1
|
Wilson EA, Weinberg DL, Patel GP. Intraoperative Anesthetic Strategies to Mitigate Early Allograft Dysfunction After Orthotopic Liver Transplantation: A Narrative Review. Anesth Analg 2024; 139:1267-1282. [PMID: 38442076 DOI: 10.1213/ane.0000000000006902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Orthotopic liver transplantation (OLT) is the most effective treatment for patients with end-stage liver disease (ESLD). Hepatic insufficiency within a week of OLT, termed early allograft dysfunction (EAD), occurs in 20% to 25% of deceased donor OLT recipients and is associated with morbidity and mortality. Primary nonfunction (PNF), the most severe form of EAD, leads to death or retransplantation within 7 days. The etiology of EAD is multifactorial, including donor, recipient, and surgery-related factors, and largely driven by ischemia-reperfusion injury (IRI). IRI is an immunologic phenomenon characterized by dysregulation of cellular oxygen homeostasis and innate immune defenses in the allograft after temporary cessation (ischemia) and later restoration (reperfusion) of oxygen-rich blood flow. The rising global demand for OLT may lead to the use of marginal allografts, which are more susceptible to IRI, and thus lead to an increased incidence of EAD. It is thus imperative the anesthesiologist is knowledgeable about EAD, namely its pathophysiology and intraoperative strategies to mitigate its impact. Intraoperative strategies can be classified by 3 phases, specifically donor allograft procurement, storage, and recipient reperfusion. During procurement, the anesthesiologist can use pharmacologic preconditioning with volatile anesthetics, consider preharvest hyperoxemia, and attenuate the use of norepinephrine as able. The anesthesiologist can advocate for normothermic regional perfusion (NRP) and machine perfusion during allograft storage at their institution. During recipient reperfusion, the anesthesiologist can optimize oxygen exposure, consider adjunct anesthetics with antioxidant-like properties, and administer supplemental magnesium. Unfortunately, there is either mixed, little, or no data to support the routine use of many free radical scavengers. Given the sparse, limited, or at times conflicting evidence supporting some of these strategies, there are ample opportunities for more research to find intraoperative anesthetic strategies to mitigate the impact of EAD and improve postoperative outcomes in OLT recipients.
Collapse
Affiliation(s)
- Elizabeth A Wilson
- From the Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia
| | | | | |
Collapse
|
2
|
Costa CCC, Pereira NG, Machado ALM, Dórea MA, Cruz RMMD, Silva RC, Domingues RJDS, Yasojima EY. Splenic ischemic preconditioning attenuates oxidative stress induced by hepatic ischemia-reperfusion in rats. Acta Cir Bras 2019; 34:e201900707. [PMID: 31531528 PMCID: PMC6756009 DOI: 10.1590/s0102-865020190070000007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/11/2019] [Indexed: 01/24/2023] Open
Abstract
Purpose: To evaluate the effects of splenic ischemic preconditioning (sIPC) on oxidative stress induced by hepatic ischemia-reperfusion in rats. Methods: Fifteen male Wistar rats were equally divided into 3 groups: SHAM, IRI and sIPC. Animals from IRI group were subjected to 45 minutes of partial liver ischemia (70%). In the sIPC group, splenic artery was clamped in 2 cycles of 5 min of ischemia and 5 min of reperfusion (20 min total) prior to hepatic ischemia. SHAM group underwent the same surgical procedures as in the remaining groups, but no liver ischemia or sIPC were induced. After 1h, hepatic and splenic tissue samples were harvested for TBARS, CAT, GPx and GSH-Rd measurement. Results: sIPC treatment significantly decreased both hepatic and splenic levels of TBARS when compared to IRI group (p<0.01). Furthermore, the hepatic and splenic activities of CAT, GPx and GSH- Rd were significantly higher in sIPC group than in IRI group. Conclusion: sIPC was able to attenuate hepatic and splenic IRI-induced oxidative stress.
Collapse
Affiliation(s)
- Caio César Chaves Costa
- Graduate student, Faculty of Medicine, UEPA, Belem-PA, Brazil. Technical procedures, analysis and interpretation of data, manuscript preparation
| | - Nathalia Gabay Pereira
- Graduate student, Faculty of Medicine, UEPA, Belem-PA, Brazil. Technical procedures, analysis and interpretation of data, manuscript preparation
| | - Anna Luiza Melo Machado
- Graduate student, Faculty of Medicine, UEPA, Belem-PA, Brazil. Technical procedures, analysis and interpretation of data, manuscript preparation
| | - Mariana Albuquerque Dórea
- Graduate student, Faculty of Medicine, UEPA, Belem-PA, Brazil. Technical procedures, analysis and interpretation of data, manuscript preparation
| | - Rafaella Macêdo Monteiro da Cruz
- Graduate student, Faculty of Medicine, UEPA, Belem-PA, Brazil. Technical procedures, analysis and interpretation of data, manuscript preparation
| | - Renata Cunha Silva
- Fellow, Postgraduate Program in Surgery and Experimental Research, UEPA, Belem-PA, Brazil. Technical procedures, analysis and interpretation of data, manuscript preparation
| | - Robson José de Souza Domingues
- PhD, Full Professor, Department of Morphology and Physiological Sciences, UEPA, Belem-PA, Brazil. Scientific and intellectual content of the study, critical revision, final approval
| | - Edson Yuzur Yasojima
- PhD, Full Professor, Postgraduate Program in Surgery and Experimental Research, Universidade do Estado do Pará (UEPA), Belem-PA, Brazil. Conception, design, scientific and intellectual content of the study; critical revision; final approval
| |
Collapse
|
3
|
Lee MYK, Ge G, Fung ML, Vanhoutte PM, Mak JCW, Ip MSM. Low but not high frequency of intermittent hypoxia suppresses endothelium-dependent, oxidative stress-mediated contractions in carotid arteries of obese mice. J Appl Physiol (1985) 2018; 125:1384-1395. [PMID: 30091668 DOI: 10.1152/japplphysiol.00224.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Obstructive sleep apnea is characterized by intermittent hypoxia (IH) during sleep and predisposes to endothelial dysfunction. Obesity is a major risk factor for the occurrence of sleep apnea. The present study compared the functional impact of low- (IH10; 10 hypoxic events/h) and high-frequency (IH60; 60 hypoxic events/h) IH for 4 wk on endothelial function in male C57BL/6 mice with or without high-fat (HF) diet-induced obesity. Mean arterial blood pressure (tail cuff method) was increased in obese mice after IH60 exposure, i.e., HF + IH60 group. The serum levels of the oxidative stress marker malondialdehyde were augmented in lean IH60 and HF groups, with a further increase in HF + IH60 but a reduction in HF + IH10 mice compared with the HF group. Vascular responsiveness was assessed as changes in isometric tension in isolated arteries. Relaxations to the endothelium-dependent vasodilator acetylcholine were impaired in HF + IH60 aortae. Endothelium-dependent contractions (EDC; response to acetylcholine in the presence of the nitric oxide synthase inhibitor l-NAME) in carotid arteries were augmented in the HF group, but this HF-induced augmentation was suppressed by low-frequency IH exposure. The addition of apocynin (antioxidant) reduced EDC in HF and HF + IH60 groups but not in HF + IH10 group. In conclusion, these findings suggest that exposure of obese mice to mild IH exerts preconditioning-like suppression of endothelium-dependent and oxidative stress-mediated contractions. When IH severity increases, this suppression diminishes and endothelial dysfunction accelerates. NEW & NOTEWORTHY The present study demonstrates, for the first time, that low-frequency intermittent hypoxia may exert a preconditioning-like suppression of oxidative stress-induced endothelium-dependent contractions in mice with diet-induced obesity. This relative suppression was diminished as intermittent hypoxia became more severe, and a deleterious effect on endothelial function emerged.
