1
|
Wang Y, Shang J, Li Z, Zhang A, Cheng Y. Establishment and application of a rapid diagnostic method for BVDV and IBRV using recombinase polymerase amplification-lateral flow device. Front Vet Sci 2024; 11:1360504. [PMID: 38601910 PMCID: PMC11005059 DOI: 10.3389/fvets.2024.1360504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Bovine Viral Diarrhea Virus (BVDV) and Infectious Bovine Rhinotracheitis Virus (IBRV) are the two most prevalent infectious diseases in cattle. They both can cause persistent infection and immunosuppression, resulting in significant economic losses in the livestock industry. Therefore, rapid detection of early BVDV and IBRV infections is crucial. In this study, a method for the rapid detection of BVDV and IBRV was established by using recombinase polymerase amplification (RPA) combined with lateral flow device (LFD). By optimizing the temperature and time conditions of the RPA reaction, the sensitivity, specificity, and clinical performance were evaluated. The results indicated that the RPA reaction could be completed at 40°C within 25 min. The LOD for BVDV and IBRV by RPA-LFD were 5.1 × 101 copies/μL and 6.65 × 101 copies/μL, respectively, with no cross-reactivity observed with other viruses such as CSFV, BRSV, BPIV3, BRV, and BCoV. Testing of 32 clinical samples showed consistent results between RPA-LFD and qPCR. The RPA-LFD method established in this study can be used for the rapid clinical detection of BVDV and IBRV, which providing a rapid and convenient molecular biology approach for on-site rapid detection and epidemiological investigations. Simultaneously, it offers technical support for the prevention and control of these viruses.
Collapse
Affiliation(s)
| | | | | | | | - Yuening Cheng
- Key Laboratory of Economic Animal Diseases, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
2
|
Jones C. Bovine Herpesvirus 1 Counteracts Immune Responses and Immune-Surveillance to Enhance Pathogenesis and Virus Transmission. Front Immunol 2019; 10:1008. [PMID: 31134079 PMCID: PMC6514135 DOI: 10.3389/fimmu.2019.01008] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
Infection of cattle by bovine herpesvirus 1 (BoHV-1) can culminate in upper respiratory tract disorders, conjunctivitis, or genital disorders. Infection also consistently leads to transient immune-suppression. BoHV-1 is the number one infectious agent in cattle that is associated with abortions in cattle. BoHV-1, as other α-herpesvirinae subfamily members, establishes latency in sensory neurons. Stressful stimuli, mimicked by the synthetic corticosteroid dexamethasone, consistently induce reactivation from latency in latently infected calves and rabbits. Increased corticosteroid levels due to stress have a two-pronged effect on reactivation from latency by: (1) directly stimulating viral gene expression and replication, and (2) impairing antiviral immune responses, thus enhancing virus spread and transmission. BoHV-1 encodes several proteins, bICP0, bICP27, gG, UL49.5, and VP8, which interfere with key antiviral innate immune responses in the absence of other viral genes. Furthermore, the ability of BoHV-1 to infect lymphocytes and induce apoptosis, in particular CD4+ T cells, has negative impacts on immune responses during acute infection. BoHV-1 induced immune-suppression can initiate the poly-microbial disorder known as bovine respiratory disease complex, which costs the US cattle industry more than one billion dollars annually. Furthermore, interfering with antiviral responses may promote viral spread to ovaries and the developing fetus, thus enhancing reproductive issues associated with BoHV-1 infection of cows or pregnant cows. The focus of this review is to describe the known mechanisms, direct and indirect, by which BoHV-1 interferes with antiviral immune responses during the course of infection.
