria Moretti
- Department of Veterinary Medicine – Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (M.V.); (F.B.); (T.M.); (V.M.M.)
| |
Collapse
|
38
|
Vahdatzadeh M, Deveau A, Splivallo R. Are bacteria responsible for aroma deterioration upon storage of the black truffle Tuber aestivum: A microbiome and volatilome study. Food Microbiol 2019; 84:103251. [DOI: 10.1016/j.fm.2019.103251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/04/2019] [Accepted: 06/22/2019] [Indexed: 01/13/2023]
|
39
|
Xu J, Song R, Dai Y, Yang S, Li J, Wei R. Characterization of zinc oxide nanoparticles-epoxy resin composite and its antibacterial effects on spoilage bacteria derived from silvery pomfret (Pampus argenteus). Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
Wang L, Liu Y, Yang F, Li J, Chen B, Du G. Microbiome analysis and random forest algorithm-aided identification of the diacetyl-producing microorganisms in the stacking fermentation stage of Maotai-flavor liquor production. FOOD BIOTECHNOL 2019. [DOI: 10.1080/08905436.2019.1673770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Li Wang
- China Kweichow Moutai Distillery Co., Ltd., Guizhou, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Fan Yang
- China Kweichow Moutai Distillery Co., Ltd., Guizhou, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Bi Chen
- China Kweichow Moutai Distillery Co., Ltd., Guizhou, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
41
|
Self RL, McLendon MG, Lock CM. Determination of decomposition in Salmon products by mass spectrometry with sensory‐driven multivariate analysis. J Food Saf 2019. [DOI: 10.1111/jfs.12676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Randy L. Self
- U.S. Food and Drug Administration, Office of Regulatory AffairsApplied Technology Center/Pacific Northwest Laboratory Bothell Washington
| | - Michael G. McLendon
- U.S. Food and Drug AdministrationOffice of Regulatory Affairs, Pacific Northwest Laboratory – Sensory Bothell Washington
| | - Christopher M. Lock
- U.S. Food and Drug Administration, Office of Regulatory AffairsApplied Technology Center/Pacific Northwest Laboratory Bothell Washington
| |
Collapse
|
42
|
Yang W, Wang L, Hu Q, Pei F, Mugambi MA. Identification of Bacterial Composition in Freeze-Dried Agaricus bisporus During Storage and the Resultant Odor Deterioration. Front Microbiol 2019; 10:349. [PMID: 30863388 PMCID: PMC6399203 DOI: 10.3389/fmicb.2019.00349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
Moisture absorption and bacterial growth are critical factors for quality deterioration of freeze-dried Agaricus bisporus. In order to explore the bacterial composition and the resultant odor changes in freeze-dried A. bisporus during storage under three typical conditions (RT: 25°C, 55% RH; HT: 37°C, 85% RH; AT: ambient temperature), bacterial diversity and communities were analyzed using metagenomics. Moreover, volatile compounds were determined using SPME-GC-MS. The results demonstrated that the bacterial composition in freeze-dried A. bisporus was dominated by Pseudomonas, followed by Rhizobium and Pedobacter. In addition, Mucilaginibacter, Flavobacterium, and Thermus were a few other genera more dominant in HT samples, Chryseobacterium was the other genera more dominant in AT samples, while, Sphingobacterium and Chryseobacterium were a few other genera more dominant in RT samples. Furthermore, the increase of benzaldehyde content in HT samples may have been induced by the growth of Pseudomonads and the esters production in RT and AT samples might have been induced by Chryseobacterium. This study provided comprehensive information on exogenous bacterial composition and the resultant odor in freeze-dried A. bisporus. These results may be a theoretical basis for quality control and quick quality detection based on volatiles of freeze-dried A. bisporus.
