1
|
Satapathy T, Singh G, Pandey RK, Shukla SS, Bhardwaj SK, Gidwani B. Novel Targets and Drug Delivery System in the Treatment of Postoperative Pain: Recent Studies and Clinical Advancement. Curr Drug Targets 2024; 25:25-45. [PMID: 38037995 DOI: 10.2174/0113894501271207231127063431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Pain is generated by a small number of peripheral targets. These can be made more sensitive by inflammatory mediators. The number of opioids prescribed to the patients can be reduced dramatically with better pain management. Any therapy that safely and reliably provides extended analgesia and is flexible enough to facilitate a diverse array of release profiles would be useful for improving patient comfort, quality of care, and compliance after surgical procedures. Comparisons are made between new and traditional methods, and the current state of development has been discussed; taking into account the availability of molecular and cellular level data, preclinical and clinical data, and early post-market data. There are a number of benefits associated with the use of nanotechnology in the delivery of analgesics to specific areas of the body. Nanoparticles are able to transport drugs to inaccessible bodily areas because of their small molecular size. This review focuses on targets that act specifically or primarily on sensory neurons, as well as inflammatory mediators that have been shown to have an analgesic effect as a side effect of their anti- inflammatory properties. New, regulated post-operative pain management devices that use existing polymeric systems were presented in this article, along with the areas for potential development. Analgesic treatments, both pharmacological and non-pharmacological, have also been discussed.
Collapse
Affiliation(s)
- Trilochan Satapathy
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Gulab Singh
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Ravindra Kumar Pandey
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Shiv Shankar Shukla
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Shiv Kumar Bhardwaj
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Beena Gidwani
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| |
Collapse
|
2
|
Degradable polymeric vehicles for postoperative pain management. Nat Commun 2021; 12:1367. [PMID: 33649338 PMCID: PMC7921139 DOI: 10.1038/s41467-021-21438-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023] Open
Abstract
Effective control of pain management has the potential to significantly decrease the need for prescription opioids following a surgical procedure. While extended release products for pain management are available commercially, the implementation of a device that safely and reliably provides extended analgesia and is sufficiently flexible to facilitate a diverse array of release profiles would serve to advance patient comfort, quality of care and compliance following surgical procedures. Herein, we review current polymeric systems that could be utilized in new, controlled post-operative pain management devices and highlight where opportunities for improvement exist.
Collapse
|
3
|
Tang B, Liu Z, Tian Z, Zhang J, Chen X, Fang G, Song H. Development and evaluation of synchronized and sustained release Tripergium Wilfordii tablets based hot-melt extrusion and direct powder compression. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Haider T, Shyshov O, Suraeva O, Lieberwirth I, von Delius M, Wurm FR. Long-Chain Polyorthoesters as Degradable Polyethylene Mimics. Macromolecules 2019; 52:2411-2420. [PMID: 31496544 PMCID: PMC6727593 DOI: 10.1021/acs.macromol.9b00180] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/27/2019] [Indexed: 12/26/2022]
Abstract
The persistence of commodity polymers makes the research for degradable alternatives with similar properties necessary. Degradable polyethylene mimics containing orthoester groups were synthesized by olefin metathesis polymerization for the first time. Ring-opening metathesis copolymerization (ROMP) of 1,5-cyclooctadiene with four different cyclic orthoester monomers gave linear copolymers with molecular weights up to 38000 g mol-1. Hydrogenation of such copolymers produced semicrystalline polyethylene-like materials, which were only soluble in hot organic solvents. The crystallinity and melting points of the materials were controlled by the orthoester content of the copolymers. The polymers crystallized similar to polyethylene, but the relatively bulky orthoester groups were expelled from the crystal lattice. The lamellar thickness of the crystals was dependent on the amount of the orthoester groups. In addition, the orthoester substituents influenced the hydrolysis rate of the polymers in solution. Additionally, we were able to prove that non-hydrogenated copolymers with a high orthoester content were biodegraded by microorganisms from activated sludge from a local sewage plant. In general, all copolymers hydrolyzed under ambient conditions over a period of several months. This study represents the first report of hydrolysis-labile and potentially biodegradable PE mimics based on orthoester linkages. These materials may find use in applications that require the relatively rapid release of cargo, e.g., in biomedicine or nanomaterials.
