1
|
Locquet MA, Brahmi M, Blay JY, Dutour A. Radiotherapy in bone sarcoma: the quest for better treatment option. BMC Cancer 2023; 23:742. [PMID: 37563551 PMCID: PMC10416357 DOI: 10.1186/s12885-023-11232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Bone sarcomas are rare tumors representing 0.2% of all cancers. While osteosarcoma and Ewing sarcoma mainly affect children and young adults, chondrosarcoma and chordoma have a preferential incidence in people over the age of 40. Despite this range in populations affected, all bone sarcoma patients require complex transdisciplinary management and share some similarities. The cornerstone of all bone sarcoma treatment is monobloc resection of the tumor with adequate margins in healthy surrounding tissues. Adjuvant chemo- and/or radiotherapy are often included depending on the location of the tumor, quality of resection or presence of metastases. High dose radiotherapy is largely applied to allow better local control in case of incomplete primary tumor resection or for unresectable tumors. With the development of advanced techniques such as proton, carbon ion therapy, radiotherapy is gaining popularity for the treatment of bone sarcomas, enabling the delivery of higher doses of radiation, while sparing surrounding healthy tissues. Nevertheless, bone sarcomas are radioresistant tumors, and some mechanisms involved in this radioresistance have been reported. Hypoxia for instance, can potentially be targeted to improve tumor response to radiotherapy and decrease radiation-induced cellular toxicity. In this review, the benefits and drawbacks of radiotherapy in bone sarcoma will be addressed. Finally, new strategies combining a radiosensitizing agent and radiotherapy and their applicability in bone sarcoma will be presented.
Collapse
Affiliation(s)
- Marie-Anaïs Locquet
- Cell Death and Pediatric Cancer Team, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008, Lyon, France
| | - Mehdi Brahmi
- Department of Medical Oncology, Centre Leon Berard, Unicancer Lyon, 69008, Lyon, France
| | - Jean-Yves Blay
- Cell Death and Pediatric Cancer Team, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008, Lyon, France
- Department of Medical Oncology, Centre Leon Berard, Unicancer Lyon, 69008, Lyon, France
- Université Claude Bernard Lyon I, Lyon, France
| | - Aurélie Dutour
- Cell Death and Pediatric Cancer Team, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008, Lyon, France.
| |
Collapse
|
2
|
Alqahtani FY, Aleanizy FS, El Tahir E, Alkahtani HM, AlQuadeib BT. Paclitaxel. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2019; 44:205-238. [PMID: 31029218 DOI: 10.1016/bs.podrm.2018.11.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Paclitaxel is the first microtubule-stabilizing agent identified and considered to be the most significant advance in chemotherapy of the past two decades. It is considered one of the most widely used antineoplastic agents with broad activity in several cancers including breast cancer, endometrial cancer, non-small-cell lung cancer, bladder cancer, and cervical carcinoma. It is also used for treating AIDS-related Kaposi sarcoma as a second line treatment. This comprehensive profile of paclitaxel gives overview of nomenclature, formulae, elemental analysis, appearance, application and uses. In addition, mechanism of action and resistance, different dosage forms and methods of drug preparation are elaborated. Moreover, the physicochemical properties involving X-ray powder diffraction pattern, drug solubility, melting point, differential scanning calorimetry, and stability were summarized. Furthermore, method of drug analysis including compendial, spectrophotometric, and chromatographic was discussed.
