1
|
Nag K, Sarker EH, Kumar S, Chakraborty S, Khan MR, Chowdhury MR, Roy R, Roy R, Biswas BK, Bappi EH, Mohiuddin M, Sultana N. Satisfying QTPP of Erythropoietin Biosimilar by QbD through DoE-Derived Downstream Process Engineering. Pharmaceutics 2023; 15:2087. [PMID: 37631301 PMCID: PMC10460001 DOI: 10.3390/pharmaceutics15082087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/04/2023] [Accepted: 06/22/2023] [Indexed: 08/27/2023] Open
Abstract
Well-characterized and scalable downstream processes for the purification of biologics are extremely demanding for delivering quality therapeutics to patients at a reasonable price. Erythropoietin (EPO) is a blockbuster biologic with diverse clinical applications, but its application is limited to financially well-off societies due to its high price. The high price of EPO is associated with the technical difficulties related to the purification challenge to obtain qualified products with a cost-effective defined process. Though there are reports for the purification of EPO there is no report of a well-characterized downstream process with critical process parameters (CPPs) that can deliver EPO consistently satisfying the quality target product profile (QTPP), which is a critical regulatory requirement. To advance the field, we applied the quality by design (QbD) principle and design of experiment (DoE) protocol to establish an effective process, which is scalable up to 100× batch size satisfying QTPP. We have successfully transformed the process from static mode to dynamic mode and validated it. Insignificant variation (p > 0.05) within and between 1×, 10×, and 100× batches showed that the process is reproducible and seamlessly scalable. The biochemical analysis along with the biofunctionality data ensures that the products from different scale batches were indifferent and comparable to a reference product. Our study thereby established a robust and scalable downstream process of EPO biosimilar satisfying QTPP. The technological scheme presented here can speed up the production of not only EPO but also many other life-saving biologics and make them available to the mass population at a reduced cost.
Collapse
Affiliation(s)
- Kakon Nag
- Globe Biotech Limited, 3/Ka (New), Tejgaon I/A, Dhaka 1208, Bangladesh
| | | | | | | | | | | | | | | | | | | | | | - Naznin Sultana
- Globe Biotech Limited, 3/Ka (New), Tejgaon I/A, Dhaka 1208, Bangladesh
| |
Collapse
|
2
|
Roudsari FP, Mehrnia MR, Honarparvaran A, Kaghazian H. Facile Capture of Recombinant Human Erythropoietin on Mesoporous Affinity Hydrogel Matrix Functionalized with Azoboronate. Appl Biochem Biotechnol 2023; 195:3456-3476. [PMID: 36598642 DOI: 10.1007/s12010-022-04303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Boronate affinity ligands (BALs) have gained attention for glycoproteins capture and recognition due to their unique affinity interaction with glycans. In this paper, the effect of azo immobilization of phenylboronic acid on the reduction of adsorption pH of a recombinant glycoprotein (i.e., rhEPO) on hydrogel microparticles was investigated. To evaluate the influence of intraparticle porosity on protein adsorption, microporous (MicroBead) and mesoporous (MesoBead) agarose beads carrying two levels of amine densities were functionalized with azoboronate ligand. Affinity adsorption of the glycoprotein during static and dynamic adsorptions at relatively low pHs of 8 and 7 was studied. Results revealed successful adsorption of rhEPO at pH = 8 through affinity capture of glycans by azoboronate ligands. Increased amine density provided 1.1 and 1.5 times higher static adsorption capacities and dynamic performance efficiencies, respectively. In addition, adsorption capacities and initial adsorption rates of rhEPO on MesoBeads were respectively 1.4 and 2.5-2.8 times of MicroBeads. Also, at pH = 8, MesoBeads recorded higher dynamic recoveries (59 and 91%) compared with microporous ones (46 and 69%) since mesoporosity facilitates intraparticle mass transfer. Reduction of binding pH from 8 to 7 resulted in a sharp decrease in dynamic recovery (14%), indicating the appropriate binding pH of azoPBA to be above 7. The azoboronate affinity ligand is a leading candidate for capturing glycoproteins at relatively low pH. Also, mesoporous microparticles are appropriate tools in more efficient medium-sized protein binding applications.
