1
|
Bohra A, Tiwari A, Pareek S, Joshi R, Satheesh Naik SJ, Kumari K, Verma RL, Parihar AK, Patil PG, Dixit GP. Past and future of cytoplasmic male sterility and heterosis breeding in crop plants. PLANT CELL REPORTS 2025; 44:33. [PMID: 39841239 DOI: 10.1007/s00299-024-03414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
Plant breeding needs to embrace genetic innovations to ensure stability in crop yields under fluctuating climatic conditions. Development of commercial hybrid varieties has proven to be a sustainable and economical alternative to deliver superior yield, quality and resistance with uniformity in a number of food crops. Cytoplasmic male sterility (CMS), a maternally inherited inability to produce functional pollen, facilitates a three-line system for efficient hybrid seed production strategies in crops. The CMS system has illustrated its potential as a robust pollination control mechanism to support the billion-dollar seed industry. In plants, CMS arises due to a genomic conflict between mitochondrial open reading frames (orfs) and nuclear-encoding restoration-of-fertility (Rf) genes, leading to floral abnormalities and pollen sterility. Research on pollen sterility and fertility restoration provides deeper insights into cytoplasmic-nuclear interplay in plants and elucidates key molecular targets for hybrid breeding in crops. More recently, programmable gene editing (e.g., TALEN, CRISPR-Cas) has emerged as a promising tool to functionally validate CMS and Rf genes and obviate the need for pollen donors or Rf-genes for hybrid breeding. Modern genomic prediction models have allowed establishment of high-performing heterotic groups and patterns for sustaining long-term gain in hybrid breeding. This article reviews latest discoveries elucidating the molecular mechanisms behind CMS and fertility restoration in plants. We then present our perspective on how evolving genetic technologies are contributing to advance fundamental knowledge of the CMS-Rf genetic system for producing crop hybrids with high heterosis.
Collapse
Affiliation(s)
- Abhishek Bohra
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208024, India.
| | - Abha Tiwari
- ICAR-National Institute of Biotic Stresses Management, Baronda, Chhattisgarh, 493225, India
| | - Shalini Pareek
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208024, India
| | - Rohit Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - S J Satheesh Naik
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208024, India
| | - Khushbu Kumari
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ram Lakhan Verma
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Ashok K Parihar
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208024, India
| | - Prakash G Patil
- ICAR-National Research Centre On Pomegranate (NRCP), Solapur, 413 255, India
| | - Girish P Dixit
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208024, India
| |
Collapse
|
2
|
Singh S, Dey SS, Bhatia R, Kumar R, Behera TK. Current understanding of male sterility systems in vegetable Brassicas and their exploitation in hybrid breeding. PLANT REPRODUCTION 2019; 32:231-256. [PMID: 31053901 DOI: 10.1007/s00497-019-00371-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Overview of the current status of GMS and CMS systems available in Brassica vegetables, their molecular mechanism, wild sources of sterile cytoplasm and exploitation of male sterility in hybrid breeding. The predominantly herbaceous family Brassicaceae (crucifers or mustard family) encompasses over 3700 species, and many of them are scientifically and economically important. The genus Brassica is an economically important genus within the tribe Brassicaceae that comprises important vegetable, oilseed and fodder crops. Brassica vegetables display strong hybrid vigor, and heterosis breeding is the integral part in their improvement. Commercial production of F1 hybrid seeds in Brassica vegetables requires an effective male sterility system. Among the available male sterility systems, cytoplasmic male sterility (CMS) is the most widely exploited in Brassica vegetables. This system is maternally inherited and studied intensively. A limited number of reports about the genic male sterility (GMS) are available in Brassica vegetables. The GMS system is reported to be dominant, recessive and trirecessive in nature in different species. In this review, we discuss the available male sterility systems in Brassica vegetables and their potential use in hybrid breeding. The molecular mechanism of mt-CMS and causal mitochondrial genes of CMS has been discussed in detail. Finally, the exploitation of male sterility system in heterosis breeding of Brassica vegetables, future prospects and need for further understanding of these systems are highlighted.
