1
|
Yang BX, Xie CY, Xia ZY, Wu YJ, Gou M, Tang YQ. Improving xylitol yield by deletion of endogenous xylitol-assimilating genes: a study of industrial Saccharomyces cerevisiae in fermentation of glucose and xylose. FEMS Yeast Res 2020; 20:5986616. [PMID: 33201998 DOI: 10.1093/femsyr/foaa061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/14/2020] [Indexed: 01/12/2023] Open
Abstract
Engineered Saccharomyces cerevisiae can reduce xylose to xylitol. However, in S.cerevisiae, there are several endogenous enzymes including xylitol dehydrogenase encoded by XYL2, sorbitol dehydrogenases encoded by SOR1/SOR2 and xylulokinase encoded by XKS1 may lead to the assimilation of xylitol. In this study, to increase xylitol accumulation, these genes were separately deleted through CRISPR/Cas9 system. Their effects on xylitol yield of an industrial S. cerevisiae CK17 overexpressing Candida tropicalis XYL1 (encoding xylose reductase) were investigated. Deletion of SOR1/SOR2 or XKS1 increased the xylitol yield in both batch and fed-batch fermentation with different concentrations of glucose and xylose. The analysis of the transcription level of key genes in the mutants during fed-batch fermentation suggests that SOR1/SOR2 are more crucially responsible for xylitol oxidation than XYL2 under the genetic background of S.cerevisiae CK17. The deletion of XKS1 gene could also weaken SOR1/SOR2 expression, thereby increasing the xylitol accumulation. The XKS1-deleted strain CK17ΔXKS1 produced 46.17 g/L of xylitol and reached a xylitol yield of 0.92 g/g during simultaneous saccharification and fermentation (SSF) of pretreated corn stover slurry. Therefore, the deletion of XKS1 gene provides a promising strategy to meet the industrial demands for xylitol production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Bai-Xue Yang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Cai-Yun Xie
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Ya-Jing Wu
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| |
Collapse
|
2
|
Reshamwala SMS, Lali AM. Exploiting the NADPH pool for xylitol production using recombinant Saccharomyces cerevisiae. Biotechnol Prog 2020; 36:e2972. [PMID: 31990139 DOI: 10.1002/btpr.2972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/29/2019] [Accepted: 01/22/2020] [Indexed: 01/28/2023]
Abstract
Xylitol is a five-carbon sugar alcohol that has a variety of uses in the food and pharmaceutical industries. In xylose assimilating yeasts, NAD(P)H-dependent xylose reductase (XR) catalyzes the reduction of xylose to xylitol. In the present study, XR with varying cofactor specificities was overexpressed in Saccharomyces cerevisiae to screen for efficient xylitol production. Xylose consumption and xylitol yields were higher when NADPH-dependent enzymes (Candida tropicalis XR and S. cerevisiae Gre3p aldose reductase) were expressed, indicating that heterologous enzymes can utilize the intracellular NADPH pool more efficiently than the NADH pool, where they may face competition from native enzymes. This was confirmed by overexpression of a NADH-preferring C. tropicalis XR mutant, which led to decreased xylose consumption and lower xylitol yield. To increase intracellular NADPH availability for xylitol production, the promoter of the ZWF1 gene, coding for the first enzyme of the NADPH-generating pentose phosphate pathway, was replaced with the constitutive GPD promoter in a strain expressing C. tropicalis XR. This change led to a ~12% increase in xylitol yield. Deletion of XYL2 and SOR1, whose gene products can use xylitol as substrate, did not further increase xylitol yield. Using wheat stalk hydrolysate as source of xylose, the constructed strain efficiently produced xylitol, demonstrating practical relevance of this approach.