Collapse
Affiliation(s)
- Tobias Haider
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Oleksandr Shyshov
- Institute
of Organic Chemistry and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Oksana Suraeva
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Ingo Lieberwirth
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Max von Delius
- Institute
of Organic Chemistry and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Frederik R. Wurm
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| |
Collapse
|
5
|
Ji R, Cheng J, Yang T, Song C, Li L, Du FS, Li ZC. Shell-Sheddable, pH-Sensitive Supramolecular Nanoparticles Based on Ortho Ester-Modified Cyclodextrin and Adamantyl PEG. Biomacromolecules 2014; 15:3531-9. [DOI: 10.1021/bm500711c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ran Ji
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jing Cheng
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ting Yang
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Cheng−Cheng Song
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lei Li
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fu-Sheng Du
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zi-Chen Li
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Palamoor M, Jablonski MM. Synthesis, characterization and in vitro studies of celecoxib-loaded poly(ortho ester) nanoparticles targeted for intraocular drug delivery. Colloids Surf B Biointerfaces 2013; 112:474-82. [DOI: 10.1016/j.colsurfb.2013.07.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 11/28/2022]
|
7
|
Song CC, Ji R, Du FS, Liang DH, Li ZC. Oxidation-Accelerated Hydrolysis of the Ortho Ester-Containing Acid-Labile Polymers. ACS Macro Lett 2013; 2:273-277. [PMID: 35581896 DOI: 10.1021/mz4000392] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report a versatile method to tune the hydrolysis of the ortho ester-containing block copolymers by covalently incorporating oxidation-sensitive phenylboronic ester units. A series of block copolymers which contain a polyethylene glycol (PEG) block and a hydrophobic segment composed of different amounts of pendent ortho ester and phenylboronic ester groups were synthesized. These copolymers can self-assemble into narrowly dispersed micelle-like nanoparticles in phosphate buffer. The kinetics of phenylboronic ester oxidation and ortho ester hydrolysis in the nanoparticles were studied at different pH and H2O2 concentration. The results indicated that the phenylboronic ester oxidation rate was faster than the ortho ester hydrolysis rate at neutral pH, and both processes were accelerated with increasing H2O2 concentration. Nanoparticles which are extremely sensitive to the biorelevant concentration of H2O2 (50 μM) at pH 7.4 were obtained, suggesting great promise for inflammation-specific drug delivery.
Collapse
Affiliation(s)
- Cheng-Cheng Song
- Beijing National
Laboratory for Molecular Sciences,
Key Laboratory of Polymer Chemistry and Physics of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic
of China
| | - Ran Ji
- Beijing National
Laboratory for Molecular Sciences,
Key Laboratory of Polymer Chemistry and Physics of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic
of China
| | - Fu-Sheng Du
- Beijing National
Laboratory for Molecular Sciences,
Key Laboratory of Polymer Chemistry and Physics of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic
of China
| | - De-Hai Liang
- Beijing National
Laboratory for Molecular Sciences,
Key Laboratory of Polymer Chemistry and Physics of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic
of China
| | - Zi-Chen Li
- Beijing National
Laboratory for Molecular Sciences,
Key Laboratory of Polymer Chemistry and Physics of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic
of China
| |
Collapse
|
8
|
Song CC, Su CC, Cheng J, Du FS, Liang DH, Li ZC. Toward Tertiary Amine-Modulated Acid-Triggered Hydrolysis of Copolymers Containing Pendent Ortho Ester Groups. Macromolecules 2013. [DOI: 10.1021/ma301964n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cheng-Cheng Song
- Beijing National Laboratory for Molecular Sciences,
Key Laboratory of Polymer Chemistry and Physics of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic
of China
| | - Cui-Cui Su
- Beijing National Laboratory for Molecular Sciences,
Key Laboratory of Polymer Chemistry and Physics of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic
of China
| | - Jing Cheng
- Beijing National Laboratory for Molecular Sciences,
Key Laboratory of Polymer Chemistry and Physics of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic
of China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences,
Key Laboratory of Polymer Chemistry and Physics of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic
of China
| | - De-Hai Liang
- Beijing National Laboratory for Molecular Sciences,
Key Laboratory of Polymer Chemistry and Physics of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic
of China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences,
Key Laboratory of Polymer Chemistry and Physics of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic
of China
| |
Collapse
|
9
|
Palamoor M, Jablonski MM. Poly(ortho ester) Nanoparticle-Based Targeted Intraocular Therapy for Controlled Release of Hydrophilic Molecules. Mol Pharm 2013; 10:701-8. [DOI: 10.1021/mp300488s] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Mallika Palamoor
- Department of Ophthalmology, The University of Tennessee Health Science Center,
Memphis, Tennessee 38163, United States
| | - Monica M. Jablonski
- Department of Ophthalmology, The University of Tennessee Health Science Center,
Memphis, Tennessee 38163, United States
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center,
Memphis, Tennessee 38163, United States
| |
Collapse
|
10
|
Sobczak M, Hajdaniak M, Goś P, Olędzka E, Kołodziejski WL. Use of aliphatic poly(amide urethane)s for the controlled release of 5-fluorouracil. Eur J Med Chem 2011; 46:914-8. [PMID: 21292355 DOI: 10.1016/j.ejmech.2011.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/28/2010] [Accepted: 01/08/2011] [Indexed: 11/19/2022]
Affiliation(s)
- Marcin Sobczak
- Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, Medical University of Warsaw, ul Banacha 1, 02-097 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
11
|
Liang L, Xu XD, Chen CS, Fang JH, Jiang FG, Zhang XZ, Zhuo RX. Evaluation of the biocompatibility of novel peptide hydrogel in rabbit eye. J Biomed Mater Res B Appl Biomater 2010; 93:324-32. [DOI: 10.1002/jbm.b.31562] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Novel strategies to improve the anticancer action of 5-fluorouracil by using drug delivery systems. Molecules 2008; 13:2340-69. [PMID: 18830159 PMCID: PMC6245407 DOI: 10.3390/molecules13102340] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 09/16/2008] [Accepted: 09/16/2008] [Indexed: 12/12/2022] Open
Abstract
Because of the fundamental importance of new therapeutic routes for cancer treatment, a number of systems based on colloidal particles as vehicles for the delivery of the anticancer drug 5-fluorouracil have been devised. The target is always to provide the proper dose of the antitumor agent only at the desired locus of action, thus reducing the unwanted side effects. In this review, the main strategies and the more significant results in the development of 5-fluorouracil carriers for cancer treatment are discussed.