Collapse
Affiliation(s)
| | - Mohammad Reza Mehrnia
- School of Chemical Engineering, College of Engineering, University of Tehran, 11155-4563, Tehran, Iran.
| | - Aref Honarparvaran
- School of Chemical Engineering, College of Engineering, University of Tehran, 11155-4563, Tehran, Iran
| | - Hooman Kaghazian
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, P.O. Box 3159915111, Tehran, Iran
| |
Collapse
|
3
|
Molnár T, Bartošová M, Antošová M, Škultéty Ľ, Polakovič M. Design of a three-step chromatographic process of recombinant human erythropoietin purification. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Wang G, Fu Q, Guo R, Wei Z. Selective adsorption and separation of stevioside and rebaudioside A by a metal-organic framework with boronic acid. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The boronic acid functionalization metal-organic frameworks (MOFs), as unique boronate affinity adsorbents, have desired specific molecular affinity for the separation and enrichment of cis-diol-compounds. Herein, the boronic acid functionalized Zn-based MOF adsorbent (MOF-BA) was synthesized through a simple one-step microwave method and used for the recognition and isolation of steviol glycosides (SGs). This MOF-BA exhibits the same spherical structure and isostructure with the parent framework composed only of the primitive ligand as verified by SEM and XRD characterization. It was confirmed that changing the ratio of ligands could achieve the adjustability of the boron content in the framework. At the same time, the MOF-BA-1.0 showed a suitable pore size (4.69 nm), and the presence of boric acid functional groups showed favorable selectivity for stevioside (STV). The static adsorption results showed that adsorption performances of rebaudioside A (RA) and STV from crude sugar solution (5.0 mg mL−1, pH 8) on MOF-BA-1.0 were investigated at 303 K for 15 h. The adsorption capacities for STV and RA were 42.93 mg g−1 and 22.96 mg g−1, respectively, and the adsorption selectivity (αSTV/RA) reached 4.35. The adsorption isotherm and kinetic data of MOF-BA-1.0 for RA and STV obeyed the Langmuir isotherm model and pseudo second order kinetic model, respectively. The study demonstrated that MOF-BA-1.0 adsorbent could be used as a potential adsorbent to purify the active ingredients of stevia and obtain a high concentration of RA products.
Collapse
Affiliation(s)
- Guanyu Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
| | - Qiaoge Fu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
| | - Ruili Guo
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
| |
Collapse
|
5
|
Adamíková J, Wiśniewski Ł, Molnár T, Bartošová M, Antošová M, Illeová V, Flores-Ramírez G, Škultéty Ľ, Polakovič M. Selection of adsorbents for recombinant human erythropoietin purification. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Adamíková J, Antošová M, Polakovič M. Chromatographic purification of recombinant human erythropoietin. Biotechnol Lett 2019; 41:483-493. [PMID: 30810853 DOI: 10.1007/s10529-019-02656-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
Abstract
Recombinant human erythropoietin is a valuable therapeutic protein used in the treatment of several serious diseases. It exists in different isoforms and is produced by genetically modified mammalian cells such as Chinese hamster ovary or human embryonic kidney cells. As for other biopharmaceutical drugs, a key factor for its successful industrial production is to achieve a high degree of purity and to decrease the content of critical impurities to trace amounts. This goal is achieved in the separation sequence which substantial part is formed by chromatographic steps. Therefore, downstream processing forms an essential part of production costs. This review presents the overview of published separation sequences and, analyzes the use of different types of chromatographic media such as affinity, ion-exchange, reversed-phase, hydrophobic interaction, multimodal, and size-exclusion chromatography adsorbents. Their application is discussed with regard to their place in the purification stages generally denoted as capture, intermediate purification and polishing.