Collapse
Affiliation(s)
| | - Arvind M Lali
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India.,Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
3
|
Zhang M, Puri AK, Wang Z, Singh S, Permaul K. A unique xylose reductase from Thermomyces lanuginosus: Effect of lignocellulosic substrates and inhibitors and applicability in lignocellulosic bioconversion. BIORESOURCE TECHNOLOGY 2019; 281:374-381. [PMID: 30831517 DOI: 10.1016/j.biortech.2019.02.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
In this study, the xylose reductase gene (XRTL) from Thermomyces lanuginosus SSBP was expressed in Pichia pastoris GS115 and Saccharomyces cerevisiae Y294. The purified 39.2 kDa monomeric enzyme was optimally active at pH 6.5 and 50 °C and showed activity over a wide range of temperatures (30-70 °C) and pH (4.0-9.0), with a half-life of 1386 min at 50 °C. The enzyme preferred NADPH as cofactor and showed broad substrate specificity. The enzyme was inhibited by Cu2+, Fe2+ and Zn2+, while ferulic acid was found to be the most potent lignocellulosic inhibitor. Recombinant S. cerevisiae with the XRTL gene showed 34% higher xylitol production than the control strain. XRTL can therefore be used in a cell-free xylitol production process or as part of a pathway for utilization of xylose from lignocellulosic waste.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Adarsh Kumar Puri
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa.
| | - Zhengxiang Wang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Suren Singh
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Kugen Permaul
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| |
Collapse
|
4
|
Xu Y, Chi P, Bilal M, Cheng H. Biosynthetic strategies to produce xylitol: an economical venture. Appl Microbiol Biotechnol 2019; 103:5143-5160. [PMID: 31101942 DOI: 10.1007/s00253-019-09881-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 01/04/2023]
Abstract
Xylitol is a natural five-carbon sugar alcohol with potential for use in food and pharmaceutical industries owing to its insulin-independent metabolic regulation, tooth rehardening, anti-carcinogenic, and anti-inflammatory, as well as osteoporosis and ear infections preventing activities. Chemical and biosynthetic routes using D-xylose, glucose, or biomass hydrolysate as raw materials can produce xylitol. Among these methods, microbial production of xylitol has received significant attention due to its wide substrate availability, easy to operate, and eco-friendly nature, in contrast with high-energy consuming and environmental-polluting chemical method. Though great advances have been made in recent years for the biosynthesis of xylitol from xylose, glucose, and biomass hydrolysate, and the yield and productivity of xylitol are substantially improved by metabolic engineering and optimizing key metabolic pathway parameters, it is still far away from industrial-scale biosynthesis of xylitol. In contrary, the chemical synthesis of xylitol from xylose remains the dominant route. Economic and highly efficient xylitol biosynthetic strategies from an abundantly available raw material (i.e., glucose) by engineered microorganisms are on the hard way to forwarding. However, synthetic biology appears as a novel and promising approach to develop a super yeast strain for industrial production of xylitol from glucose. After a brief overview of chemical-based xylitol production, we critically analyzed and comprehensively summarized the major metabolic strategies used for the enhanced biosynthesis of xylitol in this review. Towards the end, the study is wrapped up with current challenges, concluding remarks, and future prospects for designing an industrial yeast strain for xylitol biosynthesis from glucose.
Collapse
Affiliation(s)
- Yirong Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Chi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Bioethanol a Microbial Biofuel Metabolite; New Insights of Yeasts Metabolic Engineering. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4010016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Pratter SM, Eixelsberger T, Nidetzky B. Systematic strain construction and process development: Xylitol production by Saccharomyces cerevisiae expressing Candida tenuis xylose reductase in wild-type or mutant form. BIORESOURCE TECHNOLOGY 2015; 198:732-738. [PMID: 26452180 DOI: 10.1016/j.biortech.2015.09.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
A novel Saccharomyces cerevisiae whole-cell biocatalyst for xylitol production based on Candida tenuis xylose reductase (CtXR) is presented. Six recombinant strains expressing wild-type CtXR or an NADH-specific mutant were constructed and evaluated regarding effects of expression mode, promoter strength, biocatalyst concentration and medium composition. Intracellular XR activities ranged from 0.09 U mgProt(-1) to 1.05 U mgProt(-1) but did not correlate with the strains' xylitol productivities, indicating that other factors limited xylose conversion in the high-activity strains. The CtXR mutant decreased the biocatalyst's performance, suggesting use of the NADPH-preferring wild-type enzyme when (semi-)aerobic conditions are applied. In a bioreactor process, the best-performing strain converted 40 g L(-1) xylose with an initial productivity of 1.16 g L(-1)h(-1) and a xylitol yield of 100%. The obtained results underline the potential of CtXR wild-type for xylose reduction and point out parameters to improve "green" xylitol production.