Collapse
Affiliation(s)
- Mary Y K Lee
- Division of Respiratory Medicine, Department of Medicine, University of Hong Kong , China
| | - Grace Ge
- Division of Respiratory Medicine, Department of Medicine, University of Hong Kong , China
| | - M L Fung
- Research Centre of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong , China.,School of Biomedical Sciences, LKS Faculty of Medicine, University of Hong Kong , China
| | - Paul M Vanhoutte
- Pharmacology & Pharmacy, LKS Faculty of Medicine, University of Hong Kong , China.,Research Centre of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong , China
| | - Judith C W Mak
- Division of Respiratory Medicine, Department of Medicine, University of Hong Kong , China.,Pharmacology & Pharmacy, LKS Faculty of Medicine, University of Hong Kong , China.,Research Centre of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong , China
| | - Mary S M Ip
- Division of Respiratory Medicine, Department of Medicine, University of Hong Kong , China.,Research Centre of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong , China
| |
Collapse
|
4
|
Bystrom P, Foley N, Toledo-Pereyra L, Quesnelle K. Ischemic preconditioning modulates ROS to confer protection in liver ischemia and reperfusion. EXCLI JOURNAL 2017; 16:483-496. [PMID: 28694752 PMCID: PMC5491905 DOI: 10.17179/excli2017-166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/20/2017] [Indexed: 12/24/2022]
Abstract
Ischemia reperfusion (IR) injury is a significant cause of morbidity and mortality in liver transplantation. When oxygen is reintroduced to the liver graft it initiates a cascade of molecular reactions leading to the release of reactive oxygen species (ROS) and pro-inflammatory cytokines. These soluble mediators propagate a sterile immune response to cause significant tissue damage. Ischemic preconditioning (IPC) is one method that reduces hepatocellular injury by altering the immune response and inhibiting the production of ROS. Studies quantifying the effects of IPC in humans have demonstrated an improved liver enzyme panel in patients receiving grafts pretreated with IPC as compared to patients receiving the standard of care. In our review, we explore current literature in the field in order to describe the mechanism through which IPC regulates the production of ROS and improves IR injury.
Collapse
Affiliation(s)
- Phillip Bystrom
- Western Michigan University, Homer Stryker M.D. School of Medicine Department of Biomedical Sciences
| | - Nicole Foley
- Western Michigan University, Homer Stryker M.D. School of Medicine Department of Biomedical Sciences
| | - Luis Toledo-Pereyra
- Western Michigan University, Homer Stryker M.D. School of Medicine Department of Surgery
| | - Kelly Quesnelle
- Western Michigan University, Homer Stryker M.D. School of Medicine Department of Biomedical Sciences
| |
Collapse
|
5
|
Miyashita T, Nakanuma S, Ahmed AK, Makino I, Hayashi H, Oyama K, Nakagawara H, Tajima H, Takamura H, Ninomiya I, Fushida S, Harmon JW, Ohta T. Ischemia reperfusion-facilitated sinusoidal endothelial cell injury in liver transplantation and the resulting impact of extravasated platelet aggregation. Eur Surg 2015; 48:92-98. [PMID: 27110233 PMCID: PMC4830883 DOI: 10.1007/s10353-015-0363-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/13/2022]
Abstract
Background The exact sequence of events leading to ultimate hepatocellular damage following ischemia/reperfusion (I/R) is incompletely understood. In this article, we review a mechanism of organ dysfunction after hepatic I/R or immunosuppressive treatment, in addition to the potential of liver sinusoidal endothelial cell (LSEC) protection and antiplatelet treatment for the suppression of hepatocellular damage. Methods A review of the literature, utilizing PubMed-NCBI, was used to provide information on the components necessary for the development of hepatocellular damage following I/R. Results It is well-established that LSECs damage following hepatic I/R or immunosuppressive treatment followed by extravasated platelet aggregation (EPA) is the root cause of organ dysfunction in liver transplantation. We have classified three phases, from LSECs damage to organ dysfunction, utilizing the predicted pathogenic mechanism of sinusoidal obstruction syndrome. The first phase is detachment of LSECs and sinusoidal wall destruction after LSECs injury by hepatic I/R or immunosuppressive treatment. The second phase is EPA, accomplished by sinusoidal wall destruction. The various growth factors, including thromboxane A2, serotonin, transforming growth factor-beta and plasminogen activator inhibitor-1, released by EPA in the Disse’s space of zone three, induce portal hypertension and the progression of hepatic fibrosis. The third phase is organ dysfunction following portal hypertension, hepatic fibrosis, and suppressed liver regeneration through various growth factors secreted by EPA. Conclusion We suggest that EPA in the space of Disse, initiated by LSECs damage due to hepatic I/R or immunosuppressive treatment, and activated platelets may primarily contribute to liver damage in liver transplantation. Endothelial protective therapy or antiplatelet treatment may be useful in the treatment of hepatic I/R following EPA.
Collapse
Affiliation(s)
- T Miyashita
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takaramachi, 920-8641 Kanazawa, Ishikawa Japan
| | - S Nakanuma
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takaramachi, 920-8641 Kanazawa, Ishikawa Japan
| | - A K Ahmed
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 21224 Baltimore, MD USA
| | - I Makino
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takaramachi, 920-8641 Kanazawa, Ishikawa Japan
| | - H Hayashi
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takaramachi, 920-8641 Kanazawa, Ishikawa Japan
| | - K Oyama
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takaramachi, 920-8641 Kanazawa, Ishikawa Japan
| | - H Nakagawara
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takaramachi, 920-8641 Kanazawa, Ishikawa Japan
| | - H Tajima
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takaramachi, 920-8641 Kanazawa, Ishikawa Japan
| | - H Takamura
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takaramachi, 920-8641 Kanazawa, Ishikawa Japan
| | - I Ninomiya
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takaramachi, 920-8641 Kanazawa, Ishikawa Japan
| | - S Fushida
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takaramachi, 920-8641 Kanazawa, Ishikawa Japan
| | - J W Harmon
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 21224 Baltimore, MD USA
| | - T Ohta
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takaramachi, 920-8641 Kanazawa, Ishikawa Japan
| |
Collapse
|
6
|
Shi B, Feng ZQ, Li WB, Zhang HY. Low G preconditioning reduces liver injury induced by high +Gz exposure in rats. World J Gastroenterol 2015; 21:6543-6549. [PMID: 26074692 PMCID: PMC4458764 DOI: 10.3748/wjg.v21.i21.6543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/04/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of repeated lower +Gz exposure on liver injury induced by high +Gz exposure in rats.
METHODS: Sixty male Wister rats were randomly divided into a blank control group, a low G preconditioning group (LG) (exposed to +4 Gz/5 min per day for 3 d before +10 Gz/5 min exposure), and a +10 Gz/5 min group (10G) (n = 20 in each group). Blood specimens and liver tissue were harvested at 0 h and 6 h after +10 Gz/5 min exposure. Liver function was analyzed by measuring serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, and liver injury was further assessed by histopathological observation. Malondialdehyde (MDA), superoxide dismutase (SOD) and Na+-K+-ATPase were determined in hepatic tissue.
RESULTS: The group LG had lower ALT, AST, and MDA values at 0 h after exposure than those in group 10G. SOD values and Na+-K+-ATPase activity in the LG group were higher than in group 10G 0 h post-exposure. Hepatocyte injury was significantly less in group LG than in group 10G on histopathological evaluation.
CONCLUSION: It is suggested that repeated low +Gz exposure shows a protective effect on liver injury induced by high +Gz exposure in rats.
Collapse
|
7
|
A novel form of the human manganese superoxide dismutase protects rat and human livers undergoing ischaemia and reperfusion injury. Clin Sci (Lond) 2014; 127:527-37. [PMID: 24754522 DOI: 10.1042/cs20140125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hepatic microcirculatory dysfunction due to cold storage and warm reperfusion (CS+WR) injury during liver transplantation is partly mediated by oxidative stress and may lead to graft dysfunction. This is especially relevant when steatotic donors are considered. Using primary cultured liver sinusoidal endothelial cells (LSECs), liver grafts from healthy and steatotic rats, and human liver samples, we aimed to characterize the effects of a new recombinant form of human manganese superoxide dismutase (rMnSOD) on hepatic CS+WR injury. After CS+WR, the liver endothelium exhibited accumulation of superoxide anion (O2-) and diminished levels of nitric oxide (NO); these detrimental effects were prevented by rMnSOD. CS+WR control and steatotic rat livers exhibited markedly deteriorated microcirculation and acute endothelial dysfunction, together with liver damage, inflammation, oxidative stress, and low NO. rMnSOD markedly blunted oxidative stress, which was associated with a global improvement in liver damage and microcirculatory derangements. The addition of rMnSOD to CS solution maintained its antioxidant capability, protecting rat and human liver tissues. In conclusion, rMnSOD represents a new and highly effective therapy to significantly upgrade liver procurement for transplantation.