Collapse
|
13
|
Abstract
Anatomy and physiology of the eye makes it a highly protected organ. Designing an effective therapy for ocular diseases, especially for the posterior segment, has been considered as a formidable task. Limitations of topical and intravitreal route of administration have challenged scientists to find alternative mode of administration like periocular routes. Transporter targeted drug delivery has generated a great deal of interest in the field because of its potential to overcome many barriers associated with current therapy. Application of nanotechnology has been very promising in the treatment of a gamut of diseases. In this review, we have briefly discussed several ocular drug delivery systems such as microemulsions, nanosuspensions, nanoparticles, liposomes, niosomes, dendrimers, implants, and hydrogels. Potential for ocular gene therapy has also been described in this article. In near future, a great deal of attention will be paid to develop non-invasive sustained drug release for both anterior and posterior segment eye disorders. A better understanding of nature of ocular diseases, barriers and factors affecting in vivo performance, would greatly drive the development of new delivery systems. Current momentum in the invention of new drug delivery systems hold a promise towards much improved therapies for the treatment of vision threatening disorders.
Collapse
|
14
|
Ražem D, Katušin-Ražem B. The effects of irradiation on controlled drug delivery/controlled drug release systems. Radiat Phys Chem Oxf Engl 1993 2008. [DOI: 10.1016/j.radphyschem.2007.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Bourges JL, Touchard E, Kowalczuk L, Berdugo M, Thomas-Doyle A, Bochot A, Gomez A, Azan F, Gurny R, Behar-Cohen F. Dispositifs de délivrance de principes actifs pour des applications ophtalmologiques. J Fr Ophtalmol 2007; 30:1070-88. [DOI: 10.1016/s0181-5512(07)79290-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Bourges JL, Bloquel C, Thomas A, Froussart F, Bochot A, Azan F, Gurny R, BenEzra D, Behar-Cohen F. Intraocular implants for extended drug delivery: therapeutic applications. Adv Drug Deliv Rev 2006; 58:1182-202. [PMID: 17107737 DOI: 10.1016/j.addr.2006.07.026] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 07/31/2006] [Indexed: 12/16/2022]
Abstract
An overview of ocular implants with therapeutic application potentials is provided. Various types of implants can be used as slow release devices delivering locally the needed drug for an extended period of time. Thus, multiple periocular or intraocular injections of the drug can be circumvented and secondary complications minimized. The various compositions of polymers fulfilling specific delivery goals are described. Several of these implants are undergoing clinical trials while a few are already commercialized. Despite the paramount progress in design, safety and efficacy, the place of these implants in our clinical therapeutic arsenal remains limited. Miniaturization of the implants allowing for their direct injection without the need for a complicated surgery is a necessary development avenue. Particulate systems which can be engineered to target specifically certain cells or tissues are another promising alternative. For ocular diseases affecting the choroid and outer retina, transscleral or intrasscleral implants are gaining momentum.
Collapse
Affiliation(s)
- J L Bourges
- INSERM, U598, Physiopathology of Ocular Diseases, Therapeutic Innovations, 15 Rue de l'Ecole de Médecine 75006 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wei X, Sun N, Wu B, Yin C, Wu W. Sigmoidal release of indomethacin from pectin matrix tablets: Effect of in situ crosslinking by calcium cations. Int J Pharm 2006; 318:132-8. [PMID: 16675173 DOI: 10.1016/j.ijpharm.2006.03.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 03/04/2006] [Accepted: 03/22/2006] [Indexed: 11/20/2022]
Abstract
Sigmoidal release pattern is therapeutically beneficial for timed release and colonic drug delivery, and is always observed in coated systems. In this study, sigmoidal release from pectin matrix tablets with indomethacin as a model drug was investigated. The underlying mechanisms are calcium cation-induced in situ crosslinking that retard the initial drug release to a limited percentage. Power law equation n values were estimated for sigmoidal release profiles. Results indicated that calcium chloride incorporated in pectin matrix functioned as retarding mechanisms on drug release. Larger amount of calcium chloride led to slower drug release and matrix erosion. Even at extremely high levels, retarding on drug release and matrix erosion rate was obvious, which highlighted the effect of calcium-induced in situ crosslinking as calcium chloride was a freely water-soluble salt. The sigmoidal release profiles were characterized by power law equation with high correlation coefficients of about 0.99 or over. Power law n values increased up to as high as 1.20 when calcium chloride content kept increasing. Erosion correlated well with release in almost all pectin matrix tablets indicating erosion-controlled mechanisms. It is concluded that large amount of calcium induces in situ crosslinking of pectin matrix and leads to sigmoidal release of indomethacin, and power law n values, sometimes larger than 1.0, are suitable to be used to describe sigmoidal release profiles.