Collapse
Affiliation(s)
- Wenjian Yang
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Liuqing Wang
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Qiuhui Hu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Fei Pei
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Mariga Alfred Mugambi
- Faculty of Agriculture and Food Science, Meru University of Science and Technology, Meru, Kenya
| |
Collapse
|
43
|
Bai J, Baker SM, Goodrich-Schneider RM, Montazeri N, Sarnoski PJ. Aroma Profile Characterization of Mahi-Mahi and Tuna for Determining Spoilage Using Purge and Trap Gas Chromatography-Mass Spectrometry. J Food Sci 2019; 84:481-489. [PMID: 30775780 DOI: 10.1111/1750-3841.14478] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/09/2019] [Accepted: 01/24/2019] [Indexed: 11/26/2022]
Abstract
Alcohols, aldehydes, ketones, amines, and sulfur compounds are essential aroma compounds related to fish flavor and spoilage. Gas chromatography-mass spectrometry (GC-MS) is an instrument that is widely used to identify and quantify volatile and semi-volatile compounds in fish products. In this research, a simple and accurate GC-MS method was developed to determine the aroma profile of mahi-mahi and tuna for chemical indicators of spoilage. In the developed GC-MS method, trichloroacetic acid (TCA) solution was used to extract analytes from homogenized fish samples. The purge and trap system was used for sample introduction, and the GC-MS with an RTX-Volatile Amine column was able to separate compounds without a derivatization procedure. The created purge and trap gas chromatography-mass spectrometry (PT-GC-MS) method could identify and quantify twenty aroma compounds in mahi-mahi (Coryphaena hippurus) and 16 volatile compounds in yellowfin tuna (Thunnus albacares) associated with fish spoilage. The amines (dimethylamine, trimethylamine, isobutylamine, 3-methylbutylamine, and 2-methylbutanamine), alcohols (2-ethylhexanol, 1-penten-3-ol and isoamyl alcohol, ethanol), aldehydes (2-methylbutanal, 3-methylbutanal, benzaldehyde), ketones (acetone, 2,3-butanedione, 2-butanone, acetoin), and dimethyl disulfide strongly statistically correlated with poorer quality tuna and mahi-mahi and were considered as the key spoilage indicators. PRACTICAL APPLICATION: A simplified and rapid purge and trap gas chromatography-mass spectrometry (PT-GC-MS) method developed in this research was able to identify and quantify important spoilage compounds in mahi-mahi and yellowfin tuna. This method is an efficient analytical method for determining volatile profiles of fish samples for industry analytical labs or the government. The identified analytical quality markers can be used to monitor the spoilage level of tuna and mahi-mahi.
Collapse
Affiliation(s)
- Jing Bai
- Food Science and Human Nutrition Dept., Univ. of Florida, Gainesville, FL, 32611, USA
| | - Shirley M Baker
- School of Forest Resources and Conservation, Univ. of Florida, Gainesville, FL, 32611, USA
| | | | - Naim Montazeri
- Food Science and Human Nutrition Dept., Univ. of Florida, Gainesville, FL, 32611, USA
| | - Paul J Sarnoski
- Food Science and Human Nutrition Dept., Univ. of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
44
|
Canel RS, Guerrissi S, Sanchez M, Mónaco G, Laich F, Wagner JR, Renaud V, Ludemann V. Microbiological and Sensory Characteristics of Mould-Ripened Salami under Different Packaging Conditions. Food Technol Biotechnol 2019; 57:87-96. [PMID: 31316280 PMCID: PMC6600306 DOI: 10.17113/ftb.57.01.19.5803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The preservation of mould-ripened salami was investigated during 48 days at 19-20 °C under different packaging conditions: (i) high barrier film filled with air, 100% N2 or under vacuum, (ii) biaxially oriented polypropylene film, (iii) microperforated polyethylene film and (iv) unpackaged. Sensory, texture profile, physicochemical and microbiological analyses were performed. Fungal quantification revealed two data groups. In group 1 (consisting of salami in microperforated polyethylene film, biaxially oriented polypropylene film and unpackaged) the conidium viability was relatively constant. In group 2 (salami preserved in high barrier film filled with air, 100% N2 or under vacuum) the conidium viability decreased due to the absence of oxygen and the high carbon dioxide volume fraction. SEM micrographs showed micromorphological changes in fungal structure; microperforated polyethylene film, biaxially oriented polypropylene film and unpackaged conditions preserved the conidial morphology, while high barrier film filled with air, 100% N2 or vacuum conditions collapsed the hyphae and most of the conidia. Salami packed in microperforated polyethylene film and biaxially oriented polypropylene film showed the most acceptable organoleptic characteristics and lower hardness and chewiness values after packaging.
