1
|
Gattani A, Agrawal A, Khan MH, Gupta R, Singh P. Evaluation of catalytic activity of human and animal origin viral neuraminidase: Current prospect. Anal Biochem 2023; 671:115157. [PMID: 37061113 DOI: 10.1016/j.ab.2023.115157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
With the exception of plants, almost all living organisms synthesize neuraminidase/sialidase. It is a one among the crucial proteins that controls how virulent a microorganism is. An essential enzyme in orthomyxoviruses and paramyxoviruses that destroys receptors is neuraminidase. It plays a number of roles throughout the viral life cycle in addition to one that involves the release of progeny virus particles. This protein is an important target for therapeutic interventions and diagnostic assays. Neuraminidase inhibitors effectively prevent the spread of disease and viral infection. Sensitive, quick, and inexpensive high throughput assays are needed to screen for specific neuraminidase inhibitory chemicals. To characterize the neuraminidase catalytic activity, however, the traditional assays are still the most common in laboratories. This review gives a brief overview of these neuraminidase assays and recent, innovative developments, particularly those involving biosensors.
Collapse
Affiliation(s)
- Anil Gattani
- Department of Veterinary Biochemistry, College of Veterinary Science & Animal Husbandry, Jabalpur, M.P, India.
| | - Aditya Agrawal
- Department of Veterinary Biochemistry, College of Veterinary Science & Animal Husbandry, Rewa, M.P, India
| | - M Hira Khan
- Department of Veterinary Biochemistry, College of Veterinary Science & Animal Husbandry, Jabalpur, M.P, India
| | - Rohini Gupta
- Department of Medicine, College of Veterinary Science & Animal Husbandry, Jabalpur, M.P, India
| | - Praveen Singh
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute Izatnagar, 243122, Bareilly, UP, India; Biophysics Section, ICAR-Indian Veterinary Research Institute Izatnagar, 243122, Bareilly, UP, India
| |
Collapse
|
2
|
Expression and Evaluation of a Novel PPRV Nanoparticle Antigen Based on Ferritin Self-Assembling Technology. Pharmaceutics 2022; 14:pharmaceutics14091902. [PMID: 36145650 PMCID: PMC9500948 DOI: 10.3390/pharmaceutics14091902] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Peste des Petits Ruminants (PPR) is a highly pathogenic disease that is classified as a World Organization for Animal Health (OIE)-listed disease. PPRV mainly infects small ruminants such as goats and sheep. In view of the global and high pathogenicity of PPRV, in this study, we proposed a novel nanoparticle vaccine strategy based on ferritin (Fe) self-assembly technology. Using Helicobacter pylori (H. pylori) ferritin as an antigen delivery vector, a PPRV hemagglutinin (H) protein was fused with ferritin and then expressed and purified in both Escherichia coli (E. coli) and silkworm baculovirus expression systems. Subsequently, the nanoparticle antigens’ expression level, immunogenicity and protective immune response were evaluated. Our results showed that the PPRV hemagglutinin–ferritin (H-Fe) protein was self-assembled in silkworms, while it was difficult to observe the correctly folded nanoparticle in E. coli. Meanwhile, the expression level of the H-Fe protein was higher than that of the H protein alone. Furthermore, the immunogenicity and protective immune response of H-Fe nanoparticle antigens expressed by silkworms were improved compared with the H antigen alone. Particularly, the protective immune response of H-Fe antigens expressed in E. coli did not change, as opposed to the H antigen, which was probably due to the incomplete nanoparticle structure in E. coli. This study indicated that the use of ferritin nanoparticles as antigen delivery carriers could increase the expression of antigen proteins and improve the immunogenicity and immune effect of antigens.
