1
|
Shi Y, Zhao YZ, Jiang Z, Wang Z, Wang Q, Kou L, Yao Q. Immune-Protective Formulations and Process Strategies for Improved Survival and Function of Transplanted Islets. Front Immunol 2022; 13:923241. [PMID: 35903090 PMCID: PMC9315421 DOI: 10.3389/fimmu.2022.923241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the immune system attacking and destroying insulin-producing β cells in the pancreas. Islet transplantation is becoming one of the most promising therapies for T1D patients. However, its clinical use is limited by substantial cell loss after islet infusion, closely related to immune reactions, including instant blood-mediated inflammatory responses, oxidative stress, and direct autoimmune attack. Especially the grafted islets are not only exposed to allogeneic immune rejection after transplantation but are also subjected to an autoimmune process that caused the original disease. Due to the development and convergence of expertise in biomaterials, nanotechnology, and immunology, protective strategies are being investigated to address this issue, including exploring novel immune protective agents, encapsulating islets with biomaterials, and searching for alternative implantation sites, or co-transplantation with functional cells. These methods have significantly increased the survival rate and function of the transplanted islets. However, most studies are still limited to animal experiments and need further studies. In this review, we introduced the immunological challenges for islet graft and summarized the recent developments in immune-protective strategies to improve the outcomes of islet transplantation.
Collapse
Affiliation(s)
- Yannan Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhikai Jiang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeqing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qian Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Yao, ; Longfa Kou,
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Yao, ; Longfa Kou,
| |
Collapse
|
2
|
Lei J, Zhang A, Deng H, Yang Z, Peters CW, Lee KM, Wang Z, Rosales IA, Rickert C, Markmann JF. Intrapleural transplantation of allogeneic pancreatic islets achieves glycemic control in a diabetic non-human primate. Am J Transplant 2022; 22:966-972. [PMID: 34704352 PMCID: PMC8897220 DOI: 10.1111/ajt.16875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/03/2021] [Accepted: 10/18/2021] [Indexed: 01/25/2023]
Abstract
Clinical islet transplantation has relied almost exclusively on intraportal administration of pancreatic islets, as it has been the only consistent approach to achieve robust graft function in human recipients. However, this approach suffers from significant loss of islet mass from a potent immediate blood-mediated inflammatory response (IBMIR) and a hypoxic environment. To avoid these negative aspects of the portal site, we explored an alternative approach in which allogeneic islets were transplanted into the intrapleural space of a non-human primate (NHP), treated with an immunosuppression regimen previously reported to secure routine survival and tolerance to allogeneic islets in NHP. Robust glycemic control and graft survival were achieved for the planned study period of >90 days. Our observations suggest the intrapleural space provides an attractive locale for islet transplantation due to its higher oxygen tension, ability to accommodate large transplant tissue volumes, and a lack of IBMIR-mediated islet damage. Our preliminary results reveal the promise of the intrapleural space as an alternative site for clinical islet transplantation in the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Ji Lei
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA,To whom correspondence should be addressed: Ji Lei, MD, MBA, 185 Cambridge Street, Rm3836, Massachusetts General Hospital, Boston, MA 02114. Phone: 617-643-5327, FAX: 617-643-7464,
| | - Alexander Zhang
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Hongping Deng
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Zhihong Yang
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Cole W. Peters
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Kang M. Lee
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Zhenjuan Wang
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Ivy A. Rosales
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Charles Rickert
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - James F. Markmann
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Pancreatic islet cell transplantation is currently the only curative cell therapy for type 1 diabetes mellitus. However, its potential to treat many more patients is limited by several challenges. The emergence of 3D bioprinting technology from recent advances in 3D printing, biomaterials, and cell biology has provided the means to overcome these challenges. RECENT FINDINGS 3D bioprinting allows for the precise fabrication of complex 3D architectures containing spatially distributed cells, biomaterials (bioink), and bioactive factors. Different strategies to capitalize on this ability have been investigated for the 3D bioprinting of pancreatic islets. In particular, with co-axial bioprinting technology, the co-printability of islets with supporting cells such as endothelial progenitor cells and regulatory T cells, which have been shown to accelerate revascularization of islets and improve the outcome of various transplantations, respectively, has been achieved. 3D bioprinting of islets for generation of an artificial pancreas is a newly emerging field of study with a vast potential to improve islet transplantation.
Collapse
Affiliation(s)
- Juewan Kim
- Department of Molecular & Cellular Biology, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Kyungwon Kang
- Discipline of Medicine, School of Medicine, The University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Christopher J Drogemuller
- Discipline of Medicine, School of Medicine, The University of Adelaide, Adelaide, South Australia, 5000, Australia
- Central Northern Adelaide Renal and Transplantation Service (CNARTS), The Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterial Science, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - P Toby Coates
- Discipline of Medicine, School of Medicine, The University of Adelaide, Adelaide, South Australia, 5000, Australia.