Collapse
Affiliation(s)
- Romina Soledad Canel
- National University of Quilmes, Roque Saenz Peña 352, 1876 Bernal, Buenos Aires, Argentina.,National Council of Scientific and Technical Research, Godoy Cruz 2290, 1033 Buenos Aires, Argentina
| | - Sofìa Guerrissi
- National University of Quilmes, Roque Saenz Peña 352, 1876 Bernal, Buenos Aires, Argentina
| | - Mariana Sanchez
- National Institute of Industrial Technology, Av. General Paz 5445, 1650 San Martin, Buenos Aires, Argentina
| | - Gabriela Mónaco
- National Institute of Industrial Technology, Av. General Paz 5445, 1650 San Martin, Buenos Aires, Argentina
| | - Federico Laich
- Canarian Institute of Agricultural Research, Ctra. Boquerón s/n, 38270 Santa Cruz de Tenerife, Spain
| | - Jorge Ricardo Wagner
- National University of Quilmes, Roque Saenz Peña 352, 1876 Bernal, Buenos Aires, Argentina.,National Council of Scientific and Technical Research, Godoy Cruz 2290, 1033 Buenos Aires, Argentina
| | - Viviana Renaud
- National Institute of Industrial Technology, Av. General Paz 5445, 1650 San Martin, Buenos Aires, Argentina
| | - Vanesa Ludemann
- National University of Quilmes, Roque Saenz Peña 352, 1876 Bernal, Buenos Aires, Argentina.,National Council of Scientific and Technical Research, Godoy Cruz 2290, 1033 Buenos Aires, Argentina
| |
Collapse
|
45
|
Li X, Zhu J, Li C, Ye H, Wang Z, Wu X, Xu B. Evolution of Volatile Compounds and Spoilage Bacteria in Smoked Bacon during Refrigeration Using an E-Nose and GC-MS Combined with Partial Least Squares Regression. Molecules 2018; 23:E3286. [PMID: 30544999 PMCID: PMC6320767 DOI: 10.3390/molecules23123286] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 12/21/2022] Open
Abstract
The changes in the concentration of volatile organic compounds (VOCs) and biogenic amines (BAs) in smoked bacon during 45-day refrigerated storage is investigated using solid-phase micro-extraction coupled with gas chromatography-mass spectrometry and high-performance liquid chromatography. In total, 56 VOCs and 6 BAs were identified and quantified. The possible pathways leading to their formation are analyzed and considered as the potential signs of microbial activity, especially by specific spoilage microorganisms (SSOs). Leuconostoc and Lactobacillus, which levels increased markedly with the extension of storage time, were recognized as SSOs. An electronic nose (e-nose) was employed to determine the changes in concentration of the odor components per sample present within half an hour. Partial least squares regression was then carried out to analyze the correlation between SSO growth, metabolite concentration, BA accumulation, and e-nose response. The results show that ten VOCs (ethanol, 2-furanmethanol, 1-hexanol, 1-propanol, phenol, 2-methoxyphenol, acetic acid, 3-ethyl-2-cyclopenten-1-one, furfural, and ethyl hexanoate) and three BAs (putrescine, cadaverine, and tyramine) can be associated with the growth of SSOs. Thus, they can be adopted as potential indicators to evaluate and monitor the quality of the bacon and develop appropriate detection methods. E-noses can used to recognize odors and diagnose quality of bacon.