Collapse
Affiliation(s)
- Saurabh Singh
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - S S Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India.
| | - Reeta Bhatia
- Division of Floriculture and Landscaping, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Raj Kumar
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - T K Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| |
Collapse
|
3
|
Carruthers JM, Cook SM, Wright GA, Osborne JL, Clark SJ, Swain JL, Haughton AJ. Oilseed rape ( Brassica napus) as a resource for farmland insect pollinators: quantifying floral traits in conventional varieties and breeding systems. GLOBAL CHANGE BIOLOGY. BIOENERGY 2017; 9:1370-1379. [PMID: 28781612 PMCID: PMC5518758 DOI: 10.1111/gcbb.12438] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 05/20/2023]
Abstract
Oilseed rape (OSR; Brassica napus L.) is a major crop in temperate regions and provides an important source of nutrition to many of the yield-enhancing insect flower visitors that consume floral nectar. The manipulation of mechanisms that control various crop plant traits for the benefit of pollinators has been suggested in the bid to increase food security, but little is known about inherent floral trait expression in contemporary OSR varieties or the breeding systems used in OSR breeding programmes. We studied a range of floral traits in glasshouse-grown, certified conventional varieties of winter OSR to test for variation among and within breeding systems. We measured 24-h nectar secretion rate, amount, concentration and ratio of nectar sugars per flower, and sizes and number of flowers produced per plant from 24 varieties of OSR representing open-pollinated (OP), genic male sterility (GMS) hybrid and cytoplasmic male sterility (CMS) hybrid breeding systems. Sugar concentration was consistent among and within the breeding systems; however, GMS hybrids produced more nectar and more sugar per flower than CMS hybrid or OP varieties. With the exception of ratio of fructose/glucose in OP varieties, we found that nectar traits were consistent within all the breeding systems. When scaled, GMS hybrids produced 1.73 times more nectar resource per plant than OP varieties. Nectar production and amount of nectar sugar in OSR plants were independent of number and size of flowers. Our data show that floral traits of glasshouse-grown OSR differed among breeding systems, suggesting that manipulation and enhancement of nectar rewards for insect flower visitors, including pollinators, could be included in future OSR breeding programmes.
Collapse
Affiliation(s)
- Jonathan M. Carruthers
- Rothamsted ResearchWest CommonHarpendenHertfordshireAL5 2JQUK
- Royal Society of BiologyCharles Darwin House, 12 Roger StreetLondonWC1N 2JUUK
| | | | - Geraldine A. Wright
- Centre for Behaviour and EvolutionInstitute of NeuroscienceNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Juliet L. Osborne
- Environment and Sustainability InstituteUniversity of ExeterPenryn CampusPenrynCornwallTR10 9FEUK
| | | | | | | |
Collapse
|
4
|
Kang L, Li P, Wang A, Ge X, Li Z. A Novel Cytoplasmic Male Sterility in Brassica napus (inap CMS) with Carpelloid Stamens via Protoplast Fusion with Chinese Woad. FRONTIERS IN PLANT SCIENCE 2017; 8:529. [PMID: 28428799 PMCID: PMC5382163 DOI: 10.3389/fpls.2017.00529] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/24/2017] [Indexed: 05/29/2023]
Abstract
A novel cytoplasmic male sterility (CMS) in Brassica napus (inap CMS) was selected from the somatic hybrid with Isatis indigotica (Chinese woad) by recurrent backcrossing. The male sterility was caused by the conversion of tetradynamous stamens into carpelloid structures with stigmatoid tissues at their tips and ovule-like tissues in the margins, and the two shorter stamens into filaments without anthers. The feminized development of the stamens resulted in the complete lack of pollen grains, which was stable in different years and environments. The pistils of inap CMS displayed normal morphology and good seed-set after pollinated by B. napus. Histological sections showed that the developmental alteration of the stamens initiated at the stage of stamen primordium differentiation. AFLP analysis of the nuclear genomic composition with 23 pairs of selective primers detected no woad DNA bands in inap CMS. Twenty out of 25 mitochondrial genes originated from I. indigotica, except for cox2-2 which was the recombinant between cox2 from woad and cox2-2 from rapeseed. The novel cox2-2 was transcribed in flower buds of inap CMS weakly and comparatively with the fertile B. napus addition line Me harboring one particular woad chromosome. The restorers of other autoplasmic and alloplasmic CMS systems in rapeseed failed to restore the fertility of inap CMS and the screening of B. napus wide resources found no fertility restoration variety, showing its distinct origin and the related mechanism of sterility. The reasons for the mitochondrial rearrangements and the breeding of the restorer for the novel CMS system were discussed.