Collapse
Affiliation(s)
- S M Pratter
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - T Eixelsberger
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - B Nidetzky
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria.
| |
Collapse
|
7
|
Jain H, Mulay S. A review on different modes and methods for yielding a pentose sugar: xylitol. Int J Food Sci Nutr 2013; 65:135-43. [DOI: 10.3109/09637486.2013.845651] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Zha J, Li BZ, Shen MH, Hu ML, Song H, Yuan YJ. Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae. PLoS One 2013; 8:e68317. [PMID: 23844185 PMCID: PMC3699558 DOI: 10.1371/journal.pone.0068317] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/28/2013] [Indexed: 11/19/2022] Open
Abstract
Production of ethanol and xylitol from lignocellulosic hydrolysates is an alternative to the traditional production of ethanol in utilizing biomass. However, the conversion efficiency of xylose to xylitol is restricted by glucose repression, causing a low xylitol titer. To this end, we cloned genes CDT-1 (encoding a cellodextrin transporter) and gh1-1 (encoding an intracellular β-glucosidase) from Neurospora crassa and XYL1 (encoding a xylose reductase that converts xylose into xylitol) from Scheffersomyces stipitis into Saccharomyces cerevisiae, enabling simultaneous production of ethanol and xylitol from a mixture of cellobiose and xylose (main components of lignocellulosic hydrolysates). We further optimized the expression levels of CDT-1 and XYL1 by manipulating their promoters and copy-numbers, and constructed an engineered S. cerevisiae strain (carrying one copy of PGK1p-CDT1 and two copies of TDH3p-XYL1), which showed an 85.7% increase in xylitol production from the mixture of cellobiose and xylose than that from the mixture of glucose and xylose. Thus, we achieved a balanced co-fermentation of cellobiose (0.165 g/L/h) and xylose (0.162 g/L/h) at similar rates to co-produce ethanol (0.36 g/g) and xylitol (1.00 g/g).
Collapse
Affiliation(s)
- Jian Zha
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, P. R. China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, P. R. China
| | - Ming-Hua Shen
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, P. R. China
| | - Meng-Long Hu
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, P. R. China
| | - Hao Song
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, P. R. China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, P. R. China
- * E-mail:
| |
Collapse
|
9
|
Effect of heterologous xylose transporter expression in Candida tropicalis on xylitol production rate. Bioprocess Biosyst Eng 2013; 36:809-17. [DOI: 10.1007/s00449-013-0907-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
|
10
|
Jeon WY, Yoon BH, Ko BS, Shim WY, Kim JH. Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioprocess Biosyst Eng 2011; 35:191-8. [PMID: 21922311 PMCID: PMC3250611 DOI: 10.1007/s00449-011-0618-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/16/2011] [Indexed: 11/29/2022]
Abstract
Xylose reductase (XR) is the first enzyme in d-xylose metabolism, catalyzing the reduction of d-xylose to xylitol. Formation of XR in the yeast Candida tropicalis is significantly repressed in cells grown on medium that contains glucose as carbon and energy source, because of the repressive effect of glucose. This is one reason why glucose is not a suitable co-substrate for cell growth in industrial xylitol production. XR from the ascomycete Neurospora crassa (NcXR) has high catalytic efficiency; however, NcXR is not expressed in C. tropicalis because of difference in codon usage between the two species. In this study, NcXR codons were changed to those preferred in C. tropicalis. This codon-optimized NcXR gene (termed NXRG) was placed under control of a constitutive glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter derived from C. tropicalis, and integrated into the genome of xylitol dehydrogenase gene (XYL2)-disrupted C. tropicalis. High expression level of NXRG was confirmed by determining XR activity in cells grown on glucose medium. The resulting recombinant strain, LNG2, showed high XR activity (2.86 U (mg of protein)−1), whereas parent strain BSXDH-3 showed no activity. In xylitol fermentation using glucose as a co-substrate with xylose, LNG2 showed xylitol production rate 1.44 g L−1 h−1 and xylitol yield of 96% at 44 h, which were 73 and 62%, respectively, higher than corresponding values for BSXDH-3 (rate 0.83 g L−1 h−1; yield 59%).