Collapse
Affiliation(s)
- Jana Adamíková
- Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology, Institute of Chemical and Environmental Engineering, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Monika Antošová
- Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology, Institute of Chemical and Environmental Engineering, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Milan Polakovič
- Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology, Institute of Chemical and Environmental Engineering, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia.
| |
Collapse
|
7
|
Kish WS, Roach MK, Sachi H, Naik AD, Menegatti S, Carbonell RG. Purification of human erythropoietin by affinity chromatography using cyclic peptide ligands. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1085:1-12. [DOI: 10.1016/j.jchromb.2018.03.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 03/12/2018] [Accepted: 03/24/2018] [Indexed: 10/17/2022]
|
8
|
Kish WS, Sachi H, Naik AD, Roach MK, Bobay BG, Blackburn RK, Menegatti S, Carbonell RG. Design, selection, and development of cyclic peptide ligands for human erythropoietin. J Chromatogr A 2017; 1500:105-120. [DOI: 10.1016/j.chroma.2017.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 11/26/2022]
|
9
|
Zhang P, Woen S, Wang T, Liau B, Zhao S, Chen C, Yang Y, Song Z, Wormald MR, Yu C, Rudd PM. Challenges of glycosylation analysis and control: an integrated approach to producing optimal and consistent therapeutic drugs. Drug Discov Today 2016; 21:740-65. [DOI: 10.1016/j.drudis.2016.01.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/22/2015] [Accepted: 01/14/2016] [Indexed: 12/18/2022]
|
10
|
|
11
|
Kittur FS, Arthur E, Nguyen M, Hung CY, Sane DC, Xie J. Two-step purification procedure for recombinant human asialoerythropoietin expressed in transgenic plants. Int J Biol Macromol 2015; 72:1111-6. [PMID: 25450830 PMCID: PMC4260996 DOI: 10.1016/j.ijbiomac.2014.10.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 12/19/2022]
Abstract
Asialoerythropoietin (asialo-EPO) is a desialylated form of human glycoprotein hormone erythropoietin (EPO), which has been reported to be neuro-, cardio-, and renoprotective in animal models of organ injuries. Since the current method of production of asialo-EPO from mammalian cell-made recombinant human EPO (rhuEPO(M)) by enzymatic desialylation is not commercially viable, we and others used plant-based expression systems to produce recombinant human asialo-EPO (asialo-rhuEPO(P)). Despite achieving high expression levels in plants, its purification from plant extracts has remained a greater challenge, which has prevented studying its tissue-protective effects and translating it into clinical practice. In this study, a procedure was developed to purify asialo-rhuEPO(P) from transgenic tobacco leaf tissues in two steps: ion-exchange chromatography based on its high pI (8.75) to separate it from acidic plant proteins, and immunoaffinity chromatography to obtain pure asialo-rhuEPO(P). Using this process, up to 31% of the asialo-rhuEPO(P) could be recovered to near homogeneity from plant extracts. This work demonstrates that asialo-rhuEPO(P) expressed in tobacco plants could be purified in high yield and purity using minimal steps, which might be suitable for scale-up. Furthermore, the ion-exchange chromatography step together with the use of protein-specific antibody column could be used to purify a wide variety of basic recombinant proteins from transgenic leaf tissues.