Collapse
|
3
|
Expansion in host dynamics of peste des petits ruminants: Potential attribute of outbreaks in disease-endemic settings. Acta Trop 2022; 234:106609. [PMID: 35850237 DOI: 10.1016/j.actatropica.2022.106609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
Since the first case report in 1942, the peste-des-petits-ruminants virus (PPRV) has been causing infection in a wide range of susceptible hosts, particularly in disease-endemic regions. In the last 40 years, various reports highlighted the evidence of disease and viral genome in around 46 animal species from nine diverse families, including Bovidae, Cervidae, Camelidae, Suidae, Canidae, Felidae, Muridae, and Elephantidae. This evidence of clinical and/ or subclinical infection and the presence of the virus in an extended range of susceptible hosts emphasizes the cross-species transmission that remains a significant obstacle to effective control, particularly in disease-endemic regions. Therefore, a better understanding of virus transmission, host susceptibility, and epidemiological investigation of the disease is crucial to achieving the goals of efficient disease control and eradication programs initiated by OIE and FAO in various diseases-endemic regions. Nevertheless, the propensity of PPRV to inter- and intra-transmission may be a possible constraint in disease control strategies in terms of the new outbreak with the involvement of unusual or novel hosts. Considering this aspect, we tried to summarize the scattered data on PPR in available information about the susceptibility of a wide range of wildlife species, large ruminants, camels, and unusual hosts.
Collapse
|
4
|
Yan F, Li E, Li L, Schiffman Z, Huang P, Zhang S, Li G, Jin H, Wang H, Zhang X, Gao Y, Feng N, Zhao Y, Wang C, Xia X. Virus-Like Particles Derived From a Virulent Strain of Pest des Petits Ruminants Virus Elicit a More Vigorous Immune Response in Mice and Small Ruminants Than Those From a Vaccine Strain. Front Microbiol 2020; 11:609. [PMID: 32390966 PMCID: PMC7190788 DOI: 10.3389/fmicb.2020.00609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/19/2020] [Indexed: 11/13/2022] Open
Abstract
Peste des petits ruminants (PPRs) is highly contagious, acute or subacute disease of small ruminants caused by peste des petits ruminants virus (PPRV). To date, several studies have designed and evaluated PPRV-like particles (VLPs) as a vaccine candidate for the prevention and control of PPR, with the majority of these VLPs constructed using sequences derived from a PPRV vaccine strain due to its high immunogenicity. However, because of the lack of available genetic material and certain structural proteins and/or the alteration of posttranslational glycosylation modifications, the immunogenicity of VLPs derived from a vaccine strain is not always optimal. In this study, two PPRV VLP candidates, derived from either the lineage IV Tibet/30 virulent strain or the lineage II Nigeria 75/1 vaccine strain, were generated using a baculovirus system through the coexpression of the PPRV matrix (M), hemagglutinin (H), and fusion (F) proteins in the high expression level cell line High Five. These VLPs were then used to immunize mice, goats, and sheep followed by two boosts after primary immunization. Both VLPs were found to induce a potent humoral immune response as demonstrated by the high ratio of immunoglobulin G1 (IgG1) to IgG2a. In all animals, both VLPs induced high titers of virus-neutralizing antibodies (VNAs), as well as H- and F-specific antibodies, with the Tibet/30 VLPs yielding higher antibody titers by comparison to the Nigeria 75/1 VLPs. Studies in mice also demonstrated that the Tibet/30 VLPs induced a more robust interleukin 4 and interferon γ response than the Nigeria 75/1 VLPs. Goats and sheep immunized with both VLPs exhibited a robust humoral and cell-mediated immune response. Furthermore, our results demonstrated that the VLPs derived from the virulent lineage IV Tibet/30 strain were more immunogenic, inducing a more potent and robust humoral and cell-mediated immune response in vaccinated animals by comparison to the lineage II Nigeria 75/1 vaccine strain VLPs. In addition, VNA titers were significantly higher among animals vaccinated with the Tibet/30 VLPs by comparison to the Nigeria 75/1 VLPs. Taken together, these findings suggest that VLPs derived from the virulent lineage IV Tibet/30 strain are more immunogenic by comparison to those derived from the lineage II Nigeria 75/1 vaccine strain and thus represent a promising vaccine candidate for the control and eradication of PPR.