Collapse
|
8
|
Figueira ER, Rocha-Filho JA, Nakatani M, Buto MF, Tatebe ER, Andre VO, Cecconello I, D'Albuquerque LA. Hepatic ischemic preconditioning increases portal vein flow in experimental liver ischemia reperfusion injury. Hepatobiliary Pancreat Dis Int 2014; 13:40-7. [PMID: 24463078 DOI: 10.1016/s1499-3872(14)60005-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ischemic preconditioning (IPC) has been shown to decrease liver injury and to increase hepatic microvascular perfusion after liver ischemia reperfusion. This study aimed to evaluate the effects of IPC on hemodynamics of the portal venous system. METHODS Thirty-two rats were randomized into two groups: IPC group and control group. The rats of the IPC group underwent IPC by 10 minutes of liver ischemia followed by 10 minutes of reperfusion before liver ischemia, and the rats of the control group were subjected to 60 minutes of partial liver ischemia. Non-ischemic lobes were resected immediately after reperfusion. The animals were studied at 4 hours and 12 hours after reperfusion. Mean arterial pressure, heart rate, portal vein flow and pressure were analyzed. Blood was collected for the determination of the levels of aspartate aminotransferase, alanine aminotransferase, calcium, lactate, pH, bicarbonate, and base excess. RESULTS IPC increased the mean portal vein flow at 4 hours and 12 hours after reperfusion. IPC recovered 78% of the mean portal vein flow at 12 hours after reperfusion. IPC decreased the levels of aspartate aminotransferase, alanine aminotransferase and lactate, and increased the levels of ionized calcium, bicarbonate and base excess at 12 hours after reperfusion. CONCLUSIONS This study demonstrated that IPC increases portal vein flow and enhances hepatoprotective effects in liver ischemia reperfusion. The better recovery of portal vein flow after IPC may be correlated with the lower levels of transaminases and with the better metabolic profile.
Collapse
Affiliation(s)
- Estela Rr Figueira
- Department of Gastroenterology, Laboratory of Medical Investigations LIM37 Discipline of Liver and Gastrointestinal Transplantation, Hospital das Clinicas, University of Sao Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Stiegler P, Sereinigg M, Puntschart A, Bradatsch A, Seifert-Held T, Wiederstein-Grasser I, Leber B, Stadelmeyer E, Dandachi N, Zelzer S, Iberer F, Stadlbauer V. Oxidative stress and apoptosis in a pig model of brain death (BD) and living donation (LD). J Transl Med 2013; 11:244. [PMID: 24088575 PMCID: PMC3850531 DOI: 10.1186/1479-5876-11-244] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/01/2013] [Indexed: 12/20/2022] Open
Abstract
Background As organ shortage is increasing, the acceptance of marginal donors increases, which might result in poor organ function and patient survival. Mostly, organ damage is caused during brain death (BD), cold ischemic time (CIT) or after reperfusion due to oxidative stress or the induction of apoptosis. The aim of this study was to study a panel of genes involved in oxidative stress and apoptosis and compare these findings with immunohistochemistry from a BD and living donation (LD) pig model and after cold ischemia time (CIT). Methods BD was induced in pigs; after 12 h organ retrieval was performed; heart, liver and kidney tissue specimens were collected in the BD (n = 6) and in a LD model (n = 6). PCR analysis for NFKB1, GSS, SOD2, PPAR-alpha, OXSR1, BAX, BCL2L1, and HSP 70.2 was performed and immunohistochemistry used to show apoptosis and nitrosative stress induced cell damage. Results In heart tissue of BD BAX, BCL2L1 and HSP 70.2 increased significantly after CIT. Only SOD2 was over-expressed after CIT in BD liver tissue. In kidney tissue, BCL2L1, NFKB, OXSR1, SOD2 and HSP 70.2 expression was significantly elevated in LD. Immunohistochemistry showed a significant increase in activated Caspase 3 and nitrotyrosine positive cells after CIT in BD in liver and in kidney tissue but not in heart tissue. Conclusion The up-regulation of protective and apoptotic genes seems to be divergent in the different organs in the BD and LD setting; however, immunohistochemistry revealed more apoptotic and nitrotyrosine positive cells in the BD setting in liver and kidney tissue whereas in heart tissue both BD and LD showed an increase.
Collapse
Affiliation(s)
- Philipp Stiegler
- Division of Surgery, Department of Transplantation Surgery, Medical University, Auenbruggerplatz 29, Graz 8036, Austria.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gultekin FA, Cakmak GK, Turkcu UO, Yurdakan G, Demir FEO, Comert M. Effects of Ozone Oxidative Preconditioning on Liver Regeneration after Partial Hepatectomy in Rats. J INVEST SURG 2013; 26:242-52. [DOI: 10.3109/08941939.2012.750698] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Fatma Ayca Gultekin
- Department of General Surgery, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak, Turkey
| | - Guldeniz Karadeniz Cakmak
- Department of General Surgery, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak, Turkey
| | | | - Gamze Yurdakan
- Department of Pathology, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak, Turkey
| | - F. Ebru Ofluoglu Demir
- Ahmet Erdogan Vocational School of Health Services, Bulent Ecevit University, Kozlu, Zonguldak, Turkey
| | - Mustafa Comert
- Department of General Surgery, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak, Turkey
| |
Collapse
|
11
|
Jaeschke H, Woolbright BL. Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species. Transplant Rev (Orlando) 2012; 26:103-14. [PMID: 22459037 DOI: 10.1016/j.trre.2011.10.006] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/17/2011] [Indexed: 12/15/2022]
Abstract
Ischemia-reperfusion is a major component of injury in vascular occlusion both during liver surgery and during liver transplantation. The pathophysiology of hepatic ischemia-reperfusion includes a number of mechanisms including oxidant stress that contribute to various degrees to the overall organ damage. A large volume of recent research has focused on the use of antioxidants to ameliorate this injury, although results in experimental models have not translated well to the clinic. This review focuses on critical sources and mediators of oxidative stress during hepatic ischemia-reperfusion, the status of current antioxidant interventions, and emerging mechanisms of protection by preconditioning. While recent advances in regulation of antioxidant systems by Nrf2 provide interesting new potential therapeutic targets, an increased focus must be placed on more in-depth mechanistic investigations in hepatic ischemia-reperfusion injury and translational research in order to refine current strategies in disease management.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | |
Collapse
|
12
|
Selzner N, Liu H, Boehnert MU, Adeyi OA, Shalev I, Bartczak AM, Xue-Zhong M, Manuel J, Rotstein OD, McGilvray ID, Grant DR, Phillips MJ, Levy GA, Selzner M. FGL2/fibroleukin mediates hepatic reperfusion injury by induction of sinusoidal endothelial cell and hepatocyte apoptosis in mice. J Hepatol 2012; 56:153-9. [PMID: 21756857 DOI: 10.1016/j.jhep.2011.05.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 05/02/2011] [Accepted: 05/23/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Sinusoidal endothelial cell (SEC) and hepatocyte death are early, TNF-α mediated events in ischemia and reperfusion of the liver (I/Rp). We previously reported that TNF-α induced liver injury is dependent on Fibrinogen like protein 2 (FGL2/Fibroleukin) and showed that FGL2 binding to its receptor, FcγRIIB, results in lymphocyte apoptosis. In this study we examine whether I/Rp is induced by specific binding of FGL2 to FcγRIIB expressed on SEC. METHODS Hepatic ischemia and reperfusion was induced in wild type (WT) mice and in mice with deletion or inhibition of FGL2 and FcRIIB. Liver injury was determined by AST release, necrosis and animal death. Apoptosis was evaluated with caspase 3 and TUNEL staining. RESULTS FGL2 deletion or inhibition resulted in decreased liver injury as determined by a marked reduction in both levels of AST and ALT and hepatocyte necrosis. Caspase 3 staining of SEC (12% vs. 75%) and hepatocytes (12% vs. 45%) as well as TUNEL staining of SEC (13% vs. 60%, p=0.02) and hepatocytes (18% vs. 70%, p=0.03), markers of apoptosis, were lower in Fgl2(-/-) compared to WT mice. In vitro incubation of SEC with FGL2 induced apoptosis of SEC from WT mice, but not FcγRIIB(-/-) mice. Deletion of FcγRIIB fully protected mice against SEC and hepatocyte death in vivo. Survival of mice deficient in either Fgl2(-/-) (80%) or FcγRIIB(-/-) (100%) was markedly increased compared to WT mice (10%) which were subjected to 75min of total hepatic ischemia (p=0.001). CONCLUSIONS FGL2 binding to the FcγRIIB receptor expressed on SEC is a critical event in the initiation of the hepatic reperfusion injury cascade through induction of SEC and hepatocyte death.