Collapse
|
5
|
Yamagishi H, Bhat SR. Cytoplasmic male sterility in Brassicaceae crops. BREEDING SCIENCE 2014; 64:38-47. [PMID: 24987289 PMCID: PMC4031109 DOI: 10.1270/jsbbs.64.38] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/05/2013] [Indexed: 05/20/2023]
Abstract
Brassicaceae crops display strong hybrid vigor, and have long been subject to F1 hybrid breeding. Because the most reliable system of F1 seed production is based on cytoplasmic male sterility (CMS), various types of CMS have been developed and adopted in practice to breed Brassicaceae oil seed and vegetable crops. CMS is a maternally inherited trait encoded in the mitochondrial genome, and the male sterile phenotype arises as a result of interaction of a mitochondrial CMS gene and a nuclear fertility restoring (Rf) gene. Therefore, CMS has been intensively investigated for gaining basic insights into molecular aspects of nuclear-mitochondrial genome interactions and for practical applications in plant breeding. Several CMS genes have been identified by molecular genetic studies, including Ogura CMS from Japanese radish, which is the most extensively studied and most widely used. In this review, we discuss Ogura CMS, and other CMS systems, and the causal mitochondrial genes for CMS. Studies on nuclear Rf genes and the cytoplasmic effects of alien cytoplasm on general crop performance are also reviewed. Finally, some of the unresolved questions about CMS are highlighted.
Collapse
Affiliation(s)
- Hiroshi Yamagishi
- Faculty of Life Sciences, Kyoto Sangyo University,
Kamigamo, Kita, Kyoto 603-8555,
Japan
- Corresponding author (e-mail: )
| | - Shripad R. Bhat
- National Research Centre of Plant Biotechnology,
New Delhi 10012,
India
| |
Collapse
|
6
|
Kang J, Guo Y, Chen Y, Li H, Zhang L, Liu H. Upregulation of the AT-hook DNA binding gene BoMF2 in OguCMS anthers of Brassica oleracea suggests that it encodes a transcriptional regulatory factor for anther development. Mol Biol Rep 2014; 41:2005-14. [PMID: 24443226 DOI: 10.1007/s11033-014-3048-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 01/04/2014] [Indexed: 11/30/2022]
Abstract
Ogura cytoplasmic male sterility (OguCMS) is the most important CMS system used for F1 hybrid cabbage production worldwide. The anther abortion and defective pollen development exhibited in OguCMS are coordinately regulated by the mitochondrial male sterile gene orf138 and many nuclear transcriptional regulatory factors. AT-hook DNA binding proteins regulate cell-specific gene expression. In this study, we cloned the gene encoding the AT-hook DNA binding protein BoMF2 using the cDNA-AFLP TDF sequence, which was upregulated in OguCMS cabbage flower buds, as a querying probe. BoMF2 contains a 783-nt continuous complete open reading frame encoding a 260 amino-acid polypeptide. In vivo transient expression assays using GFP fusions showed that BoMF2 protein was located in the nucleus. BoMF2 was preferentially expressed in cabbage stamens, with a short expression window at anther development stage 7-8. However, in OguCMS flowers, BoMF2 expression continued into the mature pollen stage and was concomitant with the continued proliferation of tapetum cells exhibited in this mutant. Arabidopsis plants overexpressing BoMF2 showed significantly shorter siliques than the wild type, as well as decrease of pollen viability. These results suggest that BoMF2, a transcriptional regulatory factor, might regulate tapetum proliferation during anther development.