Collapse
Affiliation(s)
- Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Entao Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ling Li
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Zachary Schiffman
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,National Microbiology Laboratory, Special Pathogens Program, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Pei Huang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Shengnan Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Guohua Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Hongli Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hualei Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinghai Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chengyu Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| |
Collapse
|
5
|
Xue Q, Liu H, Sun M, Zhao W, Chen Y, Chen J, Wei C, Cai X, Xue Q. Peste des petits ruminants virus hemagglutinin (H) induces lysosomal degradation of host cyclophilin A to facilitate viral replication. Virus Res 2019; 277:197844. [PMID: 31866422 DOI: 10.1016/j.virusres.2019.197844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022]
Abstract
Peste des petits ruminants virus (PPRV) is a highly contagious disease that affects sheep and goats. To better understand PPRV replication and virulence, cyclophilin A (CypA), a multifunctional goat host protein, was selected for further studies. CypA has been reported to inhibit or facilitate viral replication. However, the precise roles of CypA during PPRV infection remain unclear. Our data show for the first time that CypA suppressed PPRV replication by its PPIase activity, and PPRV infection decreased CypA protein levels. Detailed analysis revealed that PPRV H protein was responsible for the reduction of CypA, which was dependent on the lysosome pathway. No interaction was identified between H and CypA. Furthermore, the 35-58 region of H was essential for the reduction of CypA. In conclusion, our findings identify the antiviral role of CypA against PPRV and provide key insights into how PPRV H protein antagonizes host antiviral response.
Collapse
Affiliation(s)
- Qiao Xue
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Huaidong Liu
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Miao Sun
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Wei Zhao
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Yanfei Chen
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Jian Chen
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Chunxia Wei
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Xuepeng Cai
- China Institute of Veterinary Drug Control, Beijing, 100081, China.
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, 100081, China.
| |
Collapse
|
6
|
Yan F, Banadyga L, Zhao Y, Zhao Z, Schiffman Z, Huang P, Li E, Wang C, Gao Y, Feng N, Wang T, Wang H, Xia X, Wang C, Yang S, Qiu X. Peste des Petits Ruminants Virus-Like Particles Induce a Potent Humoral and Cellular Immune Response in Goats. Viruses 2019; 11:v11100918. [PMID: 31590353 PMCID: PMC6833106 DOI: 10.3390/v11100918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Peste des petits ruminants is a highly contagious acute or subacute disease of small ruminants caused by the peste des petits ruminants virus (PPRV), and it is responsible for significant economic losses in animal husbandry. Vaccination represents the most effective means of controlling this disease, with virus-like particle (VLP) vaccines offering promising vaccine candidates. In this study, a PPRV VLP-based vaccine was developed using a baculovirus expression system, allowing for the simultaneous expression of the PPRV matrix (M), hemagglutinin (H), fusion (F) and nucleocapsid (N) proteins in insect cells. Immunization of mice and goats with PPRV VLPs elicited a robust neutralization response and a potent cellular immune response. Mouse studies demonstrated that VLPs induced a more robust IFN-γ response in CD4+ and CD8+ T cells than PPRV Nigeria 75/1 and recruited and/or activated more B cells and dendritic cells in inguinal lymph nodes. In addition, PPRV VLPs induced a strong Th1 class response in mice, as indicated by a high IgG2a to IgG1 ratio. Goat studies demonstrated that PPRV VLPs can induce the production of antibodies specific for F and H proteins and can also stimulate the production of virus neutralizing antibodies to the same magnitude as the PPRV Nigeria 75/1 vaccine. Higher amounts of IFN-γ in VLP-immunized animal serum suggested that VLPs also elicited a cellular immune response in goats. These results demonstrated that VLPs elicit a potent immune response against PPRV infection in small ruminants, making PPRV VLPs a potential candidate for PPRV vaccine development.
Collapse
Affiliation(s)
- Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Manitoba, Canada.
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Manitoba, Canada.
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
| | - Ziqi Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, Jilin, China.
| | - Zachary Schiffman
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Manitoba, Canada.
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Pei Huang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, Jilin, China.
| | - Entao Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Huanan Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Cuiling Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- Xinxiang medical university, Xinxiang 453003, Henan, China.
| | - Yuwei Gao
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Manitoba, Canada.
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
| | - Hualei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Jilin University, Changchun 130122, Jilin, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Huanan Agricultural University, Guangzhou 510642, Guangdong, China.
- College of Veterinary Medicine, Jilin University, Changchun 130122, Jilin, China.
| | - Chengyu Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Jilin University, Changchun 130122, Jilin, China.
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Manitoba, Canada.