Collapse
Affiliation(s)
- Nazia Selzner
- Multi Organ Transplant Program, Department of Surgery, University of Toronto, Toronto General Hospital, Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Min SO, Kim SH, Lee SW, Cho JA, Kim KS. The effect of preconditioning on liver regeneration after hepatic resection in cirrhotic rats. THE KOREAN JOURNAL OF HEPATOLOGY 2011; 17:139-47. [PMID: 21757985 PMCID: PMC3304634 DOI: 10.3350/kjhep.2011.17.2.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background/Aims Ischemic preconditioning (IP) decreases severity of liver necrosis and has anti-apoptotic effects in previous studies using liver regeneration in normal rats. This study assessed the effect of IP on liver regeneration after hepatic resection in cirrhotic rats. Methods To induce liver cirrhosis, thioacetamide (300 mg/kg) was injected intraperitoneally into Sprague-Dawley rats twice per week for 16 weeks. Animals were divided into four groups: non-clamping (NC), total clamping (TC), IP, and intermittent clamping (IC). Ischemic injury was induced by clamping the left portal pedicle including the portal vein and hepatic artery. Liver enzymes alanine transaminase (ALT) and aspartate aminotransferase (AST) were measured to assess liver damage. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining for apoptosis and proliferating cell nuclear antigen (PCNA) staining for cell replication were also performed. Results Day-1 ALT and AST were highest in IP, however, levels in NC and IC were comparably low on days 1-7. There was no significant correlation of AST or ALT with experimental groups (P=0.615 and P=0.186). On TUNEL, numbers of apoptotic cells at 100× magnification (cells/field) were 31.8±24.2 in NC, 69.0±72.3 in TC, 80.2±63.1 in IP, and 21.2±20.8 in IC (P<0.05). When regeneration capacity was assessed by PCNA staining, PCNA-positive cells (cells/field) at 400× were 3.4±6.0 in NC, 16.9±69 in TC, 17.0±7.8 in IP and 7.4±7.6 in IC (P<0.05). Conclusions Although regeneration capacity in IP is higher than IC, the liver is vulnerable to ischemic damage in cirrhotic rats. Careful consideration is needed in applying IP in the clinical setting.
Collapse
Affiliation(s)
- Seon Ok Min
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
14
|
Coriat R, Leconte M, Kavian N, Bedda S, Nicco C, Chereau C, Goulvestre C, Weill B, Laurent A, Batteux F. Mangafodipir protects against hepatic ischemia-reperfusion injury in mice. PLoS One 2011; 6:e27005. [PMID: 22073237 PMCID: PMC3206884 DOI: 10.1371/journal.pone.0027005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/07/2011] [Indexed: 12/15/2022] Open
Abstract
Introduction and Aim Mangafodipir is a contrast agent used in magnetic resonance imaging that concentrates in the liver and displays pleiotropic antioxidant properties. Since reactive oxygen species are involved in ischemia-reperfusion damages, we hypothesized that the use of mangafodipir could prevent liver lesions in a mouse model of hepatic ischemia reperfusion injury. Mangafodipir (MnDPDP) was compared to ischemic preconditioning and intermittent inflow occlusion for the prevention of hepatic ischemia-reperfusion injury in the mouse. Methods Mice were subjected to 70% hepatic ischemia (continuous ischemia) for 90 min. Thirty minutes before the ischemic period, either mangafodipir (10 mg/kg) or saline was injected intraperitoneally. Those experimental groups were compared with one group of mice preconditioned by 10 minutes' ischemia followed by 15 minutes' reperfusion, and one group with intermittent inflow occlusion. Hepatic ischemia-reperfusion injury was evaluated by measurement of serum levels of aspartate aminotransferase (ASAT) activity, histologic analysis of the livers, and determination of hepatocyte apoptosis (cytochrome c release, caspase 3 activity). The effect of mangafodipir on the survival rate of mice was studied in a model of total hepatic ischemia. Results Mangafodipir prevented experimental hepatic ischemia-reperfusion injuries in the mouse as indicated by a reduction in serum ASAT activity (P<0.01), in liver tissue damages, in markers of apoptosis (P<0.01), and by higher rates of survival in treated than in untreated animals (P<0.001). The level of protection by mangafodipir was similar to that observed following intermittent inflow occlusion and higher than after ischemic preconditioning. Conclusions Mangafodipir is a potential new preventive treatment for hepatic ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Romain Coriat
- Laboratoire d'immunologie, EA1833 Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, AP-HP, Hôpital Cochin, Paris, France
- Service d'hépatogastroentérologie, Université Paris Descartes,Sorbonne Paris Cité, Faculté de Médecine, AP-HP, Hôpital Cochin, Paris, France
| | - Mahaut Leconte
- Laboratoire d'immunologie, EA1833 Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, AP-HP, Hôpital Cochin, Paris, France
- Service de Chirurgie Digestive, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, AP-HP, Hôpital Cochin, Paris, France
| | - Niloufar Kavian
- Laboratoire d'immunologie, EA1833 Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, AP-HP, Hôpital Cochin, Paris, France
- Laboratoire d'immunologie biologique Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, AP-HP, Hôpital Cochin, Paris, France
| | - Sassia Bedda
- Laboratoire d'immunologie, EA1833 Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, AP-HP, Hôpital Cochin, Paris, France
| | - Carole Nicco
- Laboratoire d'immunologie, EA1833 Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, AP-HP, Hôpital Cochin, Paris, France
| | - Christiane Chereau
- Laboratoire d'immunologie, EA1833 Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, AP-HP, Hôpital Cochin, Paris, France
| | - Claire Goulvestre
- Laboratoire d'immunologie, EA1833 Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, AP-HP, Hôpital Cochin, Paris, France
- Laboratoire d'immunologie biologique Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, AP-HP, Hôpital Cochin, Paris, France
| | - Bernard Weill
- Laboratoire d'immunologie, EA1833 Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, AP-HP, Hôpital Cochin, Paris, France
| | - Alexis Laurent
- Laboratoire d'immunologie, EA1833 Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, AP-HP, Hôpital Cochin, Paris, France
- Service de Chirurgie Digestive, Hôpital Henri Mondor, Université Paris XII, Créteil, France
| | - Frédéric Batteux
- Laboratoire d'immunologie, EA1833 Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, AP-HP, Hôpital Cochin, Paris, France
- Laboratoire d'immunologie biologique Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, AP-HP, Hôpital Cochin, Paris, France
- * E-mail:
| |
Collapse
|
15
|
Selzner N, Boehnert M, Selzner M. Preconditioning, postconditioning, and remote conditioning in solid organ transplantation: basic mechanisms and translational applications. Transplant Rev (Orlando) 2011; 26:115-24. [PMID: 22000660 DOI: 10.1016/j.trre.2011.07.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 05/06/2011] [Accepted: 07/05/2011] [Indexed: 02/07/2023]
Abstract
Ischemia and reperfusion (I/Rp) injury is inherent to solid organ transplantation and can result in primary nonfunction or delayed function of grafts, which is associated with a significant morbidity and mortality posttransplantation. It is also a major obstacle for the use of marginal grafts to increase the donor pool, as these grafts are prone to a higher degree of I/Rp injury. Pre-, post-, and remote conditioning are protective strategies against I/Rp injury, which can be applied in the transplant setting. These strategies hold the potential to reduce graft injury and to safely expand the donor pool. However, despite convincing experimental data, the protective effects of the "conditioning" protocols remain unclear, and only few have translated to clinical practice. This review summarizes pre-, post-, and remote conditioning strategies in clinical use in solid organ transplantation and discusses an overview of the mechanistic pathways involved in each strategy.
Collapse
Affiliation(s)
- Nazia Selzner
- Multi Organ Transplant Program, University Health Network, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
16
|
Abdennebi HB, Zaoualí MA, Alfany-Fernandez I, Tabka D, Roselló-Catafau J. How to protect liver graft with nitric oxide. World J Gastroenterol 2011; 17:2879-89. [PMID: 21734799 PMCID: PMC3129502 DOI: 10.3748/wjg.v17.i24.2879] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/18/2011] [Accepted: 01/25/2011] [Indexed: 02/06/2023] Open
Abstract
Organ preservation and ischemia reperfusion injury associated with liver transplantation play an important role in the induction of graft injury. One of the earliest events associated with the reperfusion injury is endothelial cell dysfunction. It is generally accepted that endothelial nitric oxide synthase (e-NOS) is cell-protective by mediating vasodilatation, whereas inducible nitric oxide synthase mediates liver graft injury after transplantation. We conducted a critical review of the literature evaluating the potential applications of regulating and promoting e-NOS activity in liver preservation and transplantation, showing the most current evidence to support the concept that enhanced bioavailability of NO derived from e-NOS is detrimental to ameliorate graft liver preservation, as well as preventing subsequent graft reperfusion injury. This review deals mainly with the beneficial effects of promoting “endogenous” pathways for NO generation, via e-NOS inducer drugs in cold preservation solution, surgical strategies such as ischemic preconditioning, and alternative “exogenous” pathways that focus on the enrichment of cold storage liquid with NO donors. Finally, we also provide a basic bench-to-bed side summary of the liver physiology and cell signalling mechanisms that account for explaining the e-NOS protective effects in liver preservation and transplantation.