Collapse
Affiliation(s)
- Xinfu Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- State Key Laboratory of Meat Processing and Quality Control, Yurun Group, Nanjing 211806, China.
| | - Jiancai Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Cong Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- State Key Laboratory of Meat Processing and Quality Control, Yurun Group, Nanjing 211806, China.
| | - Hua Ye
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhouping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xiang Wu
- State Key Laboratory of Meat Processing and Quality Control, Yurun Group, Nanjing 211806, China.
| | - Baocai Xu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- State Key Laboratory of Meat Processing and Quality Control, Yurun Group, Nanjing 211806, China.
- School of Food Science and Biology Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
46
|
Legako JF, Cramer T, Yardley K, Murphy TJ, Gardner T, Chail A, Pitcher LR, MacAdam JW. Retail stability of three beef muscles from grass-, legume-, and feedlot-finished cattle. J Anim Sci 2018; 96:2238-2248. [PMID: 29659878 DOI: 10.1093/jas/sky125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
This study aimed to determine the influence of finishing diet on beef appearance and lipid oxidation of three beef muscles. A total of 18 Angus steers were selected from three diet treatments: grass-finished (USUGrass), legume-finished (USUBFT), and grain-finished (USUGrain). After processing, longissimus thoracis (LT), triceps brachii (TB), and gluteus medius (GM) steaks were evaluated over a 7-d display period. A muscle × diet interaction was observed for instrumental lightness (L*) and redness (a*) (P ≤ 0.001). Within each combination, USUGrass was considered darker with lower (P < 0.05) L* compared with USUGrain. For USUBFT, L* was similar to USUGrain for the TB and LT, while the L* of USUBFT and USUGrain GM differed (P < 0.05). In terms of redness, LT a* values were elevated (P < 0.05) in USUGrass compared with USUBFT and USUGrain. For GM steaks, a* of USUBFT and USUGrass were each greater (P < 0.05) than USUGrain. Surface a* of TB steaks were greatest (P < 0.05) for USUGrass followed by USUBFT, and with USUGrain, being lowest (P < 0.05). An overall increase in L* was observed throughout display dependent on diet (P = 0.013). During display, USUGrain steaks had the greatest (P < 0.05) L* followed by USUBFT and USUGrass. Additionally, a day × muscle interaction was observed for a* (P = 0.009). Initially, TB steaks had the greatest (P < 0.05) a* values. However, at day 3, a* values were similar (P > 0.05) among muscles. Visual color scores were in agreement with loss of redness (a*) during display, dependent on diet and muscle type (P < 0.001). Similarly, a day × diet × muscle interaction was observed for visual discoloration (P < 0.001). Day and diet interacted to influence thiobarbituric acid reactive substances (TBARS) (P < 0.001). Initial values did not differ (P > 0.05) between USUGrain and USUBFT; however, USUGrass had lower initial (P < 0.05) TBARS than both USUGrain and USUBFT. At days 3 and 7, TBARS were greatest (P < 0.05) in USUGrain steaks, followed by USUBFT, which was greater (P < 0.05) than USUGrass. A diet × muscle interaction was observed for 10 volatile compounds originating from lipid degradation (P ≤ 0.013). These compounds were less (P < 0.05) abundant in USUGrass compared to TB or GM of USUGrain. This study determined grass-finished beef to have a darker more red color and less lipid oxidation in multiple muscles. Possible mechanisms for this may include an increase in endogenous antioxidants in grass-finished beef.