Collapse
Affiliation(s)
- Jungen Kang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China,
| | | | | | | | | | | |
Collapse
|
7
|
Shen D, Sun H, Huang M, Zheng Y, Li X, Fei Z. RadishBase: a database for genomics and genetics of radish. PLANT & CELL PHYSIOLOGY 2013; 54:e3. [PMID: 23239846 DOI: 10.1093/pcp/pcs176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Radish is an economically important vegetable crop. During the past several years, large-scale genomics and genetics resources have been accumulated for this species. To store, query, analyze and integrate these radish resources efficiently, we have developed RadishBase (http://bioinfo.bti.cornell.edu/radish), a genomics and genetics database of radish. Currently the database contains radish mitochondrial genome sequences, expressed sequence tag (EST) and unigene sequences and annotations, biochemical pathways, EST-derived single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers, and genetic maps. RadishBase is designed to enable users easily to retrieve and visualize biologically important information through a set of efficient query interfaces and analysis tools, including the BLAST search and unigene annotation query interfaces, and tools to classify unigenes functionally, to identify enriched gene ontology (GO) terms and to visualize genetic maps. A database containing radish pathways predicted from unigene sequences is also included in RadishBase. The tools and interfaces in RadishBase allow efficient mining of recently released and continually expanding large-scale radish genomics and genetics data sets, including the radish genome sequences and RNA-seq data sets.
Collapse
Affiliation(s)
- Di Shen
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
8
|
Yang S, Terachi T, Yamagishi H. Inhibition of chalcone synthase expression in anthers of Raphanus sativus with Ogura male sterile cytoplasm. ANNALS OF BOTANY 2008; 102:483-9. [PMID: 18625698 PMCID: PMC2701772 DOI: 10.1093/aob/mcn116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/14/2008] [Accepted: 06/12/2008] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Expression of the mitochondrial gene orf138 causes Ogura cytoplasmic male sterility (CMS) in Raphanus sativus, but little is known about the mechanism by which CMS takes place. A preliminary microarray experiment revealed that several nuclear genes concerned with flavonoid biosynthesis were inhibited in the male-sterile phenotype. In particular, a gene for one of the key enzymes for flavonoid biosynthesis, chalcone synthase (CHS), was strongly inhibited. A few reports have suggested that the inhibition of CHS causes nuclear-dependent male sterile expression; however, there do not appear to be any reports elucidating the effect of CHS on CMS expression. In this study, the expression patterns of the early genes in the flavonoid biosynthesis pathway, including CHS, were investigated in normal and male-sterile lines. METHODS In order to determine the aberrant stage for CMS expression, the characteristics of male-sterile anthers are observed using light and transmission electron microscopy for several stages of flower buds. The expression of CHS and the other flavonoid biosynthetic genes in the anthers were compared between normal and male-sterile types using real time RT-PCR. KEY RESULTS Among the flavonoid biosynthetic genes analysed, the expression of CHS was strongly inhibited in the later stages of anther development in sterility cytoplasm; accumulation of putative naringenin derivatives was also inhibited. CONCLUSIONS These results show that flavonoids play an important role in the development of functional pollen, not only in nuclear-dependent male sterility, but also in CMS.