Collapse
Affiliation(s)
- Xiuli Wei
- School of Pharmacy, Fudan University, Shanghai 200032, PR China
| | | | | | | | | |
Collapse
|
18
|
Abstract
Polymers occupy a major portion of materials used for controlled release formulations and drug-targeting systems because this class of materials presents seemingly endless diversity in topology and chemistry. This is a crucial advantage over other classes of materials to meet the ever-increasing requirements of new designs of drug delivery formulations. The polymer architecture (topology) describes the shape of a single polymer molecule. Every natural, seminatural, and synthetic polymer falls into one of categorized architectures: linear, graft, branched, cross-linked, block, star-shaped, and dendron/dendrimer topology. Although this topic spans a truly broad area in polymer science, this review introduces polymer architectures along with brief synthetic approaches for pharmaceutical scientists who are not familiar with polymer science, summarizes the characteristic properties of each architecture useful for drug delivery applications, and covers recent advances in drug delivery relevant to polymer architecture.
Collapse
Affiliation(s)
- Li Yan Qiu
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 421 Wakara Way, Suite 315, Salt Lake City, Utah 84108, USA
| | | |
Collapse
|
19
|
Ha CS, Gardella JA. Surface Chemistry of Biodegradable Polymers for Drug Delivery Systems. Chem Rev 2005; 105:4205-32. [PMID: 16277374 DOI: 10.1021/cr040419y] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chang-Sik Ha
- Department of Polymer Science and Engineering, Pusan National University, Pusan 609-735, Korea
| | | |
Collapse
|
20
|
Shi Y, Li LC. Current advances in sustained-release systems for parenteral drug delivery. Expert Opin Drug Deliv 2005; 2:1039-58. [PMID: 16296808 DOI: 10.1517/17425247.2.6.1039] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Major progresses in the development of parenteral sustained-release systems have been made in recent years as evidenced by the regulatory approval and market launch of several new products. Both the availability of novel carrier materials and the advances in method of fabrication have contributed to these commercial successes. With the formulation challenges associated with biologics, new delivery systems have also been evolved specifically to address the unmet needs in the parenteral sustained release of proteins. In this review paper, different new carriers systems and preparation methods are discussed with special focus on their applications to biologicals.
Collapse
Affiliation(s)
- Yi Shi
- Abbott Laboratories, Global Pharmaceutical Research & Development, Abbott Park, IL 60064, USA
| | | |
Collapse
|
21
|
Wang L, Chaw CS, Yang YY, Moochhala SM, Zhao B, Ng S, Heller J. Preparation, characterization, and in vitro evaluation of physostigmine-loaded poly(ortho ester) and poly(ortho ester)/poly(D,L-lactide-co-glycolide) blend microspheres fabricated by spray drying. Biomaterials 2004; 25:3275-82. [PMID: 14980422 DOI: 10.1016/j.biomaterials.2003.09.099] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Accepted: 09/22/2003] [Indexed: 11/29/2022]
Abstract
The physostigmine-loaded poly(ortho ester) (POE), poly(dl-lactide-co-glycolide) (PLGA) and POE/PLGA blend microspheres were fabricated by a spray drying technique. The in vitro degradation of, and physostigmine release from, the microspheres were investigated. SEM analysis showed that the POE and POE/PLGA blend particles were spherical. They were better dispersed when compared to the pure PLGA microspheres. Two glass transition temperature ( Tg ) values of the POE/PLGA blend microspheres were observed due to the phase separation of POE and PLGA in the blend system. XPS analysis proved that POE dominated the surfaces of POE/PLGA blend microspheres, indicating that the blend microspheres were coated with POE. The encapsulation efficiencies of all the microspheres were more than 95%. The incorporation of physostigmine reduced the Tg value of microspheres. The Tg value of the degrading microspheres increased with the release of physostigmine. For instance, POE blank microspheres and physostigmine-loaded POE microspheres had a Tg value of 67 degrees C and 48 degrees C, respectively. After 19 days in vitro incubation, Tg of the degrading POE microspheres increased to 55 degrees C. Weight loss studies showed that the degradation of the blend microspheres was accelerated with the presence of PLGA because its degradation products catalyzed the degradation of both POE and PLGA. The release rate of physostigmine increased with increase of PLGA content in the blend microspheres. The initial burst release of physostigmine was effectively suppressed by introducing POE to the blend microspheres. However, there was an optimized weight ratio of POE to PLGA (85:15 in weight), below which a high initial burst was induced. The POE/PLGA blend microspheres may make a good drug delivery system.
Collapse
Affiliation(s)
- Ling Wang
- Institute of Materials Research and Engineering, National University of Singapore, No. 3 Research Link, Singapore 117602, Singapore
| | | | | | | | | | | | | |
Collapse
|
22
|
Fournier E, Passirani C, Montero-Menei CN, Benoit JP. Biocompatibility of implantable synthetic polymeric drug carriers: focus on brain biocompatibility. Biomaterials 2003; 24:3311-31. [PMID: 12763459 DOI: 10.1016/s0142-9612(03)00161-3] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Numerous polymeric biomaterials are implanted each year in human bodies. Among them, drug delivery devices are potent novel powerful therapeutics for diseases which lack efficient treatments. Controlled release systems are in direct and sustained contact with the tissues, and some of them degrade in situ. Thus, both the material itself and its degradation products must be devoid of toxicity. The knowledge and understanding of the criteria and mechanisms determining the biocompatibility of biomaterials are therefore of great importance. The classical tissue response to a foreign material leads to the encapsulation of the implant, which may impair the drug diffusion in the surrounding tissue and/or cause implant failure. This tissue response depends on different factors, especially on the implantation site. Indeed, several organs possess a particular immunological status, which may reduce the inflammatory and immune reactions. Among them, the central nervous system is of particular interest, since many pathologies still need curative treatments. This review describes the classical foreign body reaction and exposes the particularities of the central nervous system response. The recent in vivo biocompatibility studies of implanted synthetic polymeric drug carriers are summarized in order to illustrate the behavior of different classes of polymers and the methodologies used to evaluate their tolerance.