- Central Northern Adelaide Renal and Transplantation Service (CNARTS), The Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
4
|
Revascularization of transplanted pancreatic islets and role of the transplantation site. Clin Dev Immunol 2013; 2013:352315. [PMID: 24106517 PMCID: PMC3782812 DOI: 10.1155/2013/352315] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/09/2013] [Indexed: 12/16/2022]
Abstract
Since the initial reporting of the successful reversal of hyperglycemia through the transplantation of pancreatic islets, significant research efforts have been conducted in elucidating the process of revascularization and the influence of engraftment site on graft function and survival. During the isolation process the intrinsic islet vascular networks are destroyed, leading to impaired revascularization after transplant. As a result, in some cases a significant quantity of the beta cell mass transplanted dies acutely following the infusion into the portal vein, the most clinically used site of engraftment. Subsequently, despite the majority of patients achieving insulin independence after transplant, a proportion of them recommence small, supplemental exogenous insulin over time. Herein, this review considers the process of islet revascularization after transplant, its limiting factors, and potential strategies to improve this critical step. Furthermore, we provide a characterization of alternative transplant sites, analyzing the historical evolution and their role towards advancing transplant outcomes in both the experimental and clinical settings.
Collapse
|
5
|
Abstract
The liver is the current site of choice for pancreatic islet transplantation, even though it is far from being an ideal site because of immunologic, anatomic, and physiologic factors leading to a significant early graft loss. A huge amount of alternative sites have been used for islet transplantation in experimental animal models to provide improved engraftment and long-term survival minimizing surgical complications. The pancreas, gastric submucosa, genitourinary tract, muscle, omentum, bone marrow, kidney capsule, peritoneum, anterior eye chamber, testis, and thymus have been explored. Site-specific differences exist in term of islet engraftment, but few alternative sites have potential clinical translation and generally the evidence of a post-transplant islet function better than that reached after intraportal infusion is still lacking. This review discusses site-specific benefits and drawbacks taking into account immunologic, metabolic, and technical aspects to identify the ideal microenvironment for islet function and survival.
Collapse
Affiliation(s)
- Elisa Cantarelli
- San Raffaele Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy.
| | | |
Collapse
|
6
|
Merani S, Toso C, Emamaullee J, Shapiro AMJ. Optimal implantation site for pancreatic islet transplantation. Br J Surg 2008; 95:1449-61. [PMID: 18991254 DOI: 10.1002/bjs.6391] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Since the first report of successful pancreatic islet transplantation to reverse hyperglycaemia in diabetic rodents, there has been great interest in determining the optimal site for implantation. Although the portal vein remains the most frequently used site clinically, it is not ideal. About half of the islets introduced into the liver die during or shortly after transplantation. Although many patients achieve insulin independence after portal vein infusion of islets, in the long term most resume insulin injections. METHODS This review considers possible sites and techniques of islet transplantation in small and large animal models, and in humans. Metabolic, immunological and technical aspects are discussed. RESULTS AND CONCLUSION Many groups have sought an alternative site that might offer improved engraftment and long-term survival, together with reduced procedure-related complications. The spleen, pancreas, kidney capsule, peritoneum and omental pouch have been explored. The advantages and disadvantages of various sites are discussed in order to define the most suitable for clinical use and to direct future research.
Collapse
Affiliation(s)
- S Merani
- Surgical Medical Research Institute, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
7
|
Halberstadt C, Emerich DF, Gores P. Use of Sertoli cell transplants to provide local immunoprotection for tissue grafts. Expert Opin Biol Ther 2005; 4:813-25. [PMID: 15174964 DOI: 10.1517/14712598.4.6.813] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The recent success of allogeneic islet transplantation for the treatment of type I diabetes has renewed interest in cell therapy for diseases of secretory cell dysfunction. Unfortunately, widespread clinical use of cell transplantation is limited by tissue availability and the need for long-term immunosuppresion. Testicular Sertoli cells can confer local immunoprotection for co-transplanted cells and may provide a means of overcoming the obstacles associated with cell transplantation. Sertoli cell grafts protect islets in animal models of diabetes and can be transplanted into the brain to enhance regeneration and promote the survival of co-grafted tissues. This review describes the role that Sertoli cells normally play in testicular immunology, details the preclinical data using transplanted Sertoli cells in models of diabetes and Parkinson's disease and discusses some of the possible mechanisms involved in this phenomena, as well as the future of this technology.