Collapse
Affiliation(s)
- Jerrad F Legako
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX
| | - Traci Cramer
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX
| | - Krista Yardley
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, UT
| | - Talya J Murphy
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, UT
| | - ToniRae Gardner
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, UT
| | - Arkopriya Chail
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, UT
| | - Lance R Pitcher
- Department of Plants, Soils, and Climate, Utah State University, Logan, UT
| | - Jennifer W MacAdam
- Department of Plants, Soils, and Climate, Utah State University, Logan, UT
| |
Collapse
|
47
|
Qian Y, Ye J, Yang S, Lin Z, Cao W, Xie J. Evaluation of the spoilage potential ofShewanella putrefaciens,Aeromonas hydrophila, andAeromonas sobriaisolated from spoiled Pacific white shrimp (Litopenaeus vannamei) during cold storage. J Food Saf 2018. [DOI: 10.1111/jfs.12550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yun‐Fang Qian
- College of Food Science and TechnologyShanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| | - Jing‐Xin Ye
- College of Food Science and TechnologyShanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
| | - Sheng‐Ping Yang
- College of Food Science and TechnologyShanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| | - Zu‐Quan Lin
- College of Food Science and TechnologyShanghai Ocean University Shanghai China
| | - Wei Cao
- College of Food Science and TechnologyShanghai Ocean University Shanghai China
| | - Jing Xie
- College of Food Science and TechnologyShanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| |
Collapse
|
48
|
Gardner K, Legako JF. Volatile flavor compounds vary by beef product type and degree of doneness. J Anim Sci 2018; 96:4238-4250. [PMID: 30053120 PMCID: PMC6162578 DOI: 10.1093/jas/sky287] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/10/2018] [Indexed: 11/15/2022] Open
Abstract
This study aimed to determine how quality grade and degree of doneness (DOD) influence the development of volatile compounds among beef whole muscle and ground patties. Volatile compounds were quantified via head space solid phase microextraction from samples tempered in refrigerated temperatures (3 to 5 °C), room temperature (24 to 26 °C), or cooked on an electric clamshell-style grill to an endpoint temperature of 55, 60, 71, or 77 °C. Collected samples were subsequently determined by gas chromatography mass spectrometry. Prominent compounds known to be the result of the Maillard reaction or lipid degradation were retained for comparison. Four Strecker aldehydes, 4 pyrazines, and one ester had a 3-way interaction between quality grade, DOD, and product type (each P < 0.001). Pyrazine concentrations did not differ (P > 0.05) in ground patties and was comparably greater (P < 0.05) in steaks; in Prime and Low Choice steaks, pyrazine concentration increased (P < 0.05) as DOD increased. A 2-way interaction between quality grade and product type was observed for acetaldehyde, dimethyl disulfide, 1-penten-3-ol, butanoic acid, hexanal, octanal, nonanal, and 2-heptanone. Among which, octanal and nonanal were greater (P < 0.05) in Prime steaks compared with ground patties. Another 2-way interaction, quality grade and DOD, was observed in 2 ketones, an alcohol, 2 esters, and 2 aldehydes. For example, 2,3-butanedione was greater (P < 0.05) in concentration in Prime 4 °C samples compared with Low Choice and Standard. The final 2-way interaction of DOD and product type was observed in 3 ketones, 2 sulfur compounds, 2 esters, 5 aldehydes, 2 carboxylic acids, and a ketone. For example, 2-heptanone was greater (P < 0.05) in concentration in ground patties compared to steaks in all degrees of doneness except 4 °C. Overall, these results indicate that the volatile flavor profile of beef is greatly influenced by product type and DOD. Generally, consumers select beef based on product type and determine their cookery approach. Therefore, consumers may greatly influence final beef flavor profile.