Collapse
Affiliation(s)
- E Fournier
- Inserm ERIT-M 0104, Ingénierie de la Vectorisation Particulaire, 10, rue André Bocquel, 49100 Angers, France
| | | | | | | |
Collapse
|
23
|
Shi M, Yang YY, Chaw CS, Goh SH, Moochhala SM, Ng S, Heller J. Double walled POE/PLGA microspheres: encapsulation of water-soluble and water-insoluble proteins and their release properties. J Control Release 2003; 89:167-77. [PMID: 12711441 DOI: 10.1016/s0168-3659(02)00493-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The poly(orthoester) (POE)-poly(D,L-lactide-co-glycolide) (50:50) (PLGA) double-walled microspheres with 50% POE in weight were loaded with hydrophilic bovine serum albumin (BSA) and hydrophobic cyclosporin A (CyA). Most of the BSA and CyA was entrapped within the shell and core, respectively, because of the difference in their hydrophilicity. The morphologies and release mechanisms of proteins-loaded double-walled POE/PLGA microspheres were investigated. Scanning electron microscope studies revealed that the CyA-BSA-loaded double-walled POE/PLGA microspheres yielded a more porous surface and PLGA shell than those without BSA. The neat POE and PLGA yielded slow and incomplete CyA and BSA release. In contrast, nearly complete BSA and more than 95% CyA were released in a sustained manner from the double-walled POE/PLGA microspheres. Both the BSA- and CyA-BSA-loaded POE/PLGA microspheres yielded a sustained BSA release over 5 days. The CyA release pattern of the CyA-loaded double-walled POE/PLGA microspheres was biphasic, characterized by a slow release over 15 days followed by a sustained release over 27 days. However, the CyA-BSA-loaded double-walled POE/PLGA microspheres provided a more constant and faster CyA release due to their more porous shell. In the CyA-BSA-loaded double-walled POE/PLGA microspheres system, the PLGA layer acted as a carrier for BSA and mild reservoir for CyA. During the first 5 days, most BSA was released from the shell but only 14% CyA was left from the microspheres. Subsequently, more than 80% CyA were released in the next 25 days. The distinct structure of double-walled POE/PLGA microspheres would make an interesting device for controlled delivery of therapeutic agents.
Collapse
Affiliation(s)
- Meng Shi
- Institute of Materials Research and Engineering, No. 3 Research Link, 117602, Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
24
|
Yang YY, Shi M, Goh SH, Moochhala SM, Ng S, Heller J. POE/PLGA composite microspheres: formation and in vitro behavior of double walled microspheres. J Control Release 2003; 88:201-13. [PMID: 12628328 DOI: 10.1016/s0168-3659(02)00491-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The poly(ortho ester) (POE) and poly(D,L-lactide-co-glycolide) 50:50 (PLGA) composite microspheres were fabricated by a water-in-oil-in-water (w/o/w) double emulsion process. The morphology of the composite microspheres varied depending on POE content. When the POE content was 50, 60 or 70% in weight, the double walled microspheres with a dense core of POE and a porous shell of PLGA were formed. The formation of the double walled POE/PLGA microspheres was analysed. Their in vitro degradation behavior was characterized by scanning electron microscopy, gel permeation chromatography, Fourier-transform infrared microscopy and nuclear magnetic resonance spectroscopy (NMR). It was found that compared to the neat POE or PLGA microspheres, distinct degradation mechanism was achieved in the double walled POE/PLGA microspheres system. The degradation of the POE core was accelerated due to the acidic microenvironment produced by the hydrolysis of the outer PLGA layer. The formation of hollow microspheres became pronounced after the first week in vitro. 1H NMR spectra showed that the POE core was completely degraded after 4 weeks. On the other hand, the outer PLGA layer experienced slightly retarded degradation after the POE core disappeared. PLGA in the double walled microspheres kept more than 32% of its initial molecular weight over a period of 7 weeks.
Collapse
Affiliation(s)
- Yi-Yan Yang
- Institute of Materials Research and Engineering, No. 3 Research Link, Singapore 117602, Singapore.
| | | | | | | | | | | |
Collapse
|
25
|
Helle J, Barr J, Ng SY, Shen HR, Schwach-Abdellaoui K, Gurny R, Vivien-Castioni N, Loup PJ, Baehni P, Mombelli A. Development and applications of injectable poly(ortho esters) for pain control and periodontal treatment. Biomaterials 2002; 23:4397-404. [PMID: 12219830 DOI: 10.1016/s0142-9612(02)00180-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Poly(ortho esters) with a low glass transition temperature are semi-solid materials so that therapeutic agents can be incorporated at room temperature, without the use of solvents, by a simple mixing procedure. When molecular weights are limited to < 5 kDa, such materials are directly injectable using a needle size no larger than 22 gauge. Somewhat hydrophilic polymers can be produced by using the diketene acetal 3,9-diethylidene-2,4,8,10-tetraoxaspiro[5.5]undecane and triethylene glycol (TEG), while hydrophobic materials can be produced by using the diketene acetal and 1,10-decanediol. Molecular weight can be reproducibly controlled by using an excess of the diol, or by use of an alcohol that acts as a chain-stopper. Erosion rates can be controlled by varying the amount of latent acid incorporated into the polymer backbone. Toxicology studies using the TEG polymer have been completed and have shown that the polymer is non-toxic. Toxicology studies using the decanediol polymer are underway. Development studies using the TEG polymer aimed at providing a sustained delivery of an analgesic agent to control post-surgical pain are under development and human clinical trials using the decanediol polymer for the treatment of periodontitis are also underway.