Collapse
Affiliation(s)
- Woo Young Jeon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea
| | | | | | | | | |
Collapse
|
11
|
Jeon Y, Shin HS, Rogers P. Xylitol production from a mutant strain of Candida tropicalis. Lett Appl Microbiol 2011; 53:106-13. [DOI: 10.1111/j.1472-765x.2011.03078.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Kim SH, Yun JY, Kim SG, Seo JH, Park JB. Production of xylitol from d-xylose and glucose with recombinant Corynebacterium glutamicum. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2009.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Wang X, Fang B, Luo J, Li W, Zhang L. Heterologous expression, purification, and characterization of xylose reductase from Candida shehatae. Biotechnol Lett 2007; 29:1409-12. [PMID: 17653624 DOI: 10.1007/s10529-007-9412-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 04/23/2007] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
The xylose reductase (XR) gene (xyl1) from Candida shehatae was cloned and expressed in Escherichia coli, and purified as a His(6)-tagged fusion protein. The recombinant XR had K(m) values for NADH than NADPH of 150 microM and 20 microM, respectively. The optimal reaction was at pH 6.5 and 35 degrees C. The enzyme was specific for D-xylese.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Institute of Industrial Biotechnology, Huaqiao University, 362021, Quanzhou, P.R. China
| | | | | | | | | |
Collapse
|
14
|
Oliveira C, Teixeira JA, Lima N, Da Silva NA, Domingues L. Development of stable flocculent Saccharomyces cerevisiae strain for continuous Aspergillus niger β-galactosidase production. J Biosci Bioeng 2007; 103:318-24. [PMID: 17502272 DOI: 10.1263/jbb.103.318] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 01/09/2007] [Indexed: 11/17/2022]
Abstract
A flocculent Saccharomyces cerevisiae strain was engineered to stably secrete Aspergillus niger beta-galactosidase in a continuous high-cell-density bioreactor. The delta-sequences from the yeast retrotransposon Ty1 were used as target sites for the integration of the beta-galactosidase expression cassette. High-copy-number transformants were successfully obtained using the delta-integration system together with the dominant selection antibiotic, G418. The integration of multiple copies was confirmed by genomic Southern blot analysis. Integrants with the highest beta-galactosidase levels (approximately eight gene copies) had similar beta-galactosidase activities as a recombinant strain carrying the beta-galactosidase expression cassette in a YEp-based vector. The beta-galactosidase expression cassettes integrated into the yeast genome were stably maintained after eight sequential batch cultures in a nonselective medium. In continuous high-cell-density culture under the same operating conditions, the integrant strain was more stable than the plasmid-carrying strain. To our knowledge, this is the first study of multicopy delta-integrant stability in a continuous bioreactor operating at different dilution rates.