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
7
|
Host Cellular Receptors for the Peste des Petits Ruminant Virus. Viruses 2019; 11:v11080729. [PMID: 31398809 PMCID: PMC6723671 DOI: 10.3390/v11080729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Peste des Petits Ruminant (PPR) is an important transboundary, OIE-listed contagious viral disease of primarily sheep and goats caused by the PPR virus (PPRV), which belongs to the genus Morbillivirus of the family Paramyxoviridae. The mortality rate is 90–100%, and the morbidity rate may reach up to 100%. PPR is considered economically important as it decreases the production and productivity of livestock. In many endemic poor countries, it has remained an obstacle to the development of sustainable agriculture. Hence, proper control measures have become a necessity to prevent its rapid spread across the world. For this, detailed information on the pathogenesis of the virus and the virus host interaction through cellular receptors needs to be understood clearly. Presently, two cellular receptors; signaling lymphocyte activation molecule (SLAM) and Nectin-4 are known for PPRV. However, extensive information on virus interactions with these receptors and their impact on host immune response is still required. Hence, a thorough understanding of PPRV receptors and the mechanism involved in the induction of immunosuppression is crucial for controlling PPR. In this review, we discuss PPRV cellular receptors, viral host interaction with cellular receptors, and immunosuppression induced by the virus with reference to other Morbilliviruses.
Collapse
|
8
|
Yu R, Zhu R, Gao W, Zhang M, Dong S, Chen B, Yu L, Xie C, Jiang F, Li Z. Fine mapping and conservation analysis of linear B-cell epitopes of peste des petits ruminants virus hemagglutinin protein. Vet Microbiol 2017; 208:110-117. [PMID: 28888625 PMCID: PMC7126934 DOI: 10.1016/j.vetmic.2017.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 12/24/2022]
Abstract
Hemagglutinin protein (H), one of the two glycoproteins of peste des petits ruminants virus (PPRV), binds to its receptor on the host cell and acts as a major antigen that induces and confers highly protective immunity in the host. In order to delineate the epitopes on H protein, fine epitope mapping and conservation analysis of linear B-cell epitopes (BCEs) on PPRV H has been undertaken using biosynthetic peptides and rabbit anti-PPRV H sera. Thirteen linear BCEs were identified and their corresponding minimal motifs were located on the H protein of PPRV China/Tibet/Geg/07-30. Conservation analysis indicated that two of the 13 minimal motifs were conserved among 52 PPRV strains. Nine of the 13 peptides containing the minimal motifs were recognized using anti-PPRV serum from a goat immunized with PPRV vaccine strain Nigeria 75/1. Identified epitopes and their motifs improve our understanding of the antigenic characteristics of PPRV H and provide a basis for the development of epitope-based diagnostic assays and multiple epitopes vaccine.
Collapse
Affiliation(s)
- Ruisong Yu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China
| | - Rui Zhu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Weixiang Gao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China; School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ming Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shijuan Dong
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China
| | - Bingqing Chen
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China
| | - Li Yu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China
| | - Chunfang Xie
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China
| | - Fengying Jiang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China
| | - Zhen Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China.
| |
Collapse
|
9
|
Liang Z, Yuan R, Chen L, Zhu X, Dou Y. Molecular Evolution and Characterization of Hemagglutinin (H) in Peste des Petits Ruminants Virus. PLoS One 2016; 11:e0152587. [PMID: 27035347 PMCID: PMC4818033 DOI: 10.1371/journal.pone.0152587] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/16/2016] [Indexed: 11/24/2022] Open
Abstract
Peste des Petits Ruminants (PPR) is an acute, highly contagious, and febrile viral disease that affects both domestic and wild small ruminants. The disease has become a major obstacle to the development of sustainable Agriculture. Hemagglutinin (H), the envelope glycoprotein of Peste des Petits Ruminants Virus (PPRV), plays a crucial role in regulating viral adsorption and entry, thus determining pathogenicity, and release of newly produced viral particles. In order to accurately understand the epidemic of the disease and the interactions between the virus and host, we launch the work. Here, we examined H gene from all four lineages of the PPRV to investigate evolutionary and epidemiologic dynamics of PPRV by the Bayesian method. In addition, we predicted positive selection sites due to selective pressures. Finally, we studied the interaction between H protein and SLAM receptor based on homology model of the complex. Phylogenetic analysis suggested that H gene can also be used to investigate evolutionary and epidemiologic dynamics of PPRV. Positive selection analysis identified four positive selection sites in H gene, in which only one common site (aa246) was detected by two methods, suggesting strong operation structural and/or functional constraint of changes on the H protein. This target site may be of interest for future mutagenesis studies. The results of homology modeling showed PPRVHv-shSLAM binding interface and MVH-maSLAM binding interface were consistent, wherein the groove in the B4 blade and B5 of the head domain of PPRVHv bound to the AGFCC′ β-sheets of the membrane-distal ectodomain of shSLAM. The binding regions could provide insight on the nature of the protein for epitope vaccine design, novel drug discovery, and rational drug design against PPRV.