Collapse
Affiliation(s)
- J Helle
- Faculty of Medicine, Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University of Jerusalem, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Heller J, Barr J, Ng SY, Abdellauoi KS, Gurny R. Poly(ortho esters): synthesis, characterization, properties and uses. Adv Drug Deliv Rev 2002; 54:1015-39. [PMID: 12384319 DOI: 10.1016/s0169-409x(02)00055-8] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Over the last 30 years, poly(ortho esters) have evolved through four families, designated as POE I, POE II, POE III and POE IV. Of these, only POE IV has been shown to have all the necessary attributes to allow commercialization, and such efforts are currently underway. Dominant among these attributes is synthesis versatility that allows the facile and reproducible production of polymers having the desired mechanical and thermal properties as well as desired erosion rates and drug release rates that can be varied from a few days to many months. Further, the polymer is stable at room temperature when stored under anhydrous conditions and undergoes an erosion process confined predominantly to the surface layers. Important consequences of surface erosion are controlled and concomitant drug release as well as the maintenance of an essentially neutral pH in the interior of the matrix because acidic hydrolysis products diffuse away from the device. Two physical forms of such polymers are under development. One form, solid materials, can be fabricated into shapes such as wafers, strands, or microspheres. The other form are injectable semi-solid materials that allow drug incorporation by a simple mixing at room temperature and without the use of solvents. GMP toxicology studies on one family of POE IV polymers has been concluded, an IND filed and Phase I clinical trials are in progress. Important applications under development are treatment of post-surgical pain, osteoarthritis and ophthalmic diseases as well as the delivery of proteins, including DNA. Block copolymers of poly(ortho ester) and poly(ethylene glycol) have been prepared and their use as a matrix for drug delivery and as micelles, primarily for tumor targeting, are being explored.
Collapse
Affiliation(s)
- Jorge Heller
- A.P. Pharma, 123 Saginaw Drive, Redwood City, CA 94063, USA.
| | | | | | | | | |
Collapse
|
27
|
Schwach-Abdellaoui K, Loup PJ, Vivien-Castioni N, Mombelli A, Baehni P, Barr J, Heller J, Gurny R. Bioerodible injectable poly(ortho ester) for tetracycline controlled delivery to periodontal pockets: preliminary trial in humans. AAPS PHARMSCI 2002; 4:E20. [PMID: 12645992 PMCID: PMC2751309 DOI: 10.1208/ps040420] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The semisolid consistency of poly(ortho esters) (POEs) containing tetracycline free base allows direct injection in the periodontal pocket and shows sustained and almost constant in vitro release in phosphate buffer, pH 7.4 at 37 degrees C, for up to 14 days. Total polymer degradation concomitant with drug release was obtained. Formulations containing 10% or 20% (wt/wt) tetracycline were evaluated in a panel of 12 patients suffering from severe and recurrent periodontitis. In the first trial including 6 patients, single-rooted teeth and molar teeth with furcations were treated immediately after scaling and root planing. Patients tolerated both formulations well, experienced no pain during application, and showed no signs of irritation or discomfort during the observation period. However, retention of the formulation was minimal in this first study. An improved clinical protocol followed in the second study (stopping bleeding after scaling and root planning) prolonged the retention of the formulations in the inflamed periodontal pockets. For up to 11 days, tetracycline concentrations in the gingival crevicular fluid were higher than the minimum inhibitory concentration of tetracycline against most periodontal pathogens.
Collapse
Affiliation(s)
| | - P. J. Loup
- School of Dental Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - N. Vivien-Castioni
- School of Dental Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - A. Mombelli
- School of Dental Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - P. Baehni
- School of Dental Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - J. Barr
- AP Pharma, 94063 Redwood City, CA USA
| | - J. Heller
- AP Pharma, 94063 Redwood City, CA USA
| | - R. Gurny
- School of Pharmacy, University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
28
|
van de Weert M, van Steenbergen MJ, Cleland JL, Heller J, Hennink WE, Crommelin DJA. Semisolid, self-catalyzed poly(ortho ester)s as controlled-release systems: protein release and protein stability issues. J Pharm Sci 2002; 91:1065-74. [PMID: 11948545 DOI: 10.1002/jps.10109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Semisolid, self-catalyzed poly(ortho ester)s (POEs), are investigated as potential sustained-release systems for proteins. In this study, some factors influencing protein release kinetics and protein instability were evaluated. As model proteins, lysozyme, alpha-lactalbumin, bovine serum albumin, and vascular endothelial growth factor, which were lyophilized from various buffer solutions in the absence and presence of lyoprotectants, were used. For all protein formulations, the release kinetics followed the visually observed polymer dissolution profile. In the absence of any buffers in the protein formulation, the release was continuous. Formulations containing a buffer below pH 7 accelerated POE degradation, resulting in faster protein release. In contrast, a strong buffer capacity at pH 7 reduced the POE degradation and resulted in a biphasic release pattern. Moreover, proteins with a high isoelectric point (pI > 7) appeared to catalyze the POE degradation, and the effect of the buffer strength and pH was much smaller than for proteins with low pI (< 7). In the absence of lyoprotectants, all proteins tested showed an increasing fraction of covalent protein aggregates during the release. Protein formulations containing a lyoprotectant, such as sucrose or trehalose, did not show a significantly increased aggregation, whereas there was a minor influence of the large solid loadings on the release kinetics. In conclusion, this semisolid, self-catalyzed POE showed good promise as a sustained-release matrix for bioactive proteins.