Collapse
Affiliation(s)
- Farooqahmed S Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Elena Arthur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Maikhanh Nguyen
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - David C Sane
- Carilion Clinic and Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
12
|
dos Santos R, Rosa SA, Aires-Barros MR, Tover A, Azevedo AM. Phenylboronic acid as a multi-modal ligand for the capture of monoclonal antibodies: Development and optimization of a washing step. J Chromatogr A 2014; 1355:115-24. [DOI: 10.1016/j.chroma.2014.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
|
13
|
Jeong TH, Son YJ, Ryu HB, Koo BK, Jeong SM, Hoang P, Do BH, Song JA, Chong SH, Robinson RC, Choe H. Soluble expression and partial purification of recombinant human erythropoietin from E. coli. Protein Expr Purif 2014; 95:211-8. [DOI: 10.1016/j.pep.2014.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 01/01/2014] [Accepted: 01/03/2014] [Indexed: 11/28/2022]
|
14
|
Ye F, Yang R, Hua X, Zhao W, Zhang W, Jin Z. Adsorption characteristics of stevioside and rebaudioside A from aqueous solutions on 3-aminophenylboronic acid-modified poly(divinylbenzene-co-acrylic acid). Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.07.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Borlido L, Azevedo A, Sousa A, Oliveira P, Roque A, Aires-Barros M. Fishing human monoclonal antibodies from a CHO cell supernatant with boronic acid magnetic particles. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 903:163-70. [DOI: 10.1016/j.jchromb.2012.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/12/2012] [Accepted: 07/15/2012] [Indexed: 10/28/2022]
|
16
|
Borlido L, Azevedo A, Roque A, Aires-Barros M. Potential of boronic acid functionalized magnetic particles in the adsorption of human antibodies under mammalian cell culture conditions. J Chromatogr A 2011; 1218:7821-7. [DOI: 10.1016/j.chroma.2011.08.084] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/25/2011] [Accepted: 08/27/2011] [Indexed: 10/17/2022]
|
17
|
Preinerstorfer B, Lämmerhofer M, Lindner W. Synthesis and application of novel phenylboronate affinity materials based on organic polymer particles for selective trapping of glycoproteins. J Sep Sci 2009; 32:1673-85. [PMID: 19472289 DOI: 10.1002/jssc.200800679] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report on synthesis concepts for the fabrication of various novel phenylboronate affinity materials based on polymethacrylate epoxy beads (Fractogel EMD Epoxy (M) 40-90 microm) and the testing of these functionalized polymer particles for selective trapping of a glycoprotein from a standard mixture containing a glycosylated and a nonglycosylated protein. Two inherently different approaches for the functionalization of the bare beads with boronate groups have been elucidated. In the first, the epoxy residues of the polymer particles were converted into reactive thiol groups which were subsequently used as anchor moieties for the immobilization of 4-vinylphenylboronic acid by radical addition or radical polymerization reaction. Three different ways for the generation of sulfhydryl groups have been examined leading to materials with distinct linker chemistries. In the second and more straightforward approach, the epoxy groups were reacted with 4-mercaptophenylboronic acid. The novel materials were thoroughly characterized by (i) quantitation of the sulfur content by elemental analysis, (ii) reactive sulfhydryls were determined in a photospectrometric assay, (iii) boron content was measured by inductively coupled plasma-atomic emission spectrometry, and (iv) the amount of reactive boronate groups was evaluated in a fast binding assay employing adenosine as test compound. A maximum concentration of 1.2 mmol boronate groups per gram dry beads could be achieved by the presented synthesis routes. Employing the novel phenylboronate affinity materials in capture and release experiments in the batch mode, a standard glycoprotein, viz. transferrin (Tf) from human serum was separated from a nonglycosylated protein, BSA. A commercial boronate affinity material based on 3-aminophenylboronic acid modified agarose gel was employed as reference material and was found to perform significantly worse compared to the herein presented novel polymethacrylate particles.
Collapse
Affiliation(s)
- Beatrix Preinerstorfer
- Christian Doppler Laboratory for Molecular Recognition Materials, Department of Analytical Chemistry and Food Chemistry, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
18
|
Zhang B, Mathewson S, Chen H. Two-dimensional liquid chromatographic methods to examine phenylboronate interactions with recombinant antibodies. J Chromatogr A 2009; 1216:5676-86. [DOI: 10.1016/j.chroma.2009.05.084] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/21/2009] [Accepted: 05/27/2009] [Indexed: 11/16/2022]
|
19
|
Fortis F, Guerrier L, Righetti PG, Antonioli P, Boschetti E. A new approach for the removal of protein impurities from purified biologicals using combinatorial solid-phase ligand libraries. Electrophoresis 2006; 27:3018-27. [PMID: 16807935 DOI: 10.1002/elps.200500847] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The removal of last impurity traces from a purified protein is generally called polishing. It is an important step in downstream processing since protein impurities may generate undesirable side effects when the preparation is intended for research, diagnostic and more importantly therapeutic applications. Polishing is generally achieved by using orthogonal separation methods to previous steps, the most common being gel permeation chromatography. In spite of its polishing effectiveness, this technique suffers from a poor separation capacity and modest productivity as a result of low speed. Other approaches, for instance, based on anion exchange or on hydrophobic chromatography, that may be optimized for a given process cannot be used as generic methods. This document reports for the first time the use of a combinatorial solid-phase peptide library as a general method for the removal of impurity traces. Several examples of impurity trace removal are reported; starting material is either a pure protein spiked with serum proteins or with Escherichia coli extracts or current purified proteins still containing a small percentage of impurities. Among polished proteins are recombinant human albumin expressed in Pichia pastoris and human transferrin purified from whole plasma. This new method is used in neutral or even physiological pH and ionic strength conditions, with a remarkable capability to remove impurities. The process is as rapid as current adsorption chromatography procedures usable for the removal of a large number of protein impurities, with each one present in small amounts, such as host cell proteins.