Collapse
Affiliation(s)
- Zhongxiang Liang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Epizootic Diseases of Grazing Animals of Ministry of Agriculture, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, China
| | - Ruyi Yuan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Epizootic Diseases of Grazing Animals of Ministry of Agriculture, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, China
| | - Lei Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Epizootic Diseases of Grazing Animals of Ministry of Agriculture, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, China
| | - Xueliang Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Epizootic Diseases of Grazing Animals of Ministry of Agriculture, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, China
| | - Yongxi Dou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Epizootic Diseases of Grazing Animals of Ministry of Agriculture, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, China
- * E-mail:
| |
Collapse
|
10
|
Abstract
Peste des petits ruminants virus causes a highly infectious disease of small ruminants that is endemic across Africa, the Middle East and large regions of Asia. The virus is considered to be a major obstacle to the development of sustainable agriculture across the developing world and has recently been targeted by the World Organisation for Animal Health (OIE) and the Food and Agriculture Organisation (FAO) for eradication with the aim of global elimination of the disease by 2030. Fundamentally, the vaccines required to successfully achieve this goal are currently available, but the availability of novel vaccine preparations to also fulfill the requisite for differentiation between infected and vaccinated animals (DIVA) may reduce the time taken and the financial costs of serological surveillance in the later stages of any eradication campaign. Here, we overview what is currently known about the virus, with reference to its origin, updated global circulation, molecular evolution, diagnostic tools and vaccines currently available to combat the disease. Further, we comment on recent developments in our knowledge of various recombinant vaccines and on the potential for the development of novel multivalent vaccines for small ruminants.
Collapse
Affiliation(s)
- S Parida
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, United Kingdom; National Institute for Animal Biotechnology, Miyapur, Hyderabad, India.
| | - M Muniraju
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, United Kingdom
| | - M Mahapatra
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, United Kingdom
| | | | - H Buczkowski
- Animal and Plant Health Agency, Weybridge, Surrey, KT15 3NB United Kingdom
| | - A C Banyard
- Animal and Plant Health Agency, Weybridge, Surrey, KT15 3NB United Kingdom
| |
Collapse
|
11
|
Self-assembly and release of peste des petits ruminants virus-like particles in an insect cell-baculovirus system and their immunogenicity in mice and goats. PLoS One 2014; 9:e104791. [PMID: 25117931 PMCID: PMC4130610 DOI: 10.1371/journal.pone.0104791] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 07/14/2014] [Indexed: 11/19/2022] Open
Abstract
Peste des petits ruminants (PPR) is an acute, febrile, viral disease of small ruminants that has a significant economic impact. For many viral diseases, vaccination with virus-like particles (VLPs) has shown considerable promise as a prophylactic approach; however, the processes of assembly and release of peste des petits ruminants virus (PPRV) VLPs are not well characterized, and their immunogenicity in the host is unknown. In this study, VLPs of PPRV were generated in a baculovirus system through simultaneous expression of PPRV matrix (M) protein and hemaglutin in (H) or fusion (F) protein. The released VLPs showed morphology similar to that of the native virus particles. Subcutaneous injection of these VLPs (PPRV-H, PPRV-F) into mice and goats elicited PPRV-specific IgG production, increased the levels of virus neutralizing antibodies, and promoted lymphocyte proliferation. Without adjuvants, the immune response induced by the PPRV-H VLPs was comparable to that obtained using equivalent amounts of PPRV vaccine. Thus, our results demonstrated that VLPs containing PPRV M protein and H or F protein are potential “differentiating infected from vaccinated animals” (DIVA) vaccine candidates for the surveillance and eradication of PPR.