Collapse
Affiliation(s)
- Marco van de Weert
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Pharmacy, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
29
|
Pérez C, Castellanos IJ, Costantino HR, Al-Azzam W, Griebenow K. Recent trends in stabilizing protein structure upon encapsulation and release from bioerodible polymers. J Pharm Pharmacol 2002; 54:301-13. [PMID: 11902796 DOI: 10.1211/0022357021778448] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Sustained release of pharmaceutical proteins from biocompatible polymers offers new opportunities in the treatment and prevention of disease. The manufacturing of such sustained-release dosage forms, and also the release from them, can impose substantial stresses on the chemical integrity and native, three-dimensional structure of proteins. Recently, novel strategies have been developed towards elucidation and amelioration of these stresses. Non-invasive technologies have been implemented to investigate the complex destabilization pathways that can occur. Such insights allow for rational approaches to protect proteins upon encapsulation and release from bioerodible systems. Stabilization of proteins when utilizing the most commonly employed procedure, the water-in-oil-in-water (w/o/w) double emulsion technique, requires approaches that are based mainly on either increasing the thermodynamic stability of the protein or preventing contact of the protein with the destabilizing agent (e.g. the water/oil interface) by use of various additives. However, protein stability is still often problematic when using the w/o/w technique, and thus alternative methods have become increasingly popular. These methods, such as the solid-in-oil-in-oil (s/o/o) and solid-in-oil-in-water (s/o/w) techniques, are based on the suspension of dry protein powders in an anhydrous organic solvent. It has become apparent that protein structure in the organic phase is stabilized because the protein is "rigidified" and therefore unfolding and large protein structural perturbations are kinetically prohibited. This review focuses on strategies leading to the stabilization of protein structure when employing these different encapsulation procedures.
Collapse
Affiliation(s)
- Caroline Pérez
- University of Puerto Rico, Department of Chemistry, San Juan 00931-3346, USA
| | | | | | | | | |
Collapse
|
30
|
Heller J, Barr J, Ng S, Shen HR, Gurny R, Schwach-Abdelaoui K, Rothen-Weinhold A, van de Weert M. Development of poly(ortho esters) and their application for bovine serum albumin and bupivacaine delivery. J Control Release 2002; 78:133-41. [PMID: 11772455 DOI: 10.1016/s0168-3659(01)00482-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The preparation of drug delivery devices using solventless fabrication procedures is of significant interest and two such procedures are described. In one such procedure, powdered polymer and micronized protein are intimately mixed and then extruded into 1 mm strands that are cut to the desired length. The polymers used were specifically designed to allow extrusion at temperatures where proteins maintain activity in the dry state. In vitro erosion and BSA release show that BSA release and polymer erosion occur concomitantly indicating an erosion-controlled process. There is a lag-time, but that can be eliminated by the addition to the mixture prior to extrusion small amounts of poly(ethylene glycol) or its methoxy derivatives. The lag-time could also be eliminated by using an AB-block copolymer where A is poly(ortho ester) and B is poly(ethylene glycol). Another means of using solventless fabrication methods is to use a semi-solid material into which drugs can be mixed at room temperature and the semi-solid injected. Data on BSA and bupivacaine release are presented.
Collapse
|
31
|
Einmahl S, Capancioni S, Schwach-Abdellaoui K, Moeller M, Behar-Cohen F, Gurny R. Therapeutic applications of viscous and injectable poly(ortho esters). Adv Drug Deliv Rev 2001; 53:45-73. [PMID: 11733117 DOI: 10.1016/s0169-409x(01)00220-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Poly(ortho esters) (POE) are hydrophobic and bioerodible polymers that have been investigated for pharmaceutical use since the early 1970s. Among the four described generations of POE, the third (POE III) and fourth (POE IV) are promising viscous and injectable materials which have been investigated in numerous biomedical applications. POE III has been extensively studied for ophthalmic drug delivery, it presents an excellent biocompatibility and is currently being investigated as a vehicle for sustained drug delivery to treat diseases of the posterior segment of the eye. POE IV is distinguishable by a highly reproducible and controlled synthesis, a higher hydrophobicity, and an excellent biocompatibility. It is currently under development for a variety of applications, such as ocular delivery, periodontal disease treatment and applications in veterinary medicine. This review will also focus on new perspectives for this promising family of polymers, such as guided tissue regeneration, treatment of osteoarthritis, as well as peptide and protein delivery.