Collapse
|
17
|
Sandroni C, Adrie C, Cavallaro F, Marano C, Monchi M, Sanna T, Antonelli M. Are patients brain-dead after successful resuscitation from cardiac arrest suitable as organ donors? A systematic review. Resuscitation 2010; 81:1609-14. [DOI: 10.1016/j.resuscitation.2010.08.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 07/24/2010] [Accepted: 08/29/2010] [Indexed: 01/21/2023]
|
18
|
Hafez TS, Glantzounis GK, Fusai G, Taanman JW, Wignarajah P, Parkes H, Fuller B, Davidson BR, Seifalian AM. Intracellular oxygenation and cytochrome oxidase C activity in ischemic preconditioning of steatotic rabbit liver. Am J Surg 2010; 200:507-18. [PMID: 20409534 DOI: 10.1016/j.amjsurg.2009.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Revised: 09/30/2009] [Accepted: 09/30/2009] [Indexed: 01/22/2023]
Abstract
BACKGROUND Mild to moderate steatotic livers are used as marginal donors in liver transplantation. Very little is known about the mechanisms of ischemia reperfusion (IR) injury (IRI) in fatty liver. This study aimed to establish whether cytochrome oxidase C (COX) activity is compromised by IRI in fatty liver and whether ischemic preconditioning (IPC) can protect COX activity. METHODS New Zealand rabbits were fed on a high-cholesterol diet for 8 weeks to induce moderate hepatic steatosis. Three groups were tested. The IR group underwent 60 minutes of ischemia, followed by 7 hours of reperfusion. The IPC group (IPC + IR) underwent 5 minutes of ischemia, followed by 10 minutes of reperfusion and then 60 minutes of ischemia and 7 hours of reperfusion. The control group (sham) underwent the same surgical procedure, but ischemia was not induced. Deoxyhemoglobin, oxyhemoglobin, and change in the redox state of COX was continuously monitored in vivo by near-infrared spectroscopy. COX and citrate synthase (CS) activity assays were carried out on liver biopsy specimens in vitro. Bile was collected continuously during the procedure and analyzed using proton nuclear magnetic resonance spectroscopy. RESULTS The IR group had decreased COX activity and tissue oxygenation represented by deoxyhemoglobin, oxyhemoglobin, COX, and elevated redox ratios of lactate/pyruvate and β-hydroxybutarate/acetoacetate in vivo and a decrease in COX and CS activity in vitro. The IPC + IR group showed higher levels of all measured parameters in vivo and showed a smaller decrease in COX and CS activity in vitro. CONCLUSION This study shows that IRI affects COX activity in fatty livers. This is attenuated by IPC.
Collapse
Affiliation(s)
- Tariq S Hafez
- UCL Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Czubkowski P, Socha P, Pawlowska J. Current status of oxidative stress in pediatric liver transplantation. Pediatr Transplant 2010; 14:169-77. [PMID: 20113425 DOI: 10.1111/j.1399-3046.2009.01256.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Generation of free radicals in children after liver transplantation is multifactorial from ischemia-reperfusion injury, immunosuppression and post-transplant complications. Thus, this group is at higher risk of oxidative imbalance with molecular and clinical consequences. We discuss pathogenesis and ways of action against oxidative stress in liver transplant recipients.
Collapse
Affiliation(s)
- Piotr Czubkowski
- Department of Gastroenterology, Hepatology and Immunology, The Children's Memorial Health Institute, Warsaw, Poland.
| | | | | |
Collapse
|
20
|
Role of ischemic preconditioning in liver surgery and hepatic transplantation. J Gastrointest Surg 2009; 13:2074-83. [PMID: 19404711 DOI: 10.1007/s11605-009-0878-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 03/24/2009] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The purpose of this review is to summarize intraoperative surgical strategies available to decrease ischemia-reperfusion injury associated with liver resection and liver transplantation. MATERIAL AND METHOD We conducted a critical review of the literature evaluating the potential applications of hepatic ischemic preconditioning (IPC) for hepatic resection surgery and liver transplantation. In addition, we provide a basic bench-to-bedside summary of the liver physiology and cell signaling mechanisms that account for the protective effects seen with hepatic IPC.
Collapse
|
21
|
Franchello A, Gilbo N, David E, Ricchiuti A, Romagnoli R, Cerutti E, Salizzoni M. Ischemic preconditioning (IP) of the liver as a safe and protective technique against ischemia/reperfusion injury (IRI). Am J Transplant 2009; 9:1629-39. [PMID: 19519822 DOI: 10.1111/j.1600-6143.2009.02680.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of the study was to evaluate safety and efficacy of IP in LT, particularly in marginal grafts. From 2007 to 2008, 75 LT donors were randomized to receive IP (IP+) or not (IP-). Considering the graft quality, we divided the main groups in two subgroups (marg+/marg-). IP was performed by 10-min inflow occlusion (Pringle maneuver utilizing a toruniquet). Donor variables considered were gender, age, AST/ALT, ischemia time and steatosis. Recipient variables were gender, age, indication to LT and MELD/CHILD/UNOS score. AST/ALT levels, INR, bilirubin, lactic acid, bile output on postoperative days 1, 3 and 7 were evaluated. Histological analysis was performed evaluating necrosis/steatosis, hepatocyte swelling, PMN infiltration and councilman bodies. Thirty patients received IP+ liver. No differences were seen between groups considering recipient and donor variables. Liver function and AST/ALT levels showed no significant differences between the main two groups. Marginal IP+ showed lower AST levels on day1 compared with untreated marginal livers (936.35 vs. 1268.23; p = 0.026). IP+ livers showed a significant reduction of moderate-severe hepatocyte swelling (33.3% vs. 65.9%; p = 0.043). IP+ patients had a significant reduction of positive early microbiological investigations (36.7% vs. 57.1%; p = 0.042). In our experience IP was safe also in marginal donors, showing a protective role against IRI.
Collapse
Affiliation(s)
- A Franchello
- Liver Transplantation Centre, Molinette Hospital, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Giovanardi RO, Rhoden EL, Cerski CT, Salvador M, Kalil AN. Ischemic preconditioning protects the pig liver by preserving the mitochondrial structure and downregulating caspase-3 activity. J INVEST SURG 2009; 22:88-97. [PMID: 19283610 DOI: 10.1080/08941930802712995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND DATA The beneficial effects of ischemic preconditioning (IPC) on hepatic ischemia-reperfusion injury (I/RI) have been described. However, the way in which IPC causes the changes in mitochondrial ultrastructure seen in hepatic I/RI is not well understood. OBJECTIVE The objective of the present study was to determine whether IPC protects the liver from changes in mitochondrial structure and caspase 3 activity in the early phase of post-ischemic injury. METHODS A pig model consisting of 90 min of hepatic ischemia and 180 min of reperfusion was employed. Eighteen female pigs were randomly divided into three groups: sham-operated, non-preconditioned, and ischemic preconditioned (10 min ischemia followed by 10 min reperfusion). Serum concentrations of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and thiobarbituric acid reactive substances (TBARS), as well as bile flow, were measured. Liver biopsies were taken after reperfusion for histological, immunohistochemical (anti-caspase 3), and ultrastructural examinations. RESULTS The IPC procedure increased bile flow (p < 0.01), reduced serum AST level (p < 0.01), and reduced serum concentration of TBARS at 180 min of reperfusion (p = 0.05). Ischemic-preconditioned liver cells had less caspase 3 activity than the non-preconditioning group (p < 0.01), and changes in mitochondrial ultrastructure were reduced (p < 0.01). CONCLUSION IPC exerts a powerful protective effect against hepatic I/RI in the early phase of reperfusion, which may be mediated by preservation of mitochondrial structure and inhibition of caspase-3 activity.
Collapse
|
23
|
Jang JH, Kang KJ, Kang Y, Lee IS, Graf R, Clavien PA. Ischemic preconditioning and intermittent clamping confer protection against ischemic injury in the cirrhotic mouse liver. Liver Transpl 2008; 14:980-8. [PMID: 18581460 DOI: 10.1002/lt.21467] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Surgery on cirrhotic livers is fraught with complications, and many surgeons refrain from operating on patients with cirrhosis. Surgical procedures include temporal occlusion of blood flow resulting in ischemia. The mechanisms of protective strategies to prevent ischemic injury in patients with cirrhosis are not fully understood. The aim of this study was to evaluate how the cirrhotic liver tolerates an ischemic insult, whether mechanisms other than those observed in the normal liver are active, and whether intermittent clamping and preconditioning, which are known as safe surgical strategies in normal and steatotic livers, confer protection to the cirrhotic liver. We applied partial hepatic inflow occlusion to cirrhotic mice fed carbon tetrachloride according to different vascular occlusion protocols: intermittent clamping with 15 or 30 minute cycles of ischemia or ischemic preconditioning prior to 60 or 75 minutes of ischemia. Continuous ischemia (60 or 75 minutes) served as controls. The results showed that the cirrhotic liver was significantly more susceptible to 60 minutes of ischemia than the normal liver. Apoptosis was higher in the normal liver, whereas necrosis was a predominant feature in the cirrhotic liver. Both protocols of intermittent vascular occlusion and ischemic preconditioning dramatically prevented injury compared to continuous occlusion for 60 minutes. This protection was associated with reduced necrosis and apoptosis, and particularly reduced activation of the apoptotic pathway through mitochondria. In conclusion, this study extends the protective effects of ischemic preconditioning and intermittent clamping to the cirrhotic liver, highlighting a diminished apoptotic pathway with dramatic improvement in the development of necrosis.