Collapse
|
12
|
Roggen EL. Recent developments with B-cell epitope identification for predictive studies. J Immunotoxicol 2012; 3:137-49. [PMID: 18958694 DOI: 10.1080/15476910600845690] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
This review discusses currently available methods for predicting B-cell epitopes on proteins. The use of animals for assessing protein immunogenicity is addressed primarily to highlight the differences in B- and T-cell epitope recognition between species. These differences have to be considered when interpreting potential B-cell epitopes identified by the methods addressed here. "In vitro alternatives" focuses on the strengths and limitations of peptide-based technologies. Three types of computer-based methods for identifying potential B-cell epitopes are discussed: (i) methods applying physico-chemical and structural propensity scales for predicting linear epitopes from the primary structure of a protein, (ii) comparative methods basing prediction upon amino acid sequence and structural similarities between antigenically known and unknown proteins, and (iii) a method combining structural features with a B-cell epitope motif database for predicting linear and conformational antigenic determinants. With respect to human safety, the usefulness of antibody-based tests is limited to comparative studies between an antigenically known protein and variants thereof. Similarly, computer-based methods using data mining can address similarities in B-cell epitope profiles between related proteins, if a proper cut off can be defined for the minimal amino acid sequence similarity required for obtaining an acceptable accuracy. Among the physico-chemical and structural scales, scales identifying in a protein hairpin and non-specific turns seem useful for predicting epitopes with a continuous primary binding site. When conformational epitopes have to be identified as well, a novel computer-based tool seems to be the most promising alternative to X-ray crystallography. However, both methods remain to be extensively evaluated and validated. Thus, promising tools for B-cell epitope identification have been developed. But, no validated method for B-cell epitope identification on antigenically unknown proteins is available yet.
Collapse
|
13
|
Hu Q, Chen W, Huang K, Baron MD, Bu Z. Rescue of recombinant peste des petits ruminants virus: creation of a GFP-expressing virus and application in rapid virus neutralization test. Vet Res 2012; 43:48. [PMID: 22658079 PMCID: PMC3412694 DOI: 10.1186/1297-9716-43-48] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/02/2012] [Indexed: 11/18/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) causes high mortality in goats and sheep and the disease has shown a greatly increased geographic distribution over the last 15 years. It is responsible for serious socioeconomic problems in some of the poorest developing countries. The ability to create recombinant PPRV would provide a useful tool for investigating the biology of the virus and the pathology of disease, as well as for developing new vaccines and diagnostic methods. Here we report the first successful rescue of recombinant PPRV from a full-length cDNA clone of the virus genome. Successful recovery of PPRV was achieved by using a RNA polymerase II promoter to drive transcription of the full-length virus antigenome. We have used this technique to construct a virus expressing a tracer protein (green fluorescent protein, GFP). The recombinant virus replicated as well as the parental virus and could stably express GFP during at least 10 passages. The newly established reverse genetics system for PPRV provides a novel method for constructing a vaccine using PPRV as a vector, and will also prove valuable for fundamental research on the biology of the virus. We found that our recombinant virus allowed more rapid and higher throughput assessment of PPRV neutralization antibody titer via the virus neutralization test (VNT) compared with the traditional method.
Collapse
Affiliation(s)
- Qianqian Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | | | | | | | | |
Collapse
|
14
|
Khandelwal A, Renukaradhya GJ, Rajasekhar M, Sita GL, Shaila MS. Immune responses to hemagglutinin-neuraminidase protein of peste des petits ruminants virus expressed in transgenic peanut plants in sheep. Vet Immunol Immunopathol 2010; 140:291-6. [PMID: 21211855 DOI: 10.1016/j.vetimm.2010.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 11/28/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022]
Abstract
Peste des petits ruminants (PPR) is an acute, highly contagious disease of small ruminants caused by a morbillivirus, Peste des petits ruminants virus (PPRV). The disease is prevalent in equatorial Africa, the Middle East, and the Indian subcontinent. A live attenuated vaccine is in use in some of the countries and has been shown to provide protection for at least three years against PPR. However, the live attenuated vaccine is not robust in terms of thermotolerance. As a step towards development of a heat stable subunit vaccine, we have expressed a hemagglutinin-neuraminidase (HN) protein of PPRV in peanut plants (Arachis hypogea) in a biologically active form, possessing neuraminidase activity. Importantly, HN protein expressed in peanut plants retained its immunodominant epitopes in their natural conformation. The immunogenicity of the plant derived HN protein was analyzed in sheep upon oral immunization. Virus neutralizing antibody responses were elicited upon oral immunization of sheep in the absence of any mucosal adjuvant. In addition, anti-PPRV-HN specific cell-mediated immune responses were also detected in mucosally immunized sheep.