Collapse
Affiliation(s)
- S Einmahl
- Department of Pharmaceutics and Biopharmaceutics, School of Pharmacy, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
32
|
Chia HH, Yang YY, Chung TS, Ng S, Heller J. Auto-catalyzed poly(ortho ester) microspheres: a study of their erosion and drug release mechanism. J Control Release 2001; 75:11-25. [PMID: 11451493 DOI: 10.1016/s0168-3659(01)00362-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A study has been carried out to investigate the degradation and protein release mechanisms of BSA-loaded microspheres made with auto-catalyzed poly(ortho esters) (POEs) of varying diol composition and molecular weights. Due to the instability of the POE/dichloromethane primary emulsion, microspheres made using the W/O/W double emulsion solvent extraction/evaporation method showed a multivesicular internal structure. An O/W single emulsion process yielded dense POE microspheres. Using electron scanning microscopy, the microspheres were observed to erode throughout their matrices with increasing internal pore sizes and a steady loss of mass. However, despite a substantial weight loss of almost 80% after an in vitro period of 129 days, the molecular weight of the polymer remained relatively unchanged with loss averaging about 18 and 32% for low- and high-molecular-weight POEs, respectively. Such constancy in molecular weight was similarly reflected in the glass transition temperature of the degrading microspheres. The differences in both the molecular weight loss and polydispersity index changes depended largely on the molecular weight of the polymer. For protein release of POE microspheres, an induction period followed by BSA release for a period of 3 to 10 days was observed. The lag time depended on the hydrophilicity and the molecular weight of the polymer as well as the morphology of the microspheres. Protein release was incomplete, possibly due to the slow degradation of the POE polymers, protein aggregation and protein degradation.
Collapse
Affiliation(s)
- H H Chia
- Department of Chemical and Environmental Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore119260, Singapore
| | | | | | | | | |
Collapse
|
33
|
Yang YY, Wan JP, Chung TS, Pallathadka PK, Ng S, Heller J. POE-PEG-POE triblock copolymeric microspheres containing protein. I. Preparation and characterization. J Control Release 2001; 75:115-28. [PMID: 11451502 DOI: 10.1016/s0168-3659(01)00373-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Poly(ortho ester) (POE)-poly (ethylene glycol) (PEG) triblock copolymers (POE-PEG-POE) with different PEG contents were synthesised as carriers for controlled protein delivery. POE-PEG-POE microspheres containing bovine serum albumin (BSA) were prepared using a double-emulsion (water-in-oil-in-water) process. In this first paper of a two-part series, we report the fundamentals of the fabrication and characterization of POE-PEG-POE microspheres. Because the triblock copolymer is more hydrophilic than neat poly(ortho ester), the triblock copolymer yields a more stable first emulsion (water-in-oil) and a greater BSA encapsulation efficiency (90% vs. 30%). No BSA is found on POE-PEG-POE microsphere surfaces measured by X-ray photoelectron spectroscopy, while uniform BSA distributions are observed within the microspheres by confocal microscopy. SEM pictures show that an increase in PEG content results in microspheres with a denser cross-section because of a more stable first emulsion and better affinity between the copolymer and water. POE-PEG(20%)-POE suffers significant swelling during the fabrication process and yields the biggest microspheres. However, the POE-PEG(30%)-POE microspheres are much smaller since the dissolution loss of POE-PEG(30%)-POE in the external water phase may be much higher than that of POE-PEG(20%)-POE. The salt concentration in the external water phase significantly affects the morphology of the resultant microspheres. Microspheres with a dense wall are produced when using pure water as the external water phase. Polymer concentration has less impact on BSA encapsulation efficiency but has a considerable effect on microsphere size and morphology. Increasing the concentration of the polyvinyl alcohol emulsifier does not cause an obvious decrease in microsphere size. However, increased BSA loading results in bigger microspheres.
Collapse
Affiliation(s)
- Y Y Yang
- Institute of Materials Research and Engineering, No. 3 Research link, Singapore 117602, Singapore.
| | | | | | | | | | | |
Collapse
|
34
|
Rothen-Weinhold A, Schwach-Abdellaoui K, Barr J, Ng SY, Shen HR, Gurny R, Heller J. Release of BSA from poly(ortho ester) extruded thin strands. J Control Release 2001; 71:31-7. [PMID: 11245906 DOI: 10.1016/s0168-3659(00)00348-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A solventless procedure was used where powdered polymer and micronized protein were intimately mixed and then extruded into 1 mm strands that were cut to the desired length. The polymers used were poly(ortho esters) specifically designed to allow extrusion in the neighborhood of 70 degrees C. At these temperatures many proteins maintain activity in the dry state. In vitro erosion and BSA release results indicate that after a fairly long lag-time, BSA release and polymer erosion occur concomitantly indicating an erosion-controlled process. The lag-time could be eliminated by the addition to the mixture prior to extrusion between 1 and 5 wt% poly(ethylene glycol) or its methoxy derivatives. The lag-time could also be eliminated by using an AB-block copolymer where A is poly(ortho ester) and B is poly(ethylene glycol).
Collapse
Affiliation(s)
- A Rothen-Weinhold
- University of Geneva, School of Pharmacy, 30 Quai E. Ansermet, CH1211 4, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|