Collapse
Affiliation(s)
- Fulwah Yahya Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Eram El Tahir
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bushra T AlQuadeib
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Achenie LE, Pavurala N. On the modeling of oral drug delivery. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-444-63964-6.00010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
4
|
Schmeltzer RC, Uhrich KE. Synthesis and Characterization of Salicylic Acid-Based Poly(Anhydride-Ester) Copolymers. J BIOACT COMPAT POL 2016; 21:123-133. [PMID: 23956492 DOI: 10.1177/0883911506062976] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of poly(anhydride-esters) based on poly(1,10-bis(o-car-boxyphenoxy)decanoate) (CPD) and poly(1,6-bis(p-carboxyphenoxy)hexane) (p-CPH) were synthesized by melt-condensation polymerization. Poly-(anhydride-esters) that contain CPD hydrolytically degraded into salicylic acid, however, these homopolymers have mechanical and thermal characteristics that limit their use in clinical applications. The synthesis and characterization of copolymers of CPD with p-CPH, a monomer known to generate mechanically stable homopolymers, was investigated. By changing the CPD to p-CPH monomer ratios, the salicylic acid loading and thermal/mechanical properties of the copolymers was a controlling factor; increasing the CPD concentration increased the salicylate loading but decreased the polymer stability; whereas increasing the p-CPH concentration increased the thermal and mechanical stability of the copolymers. Specifically, decreasing the CPD:p-CPH ratio resulted in lower salicylate loading and increased thermal decomposition temperatures. The glass transition temperatures (°C) varied from 27 to 38°C, a desirable range for elastomeric biomedical implants.
Collapse
Affiliation(s)
- Robert C Schmeltzer
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA
| | | |
Collapse
|
5
|
Chen MX, Li T, Peng S, Tao D. Supramolecular nanocapsules from the self-assembly of amphiphilic calixarene as a carrier for paclitaxel. NEW J CHEM 2016. [DOI: 10.1039/c6nj01986b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An amphiphilic calixarene was synthesized as a supramolecular vesicle for paclitaxel with sustained release behavior and enhanced anticancer activity.
Collapse
Affiliation(s)
- Meng-Xia Chen
- Anhui Institute of Medical Information
- Hefei 230061
- P. R. China
| | - Ting Li
- Anhui Institute of Medical Information
- Hefei 230061
- P. R. China
| | - Song Peng
- Anhui Institute of Medical Information
- Hefei 230061
- P. R. China
| | - Dan Tao
- Anhui Institute of Medical Information
- Hefei 230061
- P. R. China
| |
Collapse
|
6
|
Pavurala N, Achenie LE. Identifying polymer structures for oral drug delivery – A molecular design approach. Comput Chem Eng 2014. [DOI: 10.1016/j.compchemeng.2014.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Peters HL, Yan Y, Nordgren TM, Cutucache CE, Joshi SS, Solheim JC. Amyloid precursor-like protein 2 suppresses irradiation-induced apoptosis in Ewing sarcoma cells and is elevated in immune-evasive Ewing sarcoma cells. Cancer Biol Ther 2013; 14:752-60. [PMID: 23792571 DOI: 10.4161/cbt.25183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Despite surgery, chemotherapy, and radiotherapy treatments, the children, adolescents, and young adults who are diagnosed with metastasized Ewing sarcoma face a dismal prognosis. Amyloid precursor-like protein 2 (APLP2) has recently been implicated in the survival of cancer cells and in our current study, APLP2's contribution to the survival of Ewing sarcoma cells was examined. APLP2 was readily detected in all Ewing sarcoma cell lines analyzed by western blotting, with the TC71 Ewing sarcoma cells expressing the lowest level of APLP2 among the lines. While irradiation induces apoptosis in TC71 Ewing sarcoma cells (as we determined by quantifying the proportion of cells in the sub-G 1 population), transfection of additional APLP2 into TC71 decreased irradiation-induced apoptosis. Consistent with these findings, in parallel studies, we noted that isolates of the TC71 cell line that survived co-culture with lymphokine-activated killer (LAK) cells (which kill by inducing apoptosis in target cells) displayed increased expression of APLP2, in addition to smaller sub-G 1 cell populations after irradiation. Together, these findings suggest that APLP2 lowers the sensitivity of Ewing sarcoma cells to radiotherapy-induced apoptosis and that APLP2 expression is increased in Ewing sarcoma cells able to survive exposure to cytotoxic immune cells.