Collapse
Affiliation(s)
- Jae Hwi Jang
- Department of Surgery, School of Medicine, Institute for Medical Genetics, Keimyung University, Daegu, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Ambros JT, Herrero-Fresneda I, Borau OG, Boira JMG. Ischemic preconditioning in solid organ transplantation: from experimental to clinics. Transpl Int 2007; 20:219-29. [PMID: 17291215 DOI: 10.1111/j.1432-2277.2006.00418.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study reviews the current understanding of ischemic preconditioning (IP) in experimental and clinical setting, and the mechanisms that mediate the complex processes involved as a tool to protect against ischemia and reperfusion (I/R) injury, but is not intended as a complete literature review of preconditioning. IP has been mainly elucidated in cardiac ischemia. Recent reports confirm the efficacy of pre- and postconditioning in cardiac surgery and percutaneous coronary interventions in humans. IP utilizes endogenous as well as distant mechanisms in skeletal muscle, liver, lung, kidney, intestine and brain in animal models to convey varying degrees of protection from I/R injury. Specifically, preconditioned tissues exhibit altered energy metabolism, better electrolyte homeostasis and genetic reorganization, as well as less oxygen-free radicals and activated neutrophils release, reduced apoptosis and better microcirculatory perfusion. To date, there are few human studies, but recent trials suggest that human liver, lung and skeletal muscle acquire protection after IP. Present data address the potential therapeutic application of IP in the prevention of I/R damage specially aimed at clinical transplantation. IP is ubiquitous but more research is required to fully translate these findings to the clinical arena.
Collapse
Affiliation(s)
- Joan Torras Ambros
- Department of Medicine, Laboratory of Nephrology and Nephrology Service, IDIBELL-Hospital Universitari Bellvitge, University of Barcelona, Barcelona, Spain.
| | | | | | | |
Collapse
|
25
|
Gomez D, Homer-Vanniasinkam S, Graham AM, Prasad KR. Role of ischaemic preconditioning in liver regeneration following major liver resection and transplantation. World J Gastroenterol 2007; 13:657-70. [PMID: 17278187 PMCID: PMC4065997 DOI: 10.3748/wjg.v13.i5.657] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver ischaemic preconditioning (IPC) is known to protect the liver from the detrimental effects of ischaemic-reperfusion injury (IRI), which contributes significantly to the morbidity and mortality following major liver surgery. Recent studies have focused on the role of IPC in liver regeneration, the precise mechanism of which are not completely understood. This review discusses the current understanding of the mechanism of liver regeneration and the role of IPC in this setting. Relevant articles were reviewed from the published literature using the Medline database. The search was performed using the keywords “liver”, “ischaemic reperfusion”, “ischaemic preconditioning”, “regeneration”, “hepatectomy” and “transplantation”. The underlying mechanism of liver regeneration is a complex process involving the interaction of cytokines, growth factors and the metabolic demand of the liver. IPC, through various mediators, promotes liver regeneration by up-regulating growth-promoting factors and suppresses growth-inhibiting factors as well as damaging stresses. The increased understanding of the cellular mechanisms involved in IPC will enable the development of alternative treatment modalities aimed at promoting liver regeneration following major liver resection and transplantation.
Collapse
Affiliation(s)
- D Gomez
- Department of Hepatobiliary Surgery and Transplantation, St. James's University Hospital, Leeds LS9 7TF, UK
| | | | | | | |
Collapse
|
26
|
Ischemia-reperfusion injury in transplantation: novel mechanisms and protective strategies. Transplant Rev (Orlando) 2007. [DOI: 10.1016/j.trre.2007.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Grande L, Roselló-Catafau J, Peralta C. El preacondicionamiento isquémico del hígado: de las bases moleculares a la aplicación clínica. Cir Esp 2006; 80:275-82. [PMID: 17192202 DOI: 10.1016/s0009-739x(06)70970-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ischemia-reperfusion injury is produced when an organ is deprived of blood flow (ischemia), which is then restored (reperfusion). In certain circumstances, this injury leads to irreversible organ damage. Several therapeutic strategies have been used to reduce the severity of this injury. One of these strategies is the application of brief and repetitive episodes of ischemia-reperfusion before prolonged ischemia-reperfusion (ischemic preconditioning). In the present article we review the molecular mechanisms through which ischemic preconditioning confers protection against ischemia-reperfusion injury. The application of ischemic preconditioning during liver surgery is discussed, both in normothermic situations such as liver resection and in situations of low temperature such as liver transplantation.
Collapse
Affiliation(s)
- Luis Grande
- Unidad de Cirugía Hepatobiliopancreática, Servicio de Cirugía General y del Aparato Digestivo, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, España.
| | | | | |
Collapse
|
28
|
Li XC, Ma YF, Wang XH. Role of NF-kappaB as effector of IPC in donor livers before liver transplantation in rats. Transplant Proc 2006; 38:1584-7. [PMID: 16797362 DOI: 10.1016/j.transproceed.2006.02.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Indexed: 10/24/2022]
Abstract
UNLABELLED The objective of this study was to investigate the effect of ischemic preconditioning (IPC) on NF-kappaB activity during reperfusion early after liver transplantation in rats. METHODS Male Sprague-Dawley (SD) rats were used as donors and recipients of orthotopic liver transplantations. The donor liver was stored 2 hours in Ringer's solution at 4 degrees C preimplantation. IPC was performed by clamping of the portal vein and hepatic artery of the donor for 10 minutes followed by reperfusion for 10 minutes before harvesting. At 1, 2, 4, and 6 hours after portal vein reperfusion, graft samples were obtained to determine hepatic levels of NF-kappaB activity, tumor necrosis factor (TNF)-alpha and intercellular adhesion molecule (ICAM)-1. Blood samples were obtained to measure serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH). RESULTS After liver transplantation without IPC, serum levels of ALT and LDH increased significantly compared with the sham-operated group. Among the IPC group, serum ALT and LDH decreased significantly. NF-kappaB activity in the graft increased within 6 hours after transplantation. Among the IPC group, NF-kappaB activity was significantly attenuated. Hepatic levels of TNF-alpha and ICAM-1 were significantly elevated in the non-IP group but both were reduced in the IPC group. CONCLUSION IPC downregulated TNF-alpha and ICAM-1 expression in the graft, most likely through decreased NF-kappaB activation, and attenuated neutrophil infiltration after reperfusion.