Collapse
Affiliation(s)
- Abha Khandelwal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
15
|
Balamurugan V, Sen A, Saravanan P, Rasool TJ, Yadav MP, Bandyopadhyay SK, Singh RK. Development and characterization of a stable vero cell line constitutively expressing Peste des petits ruminants virus (PPRV) hemagglutinin protein and its potential use as antigen in enzyme-linked immunosorbent assay for serosurveillance of PPRV. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:1367-72. [PMID: 17050742 PMCID: PMC1694451 DOI: 10.1128/cvi.00273-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We developed and characterized a stable Vero cell line constitutively expressing Peste des petits ruminants virus (PPRV) hemagglutinin (H) protein and assessed its potential use as diagnostic antigen in enzyme-linked immunosorbent assay (ELISA). PPRV H gene of the vaccine strain (Sungri-96) was amplified by reverse transcription (RT)-PCR, cloned into a eukaryotic expression vector (pTarget), and subsequently transfected and expressed in Vero cells. A stable Vero cell line was developed after 20 repeated passages by using G418 antibiotic selection pressure (400 to 600 microg/ml). The integration of PPRV H gene in the Vero cell genome and its genomic transcription were confirmed by PCR and RT-PCR assays, respectively, and the 70-kDa PPRV H protein was characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. The recombinant protein reacted specifically with PPRV anti-H neutralizing monoclonal and polyclonal antibody in competitive, sandwich, and indirect ELISA, respectively, indicating that the native form of the protein was expressed. Evaluation of the protein in competitive ELISA and indirect ELISA vis a vis whole virus was done using 306 and 146 goat field serum samples, respectively; comparable results were obtained with high degrees of relative diagnostic specificity (93.53% and 100%, respectively) and sensitivity (99.04% and 79.16%, respectively). This study shows that the PPRV H protein could be a sustainable source of safe antigen in countries of nonendemicity without the need to handle infectious virus for serodiagnosis.
Collapse
Affiliation(s)
- V Balamurugan
- National Morbillivirus Referral Laboratory, Division of Virology, Indian Veterinary Research Institute, Mukteswar, Nainital Distt. Uttaranchal 263 138, India.
| | | | | | | | | | | | | |
Collapse
|
16
|
Batori V, Friis EP, Nielsen H, Roggen EL. Anin silico method using an epitope motif database for predicting the location of antigenic determinants on proteins in a structural context. J Mol Recognit 2005; 19:21-9. [PMID: 16193533 DOI: 10.1002/jmr.752] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Presently X-ray crystallography of protein-antibody complexes is still the most direct way of identifying B-cell epitopes. The objective of this study was to assess the potential of a computer-based epitope mapping tool (EMT) using antigenic amino acid motifs as a fast alternative in a number of applications not requiring detailed information, e.g. development of pharmaceutical proteins, vaccines and industrial enzymes. Using Gal d 4 as a model protein, the EMT was capable of identifying, in the context of the folded protein, amino acid positions known to be involved in antibody binding. The high sensitivity and positive predictive value of the EMT as well as the relevance of the structural associations suggested by the EMT indicated the existence of amino acid motifs that are likely to be involved in antigenic determinants. In addition, differential mapping revealed that sensitivity and positive predictive value were dependent on the minimum relative surface accessibility (RSA) of the amino acids included in the mapping, demonstrating that the EMTs accommodated for the fact that epitopes are three-dimensional entities with various degrees of accessibility. The comparison with existing prediction scales demonstrated the superiority of the EMT with respect to physico-chemical scales. The mapping tool also performed better than the available structural scales, but the significance of the differences remains to be established. Thus, the EMT has the potential of becoming a fast and simple alternative to X-ray crystallography for predicting structural antigenic determinants, if detailed epitope information is not required.
Collapse
Affiliation(s)
- Vincent Batori
- Molecular Biotechnology, Novozymes A/S, Bagsvaerd, Denmark
| | | | | | | |
Collapse
|