Collapse
|
20
|
Crowell CK, Grampp GE, Rogers GN, Miller J, Scheinman RI. Amino acid and manganese supplementation modulates the glycosylation state of erythropoietin in a CHO culture system. Biotechnol Bioeng 2006; 96:538-49. [PMID: 16937399 DOI: 10.1002/bit.21141] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The manufacture of secreted proteins is complicated by the need for both high levels of expression and appropriate processing of the nascent polypeptide. For glycoproteins, such as erythropoietin (EPO), posttranslational processing involves the addition of oligosaccharide chains. We initially noted that a subset of the amino acids present in the cell culture media had become depleted by cellular metabolism during the last harvest cycle in our batch fed system and hypothesized that by supplementing these nutrients we would improve EPO yields. By increasing the concentration of these amino acids we increased recombinant human erythropoietin (rHuEPO) biosynthesis in the last harvest cycle as expected but, surprisingly, we also observed a large increase in the amount of rHuEPO with a relatively low sialic acid content. To understand the nature of this process we isolated and characterized the lower sialylated rHuEPO pool. Decreased sialylation correlated with an increase in N-linked carbohydrates missing terminal galactose moieties, suggesting that beta-1,4-galactosyltransferase may be rate limiting in our system. To test this hypothesis we supplemented our cultures with varying concentrations of manganese (Mn(2+)), a cofactor for beta-1,4-galactosyltransferase. Consistent with our hypothesis we found that Mn(2+) addition improved galactosylation and greatly reduced the amount of rHuEPO in the lower sialylated fraction. Additionally, we found that Mn(2+) addition increased carbohydrate site occupancy and narrowed carbohydrate branching to bi-antennary structures in these lower sialylated pools. Surprisingly Mn(2+) only had this effect late in the culture process. These data indicate that the addition of Mn(2+) has complex effects on stressed batch fed cultures.
Collapse
Affiliation(s)
- Christopher K Crowell
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, 4200 E. 9th Ave, C238, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
21
|
Hoeg-Jensen T, Ridderberg S, Havelund S, Schäffer L, Balschmidt P, Jonassen I, Vedsø P, Olesen PH, Markussen J. Insulins with built-in glucose sensors for glucose responsive insulin release. J Pept Sci 2005; 11:339-46. [PMID: 15635658 DOI: 10.1002/psc.624] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Derivatization of insulin with phenylboronic acids is described, thereby equipping insulin with novel glucose sensing ability. It is furthermore demonstrated that such insulins are useful in glucose-responsive polymer-based release systems. The preferred phenylboronic acids are sulfonamide derivatives, which, contrary to naïve boronic acids, ensure glucose binding at physiological pH, and simultaneously operate as handles for insulin derivatization at LysB29. The glucose affinities of the novel insulins were evaluated by glucose titration in a competitive assay with alizarin. The affinities were in the range 15-31 mM (K(d)), which match physiological glucose fluctuations. The dose-responsive glucose-mediated release of the novel insulins was demonstrated using glucamine-derived polyethylene glycol polyacrylamide (PEGA) as a model, and it was shown that Zn(II) hexamer formulation of the boronated insulins resulted in steeper glucose sensitivity relative to monomeric insulin formulation. Notably, two of the boronated insulins displayed enhanced insulin receptor affinity relative to native insulin (113%-122%) which is unusual for insulin LysB29 derivatives.
Collapse
|