Collapse
Affiliation(s)
- Kourtney Gardner
- Department of Nutrition, Dietetics, & Food Sciences, Utah State University, Logan, UT
| | - Jerrad F Legako
- Department of Animal & Food Sciences, Texas Tech University, Lubbock, TX
| |
Collapse
|
49
|
Gredell DA, McHenry JH, Woerner DR, Legako JF, Engle TE, Brooks JC, Tatum JD, Belk KE. Palatability Characterization of Fresh and Dry-Aged Ground Beef Patties. MEAT AND MUSCLE BIOLOGY 2018. [DOI: 10.22175/mmb2018.04.0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Descriptive trained sensory attributes, fatty acids, and volatile compounds were determined to characterize the effects of dry-aging on ground beef. Beef shoulder clods were ground to include 100% fresh beef, 100% dry-aged beef, and a 50% fresh and 50% dry-aged ground beef blend. Samples comprised of 100% dry-aged beef were rated greatest (P < 0.001) for browned/grilled, earthy/mushroom, and nutty/roasted-nut flavors; however, panelists also detected greater (P ≤ 0.011) incidences of sour/acidic and bitter flavors. The addition of dry-aged beef increased (P < 0.001) hardness and reduced (P < 0.001) tenderness. Dry-aging also caused a shift in saturated fatty acids, where shorter chain saturated fatty acids (≤ 16:0) were reduced (P ≤ 0.034) compared to stearic acid (18:0). Meanwhile, increases of trans-octadecenoic acid (18:1 trans) and decreases of cis monounsaturated fatty acids were present in dry-aged beef. Concentrations of 18:2 conjugated linoleic isomers were greatest (P < 0.001) in fresh beef and decreased with the incorporation of dry-aged beef. Several lipid-derived volatile compounds were greater (P < 0.05) in dry-aged beef compared with fresh beef, implying a greater degree of lipid degradation among dry-aged beef. Increases (P ≤ 0.031) were determined for 3- and 2-methyl butanal with the addition of dry-aged beef. Intermediates of the Maillard reaction, 2,3-butanedione and acetoin, were determined to be greatest (P ≤ 0.046) from dry-aged beef. Alterations of fatty acids and volatile compounds with dry-aging were determined to be related with intensity of individual flavor attributes. Overall, it may be concluded that inclusion of dry-aged beef impacts flavor profile through altered fatty acid profiles and flavor related compounds. These results support the idea that dry-aging may be utilized to impart an altered ground beef flavor experience.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Keith E. Belk
- Colorado State University Department of Animal Sciences
| |
Collapse
|
50
|
Illikoud N, Rossero A, Chauvet R, Courcoux P, Pilet MF, Charrier T, Jaffrès E, Zagorec M. Genotypic and phenotypic characterization of the food spoilage bacterium Brochothrix thermosphacta. Food Microbiol 2018; 81:22-31. [PMID: 30910085 DOI: 10.1016/j.fm.2018.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 11/17/2022]
Abstract
Microbial food spoilage is responsible for significant economic losses. Brochothrix thermosphacta is one of the major bacteria involved in the spoilage of meat and seafood. Its growth and metabolic activities during food storage result in the production of metabolites associated with off-odors. In this study, we evaluated the genotypic and phenotypic diversity of this species. A collection of 161 B. thermosphacta strains isolated from different foods, spoiled or not, and from a slaughterhouse environment was constituted from various laboratory collections and completed with new isolates. A PCR test based on the rpoB gene was developed for a fast screening of B. thermosphacta isolates. Strains were typed by MALDI-TOF MS, rep-PCR, and PFGE. Each typing method separated strains into distinct groups, revealing significant intra-species diversity. These classifications did not correlate with the ecological origin of strains. The ability to produce acetoin and diacetyl, two molecules associated with B. thermosphacta spoilage, was evaluated in meat and shrimp juices. The production level was variable between strains and the spoilage ability on meat or shrimp juice did not correlate with the substrate origin of strains. Although the B. thermosphacta species encompasses ubiquitous strains, spoiling ability is both strain- and environment-dependent.
Collapse
Affiliation(s)
- Nassima Illikoud
- SECALIM, INRA, Oniris, Université Bretagne Loire, 44307, Nantes, France.
| | - Albert Rossero
- SECALIM, INRA, Oniris, Université Bretagne Loire, 44307, Nantes, France.
| | - Romain Chauvet
- EUROFINS, Laboratoire Microbiologie Ouest, 44300 Nantes, France.
| | - Philippe Courcoux
- Oniris, StatSC Sensometrics and Chemometrics Laboratory, Nantes F-44322, France.
| | - Marie-France Pilet
- SECALIM, INRA, Oniris, Université Bretagne Loire, 44307, Nantes, France.
| | - Thomas Charrier
- EUROFINS, Laboratoire Microbiologie Ouest, 44300 Nantes, France.
| | - Emmanuel Jaffrès
- SECALIM, INRA, Oniris, Université Bretagne Loire, 44307, Nantes, France.
| | - Monique Zagorec
- SECALIM, INRA, Oniris, Université Bretagne Loire, 44307, Nantes, France.
| |
Collapse
|