Collapse
Affiliation(s)
- Carla Oliveira
- IBB-Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | |
Collapse
|
15
|
Ko BS, Rhee CH, Kim JH. Enhancement of xylitol productivity and yield using a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis under fully aerobic conditions. Biotechnol Lett 2006; 28:1159-62. [PMID: 16810450 DOI: 10.1007/s10529-006-9068-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
The effects of glycerol and the oxygen transfer rate on the xylitol production rate by a xylitol dehydrogenase gene (XYL2)-disrupted mutant of Candida tropicalis were investigated. The mutant produced xylitol near the almost yield of 100% from D: -xylose using glycerol as a co-substrate for cell growth and NADPH regeneration: 50 g D: -xylose l(-1) was completely converted into xylitol when at least 20 g glycerol l(-1) was used as a co-substrate. The xylitol production rate increased with the O(2) transfer rate until saturation and it was not necessary to control the dissolved O(2) tension precisely. Under the optimum conditions, the volumetric productivity and xylitol yield were 3.2 g l(-1) h(-1) and 97% (w/w), respectively.
Collapse
Affiliation(s)
- Byoung Sam Ko
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | | | | |
Collapse
|
16
|
Ko BS, Kim J, Kim JH. Production of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis. Appl Environ Microbiol 2006; 72:4207-13. [PMID: 16751533 PMCID: PMC1489653 DOI: 10.1128/aem.02699-05] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 04/07/2006] [Indexed: 11/20/2022] Open
Abstract
Xylitol dehydrogenase (XDH) is one of the key enzymes in d-xylose metabolism, catalyzing the oxidation of xylitol to d-xylulose. Two copies of the XYL2 gene encoding XDH in the diploid yeast Candida tropicalis were sequentially disrupted using the Ura-blasting method. The XYL2-disrupted mutant, BSXDH-3, did not grow on a minimal medium containing d-xylose as a sole carbon source. An enzyme assay experiment indicated that BSXDH-3 lost apparently all XDH activity. Xylitol production by BSXDH-3 was evaluated using a xylitol fermentation medium with glucose as a cosubstrate. As glucose was found to be an insufficient cosubstrate, various carbon sources were screened for efficient cofactor regeneration, and glycerol was found to be the best cosubstrate. BSXDH-3 produced xylitol with a volumetric productivity of 3.23 g liter(-1) h(-1), a specific productivity of 0.76 g g(-1) h(-1), and a xylitol yield of 98%. This is the first report of gene disruption of C. tropicalis for enhancing the efficiency of xylitol production.
Collapse
Affiliation(s)
- Byoung Sam Ko
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | |
Collapse
|
17
|
Ko BS, Jung HC, Kim JH. Molecular Cloning and Characterization of NAD+-Dependent Xylitol Dehydrogenase fromCandida tropicalisATCC 20913. Biotechnol Prog 2006. [DOI: 10.1002/bp060263i] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Waters SM, Doyle S, Murphy RA, Power RFG. Development of solution phase hybridisation PCR-ELISA for the detection and quantification of Enterococcus faecalis and Pediococcus pentosaceus in Nurmi-type cultures. J Microbiol Methods 2005; 63:264-75. [PMID: 15949857 DOI: 10.1016/j.mimet.2005.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 03/16/2005] [Accepted: 03/29/2005] [Indexed: 11/19/2022]
Abstract
Nurmi-type cultures (NTCs), derived from the fermentation of caecal contents of specifically pathogen-free (SPF) birds, have been used successfully to control salmonella colonisation in chicks. These cultures are undefined in nature and, consequently, it is difficult to obtain approval from regulatory agencies for their use as direct fed microbials (DFMs) for poultry. Progress towards the generation of effective defined probiotics requires further knowledge of the composition of these cultures. As such, species-specific, culture-independent quantification methodologies need to be developed to elucidate the concentration of specific bacterial constituents of NTCs. Quantification of specific bacterial species in such ill-defined complex cultures using conventional culturing methods is inaccurate due to low levels of sensitivity and reproducibility, in addition to slow turnaround times. Furthermore, these methods lack selectivity due to the nature of the accompanying microflora. This study describes the development of a rapid, sensitive, reliable, reproducible, and species-specific culture-independent, solution phase hybridisation PCR-ELISA procedure for the detection and quantification of Enterococcus faecalis and Pediococcus pentosaceus in NTCs. In this technique, biotin-labelled primers were designed to amplify a species-specific fragment of a marker gene of known copy number, in both species. Resulting amplicons were hybridised with a dinitrophenol (DNP)-labelled oligonucleotide probe in solution and were subsequently captured on a streptavidin-coated microtitre plate. The degree of binding was determined by the addition of IgG (anti-DNP)-horseradish peroxidase conjugate, which was subsequently visualised using a chromogenic substrate, tetramethylbenzidine. This novel quantitative method was capable of detecting E. faecalis and P. pentosaceus at levels as low as 5 CFU per PCR reaction.