Collapse
Affiliation(s)
- X-C Li
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangshu, China
| | | | | |
Collapse
|
29
|
|
30
|
Xu MQ, Shuai XR, Yan ML, Zhang MM, Yan LN. Nuclear factor-kappaB decoy oligodeoxynucleotides attenuates ischemia/reperfusion injury in rat liver graft. World J Gastroenterol 2006; 11:6960-7. [PMID: 16437600 PMCID: PMC4717038 DOI: 10.3748/wjg.v11.i44.6960] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the protective effect of NF-kappaB decoy oligodeoxynucleotides (ODNs) on ischemia/reperfusion (I/R) injury in rat liver graft. METHODS Orthotopic syngeneic rat liver transplantation was performed with 3 h of cold preservation of liver graft in University of Wisconsin solution containing phosphorothioated double-stranded NF-kappaB decoy ODNs or scrambled ODNs. NF-kappaB decoy ODNs or scrambled ODNs were injected intravenously into donor and recipient rats 6 and 1 h before operation, respectively. Recipients were killed 0 to 16 h after liver graft reperfusion. NF-kappaB activity in the liver graft was analyzed by electrophoretic mobility shift assay (EMSA). Hepatic mRNA expression of TNF-alpha, IFN-gamma and intercellular adhesion molecule-1 (ICAM-1) were determined by semiquantitative RT-PCR. Serum levels of TNF-alpha and IFN-gamma were measured by enzyme-linked immunosorbent assays (ELISA). Serum level of alanine transaminase (ALT) was measured using a diagnostic kit. Liver graft myeloperoxidase (MPO) content was assessed. RESULTS NF-kappaB activation in liver graft was induced in a time-dependent manner, and NF-kappaB remained activated for 16 h after graft reperfusion. NF-kappaB activation in liver graft was significant at 2 to 8 h and slightly decreased at 16 h after graft reperfusion. Administration of NF-kappaB decoy ODNs significantly suppressed NF-kappaB activation as well as mRNA expression of TNF-alpha, IFN-gamma and ICAM-1 in the liver graft. The hepatic NF-kappaB DNA binding activity [presented as integral optical density (IOD) value] in the NF-kappaB decoy ODNs treatment group rat was significantly lower than that of the I/R group rat (2.16+/-0.78 vs 36.78+/-6.35 and 3.06+/-0.84 vs 47.62+/- 8.71 for IOD value after 4 and 8 h of reperfusion, respectively, P<0.001). The hepatic mRNA expression level of TNF-alpha, IFN-gamma and ICAM-1 [presented as percent of beta-actin mRNA (%)] in the NF-kappaB decoy ODNs treatment group rat was significantly lower than that of the I/R group rat (8.31+/-3.48 vs 46.37+/-10.65 and 7.46+/- 3.72 vs 74.82+/-12.25 for hepatic TNF-alpha mRNA, 5.58+/-2.16 vs 50.46+/-9.35 and 6.47+/-2.53 vs 69.72+/-13.41 for hepatic IFN-gamma mRNA, 6.79+/-2.83 vs 46.23+/-8.74 and 5.28+/-2.46 vs 67.44+/-10.12 for hepatic ICAM-1 mRNA expression after 4 and 8 h of reperfusion, respectively, P<0.001). Administration of NF-kappaB decoy ODNs almost completely abolished the increase of serum level of TNF-alpha and IFN-gamma induced by hepatic ischemia/reperfusion, the serum level (pg/mL) of TNF-alpha and IFN-gamma in the NF-kappaB decoy ODNs treatment group rat was significantly lower than that of the I/R group rat (42.7+/-13.6 vs 176.7+/-15.8 and 48.4+/-15.1 vs 216.8+/-17.6 for TNF-alpha level, 31.5+/-12.1 vs 102.1+/-14.5 and 40.2+/-13.5 vs 118.6+/-16.7 for IFN-gamma level after 4 and 8 h of reperfusion, respectively, P<0.001). Liver graft neutrophil recruitment indicated by MPO content and hepatocellular injury indicated by serum ALT level were significantly reduced by NF-kappaB decoy ODNs, the hepatic MPO content (A655) and serum ALT level (IU/L) in the NF-kappaB decoy ODNs treatment group rat was significantly lower than that of the I/R group rat (0.17+/-0.07 vs 1.12+/-0.25 and 0.46+/-0.17 vs 1.46+/-0.32 for hepatic MPO content, 71.7+/-33.2 vs 286.1+/-49.6 and 84.3+/-39.7 vs 467.8+/-62.3 for ALT level after 4 and 8 h of reperfusion, respectively, P<0.001). CONCLUSION The data suggest that NF-kappaB decoy ODNs protects against I/R injury in liver graft by suppressing NF-kappaB activation and subsequent expression of proinflammatory mediators.
Collapse
Affiliation(s)
- Ming-Qing Xu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
| | | | | | | | | |
Collapse
|
31
|
Huda KASM, Guo L, Haga S, Murata H, Ogino T, Fukai M, Yagi T, Iwagaki H, Tanaka N, Ozaki M. Ex vivo adenoviral gene transfer of constitutively activated STAT3 reduces post-transplant liver injury and promotes regeneration in a 20% rat partial liver transplant model. Transpl Int 2006; 19:415-23. [PMID: 16623877 DOI: 10.1111/j.1432-2277.2006.00285.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Signal transducer and activator of transcription-3 (STAT3) is one of the most important transcription factors for liver regeneration. This study was designed to examine the effects of constitutively activated STAT3 (STAT3-C) on post-transplant liver injury and regeneration in a rat 20% partial liver transplant (PLTx) model by ex vivo adenoviral gene transfer. Adenovirus encoding the STAT3-C gene was introduced intraportally into liver grafts and clamped for 30 min during cold preservation. After orthotopic PLTx, liver graft/body weights and serum biochemistry were monitored, and both a histological study and DNA binding assay were performed. STAT3-C protein expression and its binding to DNA in the liver graft were confirmed by Western blotting and electrophoretic mobility shift assay (EMSA), respectively. This treatment modality promoted post-Tx liver regeneration effectively and rapidly. The serum levels of alanine aminotransferase/aspartate aminotransferase (AST/ALT) and bilirubin decreased in rats with STAT3-C. However, albumin (a marker of liver function) did not. Ex vivo gene transfer of STAT3-C to liver grafts reduced post-Tx injury and promoted liver regeneration. Thus, the activation of STAT3 in the liver graft may be a potentially effective clinical strategy for improving the outcome of small-for-size liver transplantation.
Collapse
Affiliation(s)
- Kamrul A S M Huda
- Department of Gastroenterological Surgery, Transplant, and Surgical Oncology, Okayama University Graduate School of Medicine and Dentistry, Shikata, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jassem W, Fuggle SV, Cerundolo L, Heaton ND, Rela M. Ischemic preconditioning of cadaver donor livers protects allografts following transplantation. Transplantation 2006; 81:169-74. [PMID: 16436958 DOI: 10.1097/01.tp.0000188640.05459.37] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ischemic preconditioning (IP) has been shown in animal models to protect livers against ischemia/reperfusion injury. The aim of this clinical study is to investigate whether IP of cadaver livers prior to retrieval confers protection on the allografts. METHODS Cadaveric donor livers were subjected to IP prior to retrieval by clamping of the hepatic pedicle for 10 min followed by reperfusion. Biopsies were obtained from the preconditioned (n=9) and control nonpreconditioned (n=14) liver transplants prior to and 2 hr following reperfusion. Cryosections were stained with antibodies against neutrophils and platelets. RESULTS IP livers were associated with significantly lower serum levels of aspartate aminotransferase (240+/-98 IU/L vs. 382+/-163 IU/L; P>0.016) and lactate (0.81+/-0.07 mmol/L vs. 1.58+/-0.9 mmol/L; P>0.018) 24 hr following transplantation. Furthermore, recipients of IP livers spent a significantly shorter time in the intensive care unit following transplantation compared to those given nonpreconditioned allografts (1 vs. 2.8+/-1.6 days; P=0.0008). Increases in neutrophil infiltration were detected in 6/14 (43%; P=0.022) and in CD41 deposition in 5/14 (36%; P=0.042) of nonpreconditioned livers. However, none of the IP allografts showed any change in the levels of platelets or neutrophil infiltration following transplantation. CONCLUSION IP is an effective method of protecting cadaver donor allografts from cold ischemia and subsequent reperfusion injury. IP is also associated with a reduction in the nonspecific inflammatory response.
Collapse
Affiliation(s)
- Wayel Jassem
- Liver Transplant Unit, Institute of Liver Studies, King's College Hospital, Denmark Hill, London, United Kingdom.
| | | | | | | | | |
Collapse
|
33
|
Ben-Ari Z, Pappo O, Sulkes J, Cheporko Y, Vidne BA, Hochhauser E. Effect of adenosine A2A receptor agonist (CGS) on ischemia/reperfusion injury in isolated rat liver. Apoptosis 2006; 10:955-62. [PMID: 16151631 DOI: 10.1007/s10495-005-0440-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ischemia/reperfusion injury during liver transplantation is a major cause of primary nonfunctioning graft for which there is no effective treatment other than retransplantation. Adenosine prevents ischemia-reperfusion-induced hepatic injury via its A2A receptors. The aim of this study was to investigate the role of A2A receptor agonist on apoptotic ischemia/reperfusion-induced hepatic injury in rats. Isolated rat livers within University of Wisconsin solution were randomly divided into four groups: (1) continuous perfusion of Krebs-Henseleit solution through the portal vein for 165 minutes (control); (2) 30-minute perfusion followed by 120 minutes of ischemia and 15 minutes of reperfusion; (3) like group 2, but with the administration of CGS 21680, an A2A receptor agonist, 30 microg/100 ml, for 1 minute before ischemia; (4) like group 3, but with administration of SCH 58261, an A2A receptor antagonist. Serum liver enzyme levels were measured by biochemical analysis, and intrahepatic caspase-3 activity was measured by fluorometric assay; apoptotic cells were identified by morphological criteria, the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) fluorometric assay, and immunohistochemistry for caspase-3. Results showed that at 1 minute of reperfusion, there was a statistically significant reduction in liver enzyme levels in the animals pretreated with CGS (p < 0.05). On fluorometric assay, caspase-3 activity was significantly decreased in group 3 compared to group 2 (p < 0.0002). The reduction in postischemic apoptotic hepatic injury in the CGS-treated group was confirmed morphologically, by the significantly fewer apoptotic hepatocyte cells detected (p < 0.05); immunohistochemically, by the significantly weaker activation of caspase-3 compared to the ischemic group (p < 0.05); and by the TUNEL assay (p < 0.05). In conclusion, the administration of A2A receptor agonist before induction of ischemia can attenuate postischemic apoptotic hepatic injury and thereby minimize liver injury. Apoptotic hepatic injury seems to be mediated through caspase-3 activity.