Collapse
Affiliation(s)
- Clinton Jones
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
3
|
Sun Z, Zhang M. Prokaryotic expression localization and function of the infectious laryngotracheitis virus glycoprotein G. Sci Bull (Beijing) 2013. [DOI: 10.1007/bf03322797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Zhang M, Fu S, Deng M, Xie Q, Xu H, Liu Z, Hu C, Chen H, Guo A. Attenuation of bovine herpesvirus type 1 by deletion of its glycoprotein G and tk genes and protection against virulent viral challenge. Vaccine 2011; 29:8943-50. [PMID: 21959327 DOI: 10.1016/j.vaccine.2011.09.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 09/09/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
Abstract
To develop a novel vaccine against infectious bovine rhinotracheitis (IBR), a bovine herpesvirus-1 (BoHV-1) mutant was constructed by deleting the genes for glycoprotein G (gG) and thymidine kinase (tk) through homologous recombination. The resulting sequences for both genes were shown to be correct and a gG expression defect was also confirmed. A parallel study of the BoHV-1 gG(-)/tk(-), gE(-)/tk(-) mutants and wild type (wt) in 31 calves was performed at three different doses, 4×10(5)PFU, 4×10(6)PFU and 4×10(7)PFU. Compared to wt BoHV-1, inoculation of BoHV-1 gG(-)/tk(-) and gE(-)/tk(-) produced no clinical signs and the virus was not reactivated by dexamethasone (dex). Inoculation of BoHV-1 gG(-)/tk(-) at the doses of 4×10(6) and 4×10(7)PFU provided full clinical protection for the cattle against wt BoHV-1 challenge at 4×10(7)PFU/calf. Although the mutants were associated with significantly lower levels of serum neutralizing antibody, interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) than wt BoHV-1 on days 3, 5 and 7 after immunization, stimulation of IFN-β by BoHV-1 gG(-)/tk(-) was significantly higher than that of wt BoHV-1 and gE(-)/tk(-) on days 3 and 5. We conclude that BoHV-1 gG(-)/tk(-) was attenuated adequately and that it maintains the ability to stimulate immune protection. Therefore, it may be a promising candidate for a marker vaccine against IBR.
Collapse
Affiliation(s)
- Minmin Zhang
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
|
6
|
von Einem J, Smith PM, Van de Walle GR, O'Callaghan DJ, Osterrieder N. In vitro and in vivo characterization of equine herpesvirus type 1 (EHV-1) mutants devoid of the viral chemokine-binding glycoprotein G (gG). Virology 2007; 362:151-62. [PMID: 17250864 DOI: 10.1016/j.virol.2006.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 11/06/2006] [Accepted: 12/06/2006] [Indexed: 11/26/2022]
Abstract
Glycoprotein G (gG) of equine herpesvirus type 1 (EHV-1), a structural component of virions and secreted from virus-infected cells, was shown to bind to a variety of different chemokines and as such might be involved in immune modulation. Little is known, however, about its role in the replication cycle and infection of EHV-1 in vivo. Here we report on the function of gG in context of virus infection in vitro and in vivo. A gG deletion mutant of pathogenic EHV-1 strain RacL11 (vL11DeltagG) was constructed and analyzed. Deletion of gG had virtually no effect on the growth properties of vL11DeltagG in cell culture when compared to parental virus or a rescuant virus vL11DeltagGR, respectively, and virus titers and plaque formation were unaffected in the absence of the glycoprotein. Similarly, in the murine model of EHV-1 infection, no significant differences in virulence between the gG deletion mutant and RacL11 or vL11DeltagGR were found at high doses of infection. However, infection of mice at lower doses revealed that the gG deletion mutant was able to replicate to higher titers in lungs of infected mice. Additionally, these mice lost significantly more weight than those infected with RacL11 and a more pronounced inflammatory response in lungs was observed. Therefore we concluded that deletion of gG in EHV-1 seems to lead to an exacerbation of respiratory disease in the mouse.
Collapse
Affiliation(s)
- Jens von Einem
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
7
|
Helferich D, Veits J, Teifke JP, Mettenleiter TC, Fuchs W. The UL47 gene of avian infectious laryngotracheitis virus is not essential for in vitro replication but is relevant for virulence in chickens. J Gen Virol 2007; 88:732-742. [PMID: 17325345 DOI: 10.1099/vir.0.82533-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The genome of infectious laryngotracheitis virus (ILTV) exhibits several differences from those of other avian and mammalian alphaherpesviruses. One of them is the translocation of the conserved UL47 gene from the unique long (UL) to the unique short (US) genome region, where UL47 is inserted upstream of the US4 gene homologue. As in other alphaherpesviruses, UL47 encodes a major tegument protein of ILTV particles, whereas the US4 gene product is a non-structural glycoprotein, gG, which is secreted from infected cells. For functional characterization, an ILTV recombinant was isolated in which US4 together with the 3′-terminal part of UL47 was replaced by a reporter gene cassette encoding green fluorescent protein. From this virus, UL47 and US4 single-gene deletion mutants without foreign sequences were derived and virus revertants were also generated. In vitro studies revealed that both genes were non-essential for ILTV replication in cultured cells. Whereas US4-negative ILTV exhibited no detectable growth defects, maximum virus titres of the double deletion mutant and of UL47-negative ILTV were reduced about 10-fold compared with those of wild-type virus and rescued virus. Experimental infection of chickens demonstrated that UL47-negative ILTV was significantly attenuated in vivo and was shed in reduced amounts, whereas wild-type and rescued viruses caused severe disease and high mortality rates. As all immunized animals were protected against subsequent challenge infection with virulent ILTV, the UL47 deletion mutant might be suitable as a live-virus vaccine.