Collapse
Affiliation(s)
- Haley L Peters
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE USA
| | | | | | | | | | | |
Collapse
|
8
|
Weeden C, Hartlieb KJ, Lim LY. Preparation and physicochemical characterization of a novel paclitaxel-loaded amphiphilic aminocalixarene nanoparticle platform for anticancer chemotherapy. ACTA ACUST UNITED AC 2012; 64:1403-11. [PMID: 22943171 DOI: 10.1111/j.2042-7158.2012.01518.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES This paper describes the development and optimization of a nanoparticle delivery platform for the anticancer agent, paclitaxel, using a novel amphiphilic carrier, tetrahexyloxy-tetra-p-aminocalix[4]arene (A4C(6) ). METHODS Nanoparticles were successfully prepared at pH4 by an emulsion evaporation method whereby an organic phase containing paclitaxel: A4C(6) (molar ratio 1:10) was dispersed by probe sonication into an aqueous phase containing 0.5% w/v polyvinyl alcohol as stabilizer. KEY FINDINGS The drug-loaded nanoparticles had a mean size of 78.7±20.7nm, surface potential of 38.3±7.67mV, and paclitaxel loading and encapsulation efficiencies of 69.1±5.3µg drug/mg carrier and 50.4±3.2%, respectively. Transmission electron micrographs showed discrete particles with no evidence of agglomeration. In-vitro dissolution into phosphate buffered saline supplemented with 4% bovine serum albumin showed 32.7±3.9%, 82.6±5.3% and 91.0±6.0% of the encapsulated paclitaxel load was released at 5, 72 and 120h, respectively. CONCLUSIONS This is the first report on the use of amino-substituted amphiphilic calixarenes for the encapsulation of anticancer agents. The nanoparticles produced were significantly smaller than, but had comparable drug loads to the Abraxane nanoparticles, and have the potential to achieve targeted delivery of paclitaxel to tumour tissues.
Collapse
Affiliation(s)
- Clare Weeden
- Pharmacy, School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia
| | | | | |
Collapse
|
9
|
Jauhari S, Singh S, Dash AK. Chapter 7 Paclitaxel. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2010; 34:299-344. [PMID: 22469177 DOI: 10.1016/s1871-5125(09)34007-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Saurabh Jauhari
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA
| | | | | |
Collapse
|
10
|
Lao LL, Venkatraman SS. Paclitaxel release from single and double-layered poly(DL-lactide-co-glycolide)/poly(L-lactide) film for biodegradable coronary stent application. J Biomed Mater Res A 2008; 87:1-7. [DOI: 10.1002/jbm.a.31706] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Jin C, Wu H, Liu J, Bai L, Guo G. The effect of paclitaxel-loaded nanoparticles with radiation on hypoxic MCF-7 cells. J Clin Pharm Ther 2007; 32:41-7. [PMID: 17286788 DOI: 10.1111/j.1365-2710.2007.00796.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE The inability of radiotherapy to eradicate completely certain human tumours may be due to the presence of resistant hypoxic cells. Several studies have confirmed the radiosensitizing effect of paclitaxel, a microtubular inhibitor. The object of this study was to evaluate the physicochemical characteristics of paclitaxel-loaded nanoparticles, and determine the ability of the released paclitaxel to radiosensitize hypoxic human breast carcinoma cells (MCF-7) with respect to radiation dose. METHODS The poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles containing paclitaxel were prepared by o/w emulsification-solvent evaporation method. The morphology of the paclitaxel-loaded nanoparticles was investigated by scanning electron microscopy. The drug encapsulation efficiency (EE) and in vitro release profile were measured by high-performance liquid chromatography. Cell cycle was evaluated by flow cytometry. Cell viability was measured by the ability of single cells to form colonies in vitro. RESULTS The prepared nanoparticles were spherical with diameter between 200 and 800 nm. The EE was 85.5%. The drug release pattern was biphasic with a fast release rate followed by a slow one. Co-culture of human breast carcinoma cells (MCF-7) with paclitaxel-loaded nanoparticles demonstrated that released paclitaxel retained its bioactivity to block cells in the G2/M phase of the cell cycle and effectively sensitized hypoxic MCF-7 cells to radiation with radiosensitivity shown to be dependent of radiation dose at levels of dosages studied. The sensitizer enhancement ratio for paclitaxe-loaded nanoparticles at 10% survival is approximately 1.4. CONCLUSION This work has demonstrated that paclitaxel can be effectively released from a biodegradable PLGA nanoparticle delivery system while maintaining potent combined cytotoxic and radiosensitizing abilities for hypoxic tumour cells.