Collapse
Affiliation(s)
- Craig Halberstadt
- Carolinas Medical Center, General Surgery Research, Cannon Research Center, P.O. Box 32861, Charlotte, NC 28232-2861, USA.
| | | | | |
Collapse
|
8
|
Emerich DF, Hemendinger R, Halberstadt CR. The testicular-derived Sertoli cell: cellular immunoscience to enable transplantation. Cell Transplant 2004; 12:335-49. [PMID: 12911122 DOI: 10.3727/000000003108746894] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There is a renewed enthusiasm for the potential of cellular transplantation as a therapy for numerous clinical disorders. The revived interest is largely due to the unprecedented success of the "Edmonton protocol," which produced a 100% cure rate for type I diabetics following the transplantation of human islet allografts together with a modified immunosuppressive regimen. While these data provide a clear and unequivocal demonstration that transplantation is a viable treatment strategy, the shortage of suitable donor tissue together with the debilitating consequences of lifelong immunosuppression necessitate a concerted effort to develop novel means to enable transplantation on a widespread basis. This review outlines the use of Sertoli cells to provide local immunoprotection to cografted discordant cells, including those from xenogeneic sources. Sertoli cells are normally found in the testes where one of their functions is to provide local immunologic protection to developing germ cells. Isolated Sertoli cells 1) engraft and self-protect when transplanted into allogeneic and xenogeneic environments, 2) protect cografted allogeneic and xenogeneic cells from immune destruction, 3) protect islet grafts to reverse diabetes in animal models, 4) enable survival and function of cografted foreign dopaminergic neurons in rodent models of Parkinson's disease (PD), and 5) promote regeneration of damaged striatal dopaminergic circuitry in those same PD models. These benefits are discussed in the context of several potential underlying biological mechanisms. While the majority of work to date has focused on Sertoli cells to facilitate transplantation for diabetes and PD, the generalized ability of these unique cells to potently suppress the local immune environment opens additional clinical possibilities.
Collapse
|
9
|
Dufour JM, Rajotte RV, Korbutt GS, Emerich DF. Harnessing the Immunomodulatory Properties of Sertoli Cells to Enable Xenotransplantation in Type I Diabetes. Immunol Invest 2003; 32:275-97. [PMID: 14603995 DOI: 10.1081/imm-120025106] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Islet transplantation has emerged as a viable long-term means of treating type I diabetes. This is largely due to the success of the "Edmonton protocol" which has produced insulin independence in 85% of patients 1 year after transplantation of allogeneic islets together with a non-steroid immunosuppressive regimen. While these data provide a clear and unequivocal demonstration that islet transplantation is a viable treatment strategy, the shortage of suitable donor tissue together with the debilitating consequences of life-long immunosuppression necessitate the development of novel means to enable transplantation of all type 1 diabetics including the young juvenile diabetics. One potential means of enabling islet transplantation takes advantage of the ability of Sertoli cells to provide local immunoprotection to co-grafted islets, including those from xenogeneic sources. Sertoli cells are normally found in the testes where one of their functions is to provide local immunologic protection to developing germ cells. In animal models, allogeneic and xenogeneic islets survive and function for extended periods of time when grafted into the testes. Moreover, isolated Sertoli cells protect co-grafted allogeneic and xenogeneic islets from immune destruction and reverse diabetes in immunocompetent and autoimmune animals. These benefits are discussed in the context of several potential underlying biological mechanisms.
Collapse
Affiliation(s)
- Jannette M Dufour
- Surgical-Medical Research Institute, University of Alberta, Edmonton, Canada.
| | | | | | | |
Collapse
|
10
|
Margolis RN. Hepatic glycogen synthase phosphatase and phosphorylase phosphatase activities are increased in obese (fa/fa) hyperinsulinemic Zucker rats: effects of glyburide administration. Life Sci 1987; 41:2615-22. [PMID: 2826945 DOI: 10.1016/0024-3205(87)90275-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The chronically hyperinsulinemic Zucker fatty rat, with peripheral insulin resistance and glucose intolerance, represents a model of noninsulin dependent diabetes mellitus (NIDDM). These animals have elevated hepatic glycogen levels. Hepatic levels of synthase phosphatase and phosphorylase phosphatase, which are diminished in the IDDM rat, were markedly increased in the obese rats. Glyburide, a sulfonylurea used in treatment of NIDDM, resulted in reduced levels of glycemia and increased insulin levels in Zucker rats. Hepatic glycogen levels were increased, as was the activation of glycogen synthase, although there were no effects of drug administration on synthase phosphatase or phosphorylase phosphatase activities. G6P levels were increased by glyburide in lean rats but not in obese animals. These effects of glyburide on liver glycogen metabolism are accounted for via potentiation of the glycogenic effects of insulin.
Collapse
Affiliation(s)
- R N Margolis
- Department of Anatomy, Howard University Cancer Center, Washington, D.C
| |
Collapse
|