Collapse
Affiliation(s)
- Dorothee Helferich
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Jutta Veits
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Jens P Teifke
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Walter Fuchs
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
8
|
Gopinath RS, Ambagala APN, Hinkley S, Srikumaran S. Effects of virion host shut-off activity of bovine herpesvirus 1 on MHC class I expression. Viral Immunol 2003; 15:595-608. [PMID: 12513930 DOI: 10.1089/088282402320914539] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previously, we have shown that bovine herpesvirus 1 (BHV-1) down-regulates the expression of major histocompatibility complex class I molecules by interfering with transport of peptides by the transporter associated with antigen processing (TAP). Further studies revealed that BHV-1 down-regulates the expression of mRNA for class I molecules and other cellular proteins. To further elucidate the mechanisms of down-regulation of class I molecules, a virion host shut-off (vhs) deletion mutant was generated. The mutant, like the wildtype (wt) virus, interfered with transport of peptides by the TAP, and down-regulated cell surface expression of class I molecules. However, unlike the wt virus, the mutant did not impair the synthesis of class I molecules. These results indicate that down-regulation of class I molecules by BHV-1 is mediated by vhs activity of the virus, as well as mechanisms specifically directed at the class I pathway. Absence of vhs activity should result in decreased pathogenicity and enhanced immunogenicity of BHV-1 vhs deletion mutant, making it a better vaccine candidate.
Collapse
Affiliation(s)
- R S Gopinath
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0905, USA
| | | | | | | |
Collapse
|
9
|
Trapp S, Osterrieder N, Keil GM, Beer M. Mutagenesis of a bovine herpesvirus type 1 genome cloned as an infectious bacterial artificial chromosome: analysis of glycoprotein E and G double deletion mutants. J Gen Virol 2003; 84:301-306. [PMID: 12560561 DOI: 10.1099/vir.0.18682-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genome of bovine herpesvirus type 1 Schönböken was cloned as a bacterial artificial chromosome (BAC) by inserting mini F plasmid sequences into the glycoprotein (g) E gene. The resulting BAC clone, pBHV-1DeltagE, was transfected into bovine kidney cells and viable gE-negative BHV-1 (BHV-1DeltagE) was recovered. By RecE/T mutagenesis in Escherichia coli, the gG open reading frame was deleted from pBHV-1DeltagE. From the mutated BAC, double negative BHV-1DeltagE-gG was reconstituted and its growth properties were compared to those of rescuant viruses in which the gE gene was restored (BHV-1rev, BHV-1DeltagG). The mutant viruses did not exhibit markedly lowered virus titres. Plaque sizes of BHV-1DeltagE, BHV-1DeltagE-gG and BHV-1DeltagG, however, were reduced by 19 to 55 % compared to parental strain Schönböken or BHV-1rev. Our results suggested that gE and gG function independently from each other in cell-to-cell spread, because an additive effect on plaque formation was observed in the gE/gG double deletion mutant.
Collapse
Affiliation(s)
- Sascha Trapp
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Boddenblick 5a, D-17498 Insel Riems, Germany
| | - Nikolaus Osterrieder
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Boddenblick 5a, D-17498 Insel Riems, Germany
| | - Günther M Keil
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Boddenblick 5a, D-17498 Insel Riems, Germany
| | - Martin Beer
- Institute for Diagnostic Virology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Boddenblick 5a, D-17498 Insel Riems, Germany
| |
Collapse
|
10
|
Nakamichi K, Matsumoto Y, Otsuka H. Bovine herpesvirus 1 glycoprotein G is necessary for maintaining cell-to-cell junctional adherence among infected cells. Virology 2002; 294:22-30. [PMID: 11886262 DOI: 10.1006/viro.2001.1264] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycoproteins gE and gG of bovine herpesvirus 1 (BHV-1) are involved in viral cell-to-cell transmission. We have compared the subcellular localizations of gE and gG and examined the cell-to-cell adherence of bovine kidney (MDBK) cells infected with BHV-1 mutants lacking gE or gG. In BHV-1-infected MDBK cells, gE was observed at cell junctions but did not localize at apical or basal plasma membranes. BHV-1 gG was primarily found in the cytoplasm and was also observed at boundaries among infected cells. During the infection with wild-type or gE-negative BHV-1, the filamentous actin and the adherent junctional proteins accumulated at the cell junctions. In contrast, cell junctions of MDBK cells infected with gG-negative BHV-1 were loosened, and the junctional proteins and BHV-1 gE were distributed in the cytoplasm. These data indicate that BHV-1 gG facilitates viral cell-to-cell spread by maintaining the cell-to-cell junctions among the infected cells.