Collapse
Affiliation(s)
- Sinéad M Waters
- Alltech Ireland, Sarney, Summerhill Road, Dunboyne, Co. Meath, Ireland.
| | | | | | | |
Collapse
|
19
|
Selection of optimum expression system for production of kringle fragment of human apolipoprotein(a) inSaccharomyces cerevisiae. BIOTECHNOL BIOPROC E 2004. [DOI: 10.1007/bf02933497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Tran LH, Yogo M, Ojima H, Idota O, Kawai K, Suzuki T, Takamizawa K. The production of xylitol by enzymatic hydrolysis of agricultural wastes. BIOTECHNOL BIOPROC E 2004. [DOI: 10.1007/bf02942297] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Kim MD, Rhee SK, Seo JH. Enhanced production of anticoagulant hirudin in recombinant Saccharomyces cerevisiae by chromosomal delta-integration. J Biotechnol 2001; 85:41-8. [PMID: 11164961 DOI: 10.1016/s0168-1656(00)00376-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recombinant Saccharomyces cerevisiae strains were developed to overproduce an anticoagulant hirudin. The delta-sequences of the yeast retrotransposon Ty1 and URA3 were used as target sites for a hirudin expression cassette. High copy-number transformants were successfully selected using a dominant selection antibiotic, G418. The copy numbers of the hirudin expression cassette integrated into delta-sequences of the yeast chromosome ranged from five to ten copies per cell. Production of hirudin in the delta-integrated recombinant S. cerevisiae system increased over two-fold compared with the YEp-based episomal hirudin expression system. A linear relationship between the copy number of the hirudin expression cassette and hirudin expression level was observed up to 10 copies. The hirudin expression cassettes integrated into the yeast chromosome were stably maintained in non-selective culture conditions.
Collapse
Affiliation(s)
- M D Kim
- Department of Food Science and Technology and School of Agricultural Biotechnology, Seoul National University, Suwon 441-744, South Korea
| | | | | |
Collapse
|
22
|
Flores CL, Rodríguez C, Petit T, Gancedo C. Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol Rev 2000; 24:507-29. [PMID: 10978549 DOI: 10.1111/j.1574-6976.2000.tb00553.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sugars are excellent carbon sources for all yeasts. Since a vast amount of information is available on the components of the pathways of sugar utilization in Saccharomyces cerevisiae it has been tacitly assumed that other yeasts use sugars in the same way. However, although the pathways of sugar utilization follow the same theme in all yeasts, important biochemical and genetic variations on it exist. Basically, in most non-conventional yeasts, in contrast to S. cerevisiae, respiration in the presence of oxygen is prominent for the use of sugars. This review provides comparative information on the different steps of the fundamental pathways of sugar utilization in non-conventional yeasts: glycolysis, fermentation, tricarboxylic acid cycle, pentose phosphate pathway and respiration. We consider also gluconeogenesis and, briefly, catabolite repression. We have centered our attention in the genera Kluyveromyces, Candida, Pichia, Yarrowia and Schizosaccharomyces, although occasional reference to other genera is made. The review shows that basic knowledge is missing on many components of these pathways and also that studies on regulation of critical steps are scarce. Information on these points would be important to generate genetically engineered yeast strains for certain industrial uses.
Collapse
Affiliation(s)
- C L Flores
- Instituto de Investigaciones Biomédicas Alberto Sols C.S.I.C.-UAM, Unidad de Bioquímica y Genética de Levaduras, 28029, Madrid, Spain
| | | | | | | |
Collapse
|