Collapse
Affiliation(s)
- C Jin
- Department of Radiation Medicine, Fourth Military Medical University, Xi'an, China
| | | | | | | | | |
Collapse
|
12
|
Arica Yegin B, Benoît JP, Lamprecht A. Paclitaxel-loaded lipid nanoparticles prepared by solvent injection or ultrasound emulsification. Drug Dev Ind Pharm 2007; 32:1089-94. [PMID: 17012121 DOI: 10.1080/03639040600683501] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Lipid nanoparticles were fabricated as an injectable carrier system for paclitaxel. The components for the lipid matrix were based on phospholipids, and sucrose fatty acid ester was used as an emulsifier. Formulation prepared with solvent injection has a slightly larger particle size (187.6 nm) than the formulation (147.7 nm) prepared with ultrasound emulsification. Differential scanning calorimetry results indicated that paclitaxel entrapped in the lipid nanoparticles existed in an amorphous state in the lipid matrix. In vitro drug release was rather slow; only 12.5-16.5% of the drug released from the formulations within 14 days. Lipid nanoparticles demonstrated their potential as a promising pharmaceutical formulation of paclitaxel.
Collapse
Affiliation(s)
- Betül Arica Yegin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100, Sihhiye-Ankara, Turkey
| | | | | |
Collapse
|
13
|
Nair LS, Laurencin CT. Polymers as biomaterials for tissue engineering and controlled drug delivery. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 102:47-90. [PMID: 17089786 DOI: 10.1007/b137240] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of biodegradable polymers has significantly influenced the development and rapid growth of various technologies in modern medicine. Biodegradable polymers are mainly used where the transient existence of materials is required and they find applications as sutures, scaffolds for tissue regeneration, tissue adhesives, hemostats, and transient barriers for tissue adhesion, as well as drug delivery systems. Each of these applications demands materials with unique physical, chemical, biological, and biomechanical properties to provide efficient therapy. Consequently, a wide range of degradable polymers, both natural and synthetic, have been investigated for these applications. Furthermore, recent advances in molecular and cellular biology, coupled with the development of novel biotechnological drugs, necessitate the modification of existing polymers or synthesis of novel polymers for specific applications. This review highlights various biodegradable polymeric materials currently investigated for use in two key medical applications: drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Lakshmi S Nair
- Department of Orthopaedic Surgery, College of Medicine, University of Virginia, Charlottesville 22903, USA
| | | |
Collapse
|
14
|
Vodouhê C, Le Guen E, Garza JM, Francius G, Déjugnat C, Ogier J, Schaaf P, Voegel JC, Lavalle P. Control of drug accessibility on functional polyelectrolyte multilayer films. Biomaterials 2006; 27:4149-56. [PMID: 16600366 DOI: 10.1016/j.biomaterials.2006.03.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 03/16/2006] [Indexed: 11/25/2022]
Abstract
A surface coating based on polylysine/hyaluronic acid multilayers was designed and acted as a reservoir for an antiproliferative agent, paclitaxel (Taxol). Absolutely no chemical modification of polyelectrolytes or of the drug was needed and the final architecture was obtained in an extremely simple way using the layer-by-layer method. The paclitaxel dose available for human colonic adenocarcinoma cells HT29 seeded on the films could be finely tuned. Moreover, the accessibility of the drugs was controlled by adding on the top of the drug reservoir a capping made of synthetic polyelectrolyte multilayers. This capping was also required to allow adhesion of HT29 cells. Paclitaxel activity was maintained after embedding in the polyelectrolyte multilayers and cellular viability could be reduced by about 80% 96 h after seeding. The strategy described in this paper could be valuable for various other drug/cell systems.
Collapse
Affiliation(s)
- Constant Vodouhê
- INSERM Unité 595, 11 rue Humann, F-67085 Strasbourg Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|