Collapse
Affiliation(s)
- Kazuo Nakamichi
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
11
|
Demmin GL, Clase AC, Randall JA, Enquist LW, Banfield BW. Insertions in the gG gene of pseudorabies virus reduce expression of the upstream Us3 protein and inhibit cell-to-cell spread of virus infection. J Virol 2001; 75:10856-69. [PMID: 11602726 PMCID: PMC114666 DOI: 10.1128/jvi.75.22.10856-10869.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The alphaherpesvirus Us4 gene encodes glycoprotein G (gG), which is conserved in most viruses of the alphaherpesvirus subfamily. In the swine pathogen pseudorabies virus (PRV), mutant viruses with internal deletions and insertions in the gG gene have shown no discernible phenotypes. We report that insertions in the gG locus of the attenuated PRV strain Bartha show reduced virulence in vivo and are defective in their ability to spread from cell to cell in a cell-type-specific manner. Similar insertions in the gG locus of the wild-type PRV strain Becker had no effect on the ability of virus infection to spread between cells. Insertions in the gG locus of the virulent NIA-3 strain gave results similar to those found with the Bartha strain. To examine the role of gG in cell-to-cell spread, a nonsense mutation in the gG signal sequence was constructed and crossed into the Bartha strain. This mutant, PRV157, failed to express gG yet had cell-to-cell spread properties indistinguishable from those of the parental Bartha strain. These data indicated that, while insertions in the gG locus result in decreased cell-to-cell spread, the phenotype was not due to loss of gG expression as first predicted. Analysis of gene expression upstream and downstream of gG revealed that expression of the upstream Us3 protein is reduced by insertion of lacZ or egfp at the gG locus. By contrast, expression of the gene immediately downstream of gG, Us6, which encodes glycoprotein gD, was not affected by insertions in gG. These data indicate that DNA insertions in gG have polar effects and suggest that the serine/threonine kinase encoded by the Us3 gene, and not gG, functions in the spread of viral infection between cells.
Collapse
Affiliation(s)
- G L Demmin
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, 80262, USA
| | | | | | | | | |
Collapse
|
12
|
Nakamichi K, Matsumoto Y, Otsuka H. Defective infection of bovine herpesvirus 1 in non-permissive murine cells. J Vet Med Sci 2001; 63:1139-42. [PMID: 11714033 DOI: 10.1292/jvms.63.1139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The defective growth of bovine herpesvirus I (BHV-1) was analyzed in non-permissive murine embryo fibroblast, BALB/3T3 A31-1-1 (A31) cells. BHV-1 was able to attach and penetrate into A31 cells at similar levels that were seen in semi-permissive cells. Once penetrated into A31 cells, BHV-1 was efficiently transported to nuclei, but the onset of expression of immediate early (IE) protein and viral DNA replication was not observed. These data suggest that the viral replication of BHV-1 in A31 cells is arrested at the point prior to the expression of IE proteins.
Collapse
Affiliation(s)
- K Nakamichi
- Department of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | |
Collapse
|
13
|
Nakamichi K, Kuroki D, Matsumoto Y, Otsuka H. Bovine herpesvirus 1 glycoprotein G is required for prevention of apoptosis and efficient viral growth in rabbit kidney cells. Virology 2001; 279:488-98. [PMID: 11162805 DOI: 10.1006/viro.2000.0740] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In rabbit kidney (RK13) cells, gG-negative BHV-1 exhibited significant defects in plaque formation and growth compared to that of gG-positive BHV-1. RK13 cells infected with gG-negative BHV-1 exhibited a distinctive CPE and contained a larger number of cells stained with trypan blue dye compared to those infected with gG-positive strains, suggesting that gG-negative BHV-1 inflicted more damage to the infected cells than gG-positive BHV-1. Apoptotic cell death was induced in RK13 cells infected with gG-negative BHV-1 within 8 h. In contrast, the onset of apoptosis in gG-positive BHV-1-infected RK13 cells was around 12-16 h postinfection. In the presence of caspase inhibitor Z-Asp-CH2-DCB, multiplication of gG-negative minus BHV-1 was significantly increased. These results demonstrate that BHV-1 gG is involved in stabilizing the cell structure, postponing apoptotic process, and efficient BHV-1 replication in infected RK13 cells.
Collapse
Affiliation(s)
- K Nakamichi
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Tokyo, Bunkyo-ku, 113-8657, Japan
| | | | | | | |
Collapse
|