Collapse
|
9
|
Leino M, Teixeira R, Landgren M, Glimelius K. Brassica napus lines with rearranged Arabidopsis mitochondria display CMS and a range of developmental aberrations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 106:1156-1163. [PMID: 12748764 DOI: 10.1007/s00122-002-1167-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2002] [Accepted: 09/16/2002] [Indexed: 05/24/2023]
Abstract
Numerous Brassica napus (+) Arabidopsis thaliana somatic hybrids were screened for male sterility and aberrant flower phenotypes. Nine hybrids were selected and backcrossed recurrently to B. napus. The resulting lines displayed stable maternal inheritance of flower phenotypes. Nuclear and organellar genomes were characterized molecularly using RFLP analysis. No DNA from A. thaliana was found in the nuclear genome after six back-crosses, whilst the mitochondrial genomes contained rearranged DNA from both A. thaliana and B. napus. Each line tested had a unique RFLP pattern of the mitochondrial DNA (mtDNA) that remained unchanged between the BC(3) and BC(6) generation. The plastid genomes consisted of B. napus DNA. Five lines of the BC(5) generation were subjected to more comprehensive investigations of growth, morphology and fertility. On the basis of these investigations, the five CMS lines could be assigned to two groups, one represented by three lines displaying reduced vegetative development, complete male sterility, and homeotic conversions of stamens into feminized structures. The second group, represented by the other two lines, were not completely male-sterile but still displayed severely affected flower morphologies. These two lines did not display any reduction in vegetative development. For both groups only stamens and petals suffered from the morphological and functional aberrations, while the sepals and pistils displayed normal morphology. All plants were fully female-fertile. Different rearrangements of the mitochondrial genome disturbed nuclear-mitochondrial interactions and led to various types of aberrant growth and flower development. The existence of numerous CMS lines with different mitochondrial patterns involving a species with a sequenced genome offers new opportunities to investigate the genetic regulation of CMS and its associated developmental perturbations.
Collapse
Affiliation(s)
- M Leino
- Department of Plant Biology, Box 7080, Swedish University for Agricultural Sciences, 750 07 Uppsala, Sweden.
| | | | | | | |
Collapse
|
10
|
Farbos I, Mouras A, Bereterbide A, Glimelius K. Defective cell proliferation in the floral meristem of alloplasmic plants of Nicotiana tabacum leads to abnormal floral organ development and male sterility. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 26:131-42. [PMID: 11389755 DOI: 10.1046/j.1365-313x.2001.01011.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Flowers of an alloplasmic male-sterile tobacco line, comprised of the nuclear genome of Nicotiana tabacum and the cytoplasm of Nicotiana repanda, develop short, poorly-pigmented petals and abnormal sterile stamens that often are fused with the carpel wall. The development of flower organ primordia and establishment of boundaries between the different zones in the floral meristem were investigated by performing expression analysis of the tobacco orthologs of the organ identity genes GLO, AG and DEF. These studies support the conclusion that boundary formation was impaired between the organs produced in whorls 3 and 4 resulting in partial fusions between anthers and carpels. According to the investigations cell divisions and floral meristem size in the alloplasmic line were drastically reduced in comparison with the male-fertile tobacco line. The reduction in cell divisions leads to a discrepancy between cell number and cell determination at the stage when petal and stamen primordia should be initiated. At the same stage expression of the homeotic genes was delayed in comparison with the male-fertile line. However, the abnormal organ development was not due to a failure in the spatial expression of the organ identity genes. Instead the aberrant development in the floral organs of whorls 2, 3 and 4 appears to be caused by deficient floral meristem development at an earlier stage. Furthermore, defects in cell proliferation in the floral meristem of the alloplasmic male-sterile line correlates with presence of morphologically modified mitochondria. The putative causes of reduced cell number in the floral meristem and the consequences for floral development are discussed.
Collapse
Affiliation(s)
- I Farbos
- Department of Plant Biology, Uppsala Genetic Center, Swedish University of Agricultural Sciences, Box 7080, S-75007 Uppsala, Sweden.
| | | | | | | |
Collapse
|