Collapse
Affiliation(s)
- Z Ben-Ari
- Liver Institute and Department of Medicine D, Rabin Medical Center, Beilinson Campus, Petah Tiqva 49100, Israel.
| | | | | | | | | | | |
Collapse
|
34
|
Lee WY, Lee SM. Protective effects of α-tocopherol and ischemic preconditioning on hepatic reperfusion injury. Arch Pharm Res 2005; 28:1392-9. [PMID: 16392674 DOI: 10.1007/bf02977907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study evaluated the effect of alpha-tocopherol (alpha-TC), ischemic preconditioning (IPC) or a combination on the extent of mitochondrial injury caused by hepatic ischemia/reperfusion (I/R). Rats were pretreated with alpha-TC (20 mg/kg per day, i.p.) for 3 days before sustained ischemia. A rat liver was preconditioned with 10 min of ischemia and 10 min of reperfusion, and was then subjected to 90 min of ischemia followed by 5 h or 24 h of reperfusion. I/R increased the aminotransferase activity and mitochondrial lipid peroxidation, whereas it decreased the mitochondrial glutamate dehydrogenase activity. alpha-TC and IPC individually attenuated these changes. alpha-TC combined with IPC (alpha-TC+IPC) did not further attenuate the changes. The mitochondrial glutathione content decreased after 5 h reperfusion. This decrease was attenuated by alpha-TC, IPC, and alpha-TC+IPC. The significant production of peroxides observed after 10 min reperfusion subsequent to sustained ischemia was attenuated by alpha-TC, IPC, and alpha-TC+IPC. The mitochondria isolated after I/R were rapidly swollen. However, this swelling rate was reduced by alpha-TC, IPC, and alpha-TC+IPC. These results suggest that either alpha-TC or IPC reduces the level of mitochondrial damage associated with oxidative stress caused by hepatic I/R, but alpha-TC combined with IPC offers no significant additional protection.
Collapse
Affiliation(s)
- Woo-Yong Lee
- College of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | | |
Collapse
|
35
|
Smyrniotis V, Kostopanagiotou G, Theodoraki K, Farantos C, Arkadopoulos N, Gamaletsos E, Condi-Paphitis A, Fotopoulos A, Dimakakos P. Ischemic preconditioning versus intermittent vascular inflow control during major liver resection in pigs. World J Surg 2005; 29:930-4. [PMID: 15951943 DOI: 10.1007/s00268-005-7591-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ischemic preconditioning (IPC) and intermittent vascular control (IVC) have been shown to reduce the number of ischemia/reperfusion injuries during liver resections with the Pringle maneuver. Our study aimed to compare the beneficial effect of these two modalities in relation to the duration of normothermic liver ischemia. A group of 24 Landrace pigs with a mean body weight of 25 to 30 kg were subjected to extended liver resection of more than 65%. Although, 12 animals underwent IPC (10 minutes of ischemia and 10 minutes of reperfusion), and subsequently the Pringle maneuver was applied for 90 minutes (n= 6) or 120 minutes (n= 6). Another 12 animals underwent liver resection by IVC (20 minutes of ischemia alternated with 5 minutes of reperfusion) for 60 minutes (n = 6) or 120 minutes (n = 6) of inflow vascular control. At 90 minutes of liver ischemia, the IPC group demonstrated lower levels of asportate aminotransferase (AST) (173 +/- 53 vs. 265 +/- 106 IU; p =0.089) and malondialdehyde (MDA) (2.60 +/- 1.03 vs. 5.33 +/- 2.25 micromol/L; p =0.022) and higher liver tissue cAMP (200 +/- 42 vs. 146 +/- 40 pmol/g wet wt, p = 0.04) compared to the IVC group. However, no pathologic differences were observed between the two groups. By contrast, at 120 minutes of liver ischemia, IVC proved to be more beneficial, reflected by lower levels of AST (448 +/- 135 vs. 857 +/- 268 IU; p = 0.006) and MDA (8.33 +/- 1.75 vs. 12.7 +/- 4.31 micromol/L; (p = 0.045), a higher cAMP level (127 +/- 10 vs. 97 +/- 31 pmol/g wet wt p = 0.045), and eventually less cellular necrosis (necrosis score 1.66 +/- 0.51 vs. 2.85 +/- 1.16; p = 0.04) compared to the IPC group. It appears that IPC should be employed when liver ischemia is anticipated to last less than 90 minutes, followed by IVC when the liver ischemia is expected to last 120 minutes.
Collapse
Affiliation(s)
- Vassilios Smyrniotis
- Second Department of Surgery, School of Medicine, Areteion Hospital, Athens University, Athens, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Ucar G, Topaloglu E, Burak Kandilci H, Gumusel B. Elevated semicarbazide-sensitive amine oxidase (SSAO) activity in lung with ischemia-reperfusion injury: protective effect of ischemic preconditioning plus SSAO inhibition. Life Sci 2005; 78:421-7. [PMID: 16111719 DOI: 10.1016/j.lfs.2005.04.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Accepted: 04/30/2005] [Indexed: 02/05/2023]
Abstract
Ischemic preconditioning (IP) has been shown to protect the lung against ischemia-reperfusion (I/R) injury. Although the production of reactive oxygen species (ROS) has been postulated to play a crucial role in I/R injury, the sources of these radicals in I/R and the mechanisms of protection in IP remain unknown. Since it was postulated that deamination of endogenous and exogenous amines by semicarbazide-sensitive amine oxidase (SSAO) in tissue damage leads to the overproduction of hydrogen peroxide (H2O2), we investigated the possible contribution of tissue SSAO to excess ROS generation and lipid peroxidation during I/R and IP of the lung. Male Wistar rats were randomized into 6 groups: control lungs were subjected to 30 min of perfusion in absence and presence of SSAO inhibitor, whereas the lungs of the I/R group were subjected to 2 h of cold ischemia following the 30 min of perfusion in absence and presence of SSAO inhibitor. IP was performed by two cycles of 5 min ischemia followed by 5 min of reperfusion prior to 2 h of hypothermic ischemia in absence and presence of SSAO inhibitor. Lipid peroxidation, reduced (GSH) and oxidized (GSSG) glutathione levels, antioxidant enzyme activities, SSAO activity, and H2O2 release were determined in tissue samples of the study groups. Lipid peroxidation, glutathione disulfide (GSSG) content, SSAO activity and H2O2 release were increased in the I/R group, whereas GSH content, GSH/GSSG ratio and antioxidant enzyme activities were decreased. SSAO activity, H2O2 release, GSSG content and lipid peroxidation were markedly decreased in the IP group, whereas GSH content, GSH/GSSG ratio and antioxidant enzyme activities were significantly increased. SSAO activity was found to be positively correlated with H2O2 production in all study groups. Increased lipid peroxidation, SSAO activity, GSSG and H2O2 contents as well as decreased GSH and antioxidant enzyme levels in I/R returned to their basal levels when IP and SSAO inhibition were applied together. The present study suggests that application of IP and SSAO inhibition together may be more effective than IP alone against I/R injury in the lung.
Collapse
Affiliation(s)
- Gulberk Ucar
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey.
| | | | | | | |
Collapse
|
38
|
Hochhauser E, Ben-Ari Z, Pappo O, Chepurko Y, Vidne BA. TPEN attenuates hepatic apoptotic ischemia/ reperfusion injury and remote early cardiac dysfunction. Apoptosis 2005; 10:53-62. [PMID: 15711922 DOI: 10.1007/s10495-005-6061-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The release of cardioactive substances during hepatic ischemia/reperfusion injury generates toxic free radicals that inflict hepatic and remote cardiac damage. The aim of the study was to determine whether TPEN, a potent iron chelator, ameliorates the apoptotic hepatic and cardiac function injuries. Three groups of isolated rat livers were studied: (1) continuously perfused with Krebs-Henseleit solution; (2) subjected to 120 min of ischemia and 15 min of reperfusion; (3) as in group 2, with TPEN administered prior to ischemia. Isolated hearts were perfused for 65 min with the effluent of the reperfused livers. Results showed that TPEN administration reduced the release of norepinephrine, epinephrine, dopamine, prostaglandin E2 and angiotensin II, decreased intrahepatic caspase-3 activity, and decreased the mean hepatocyte apoptotic index (TUNEL assay) (p = 0.001). Perfusion with post-ischemic hepatic effluent caused a transient 15-min increase in left ventricular contraction and coronary flow (p < 0.05), followed by a decrease in cardiac function at one hour. TPEN reduced the transient elevation in left ventricular contraction p < 0.05), but did not prevent the subsequent decrease in cardiac function. In conclusion, TPEN attenuates post-ischemic apoptotic hepatic injury by modulating caspase-3-like activity and reduces the cardioactive substances released from the liver.
Collapse
Affiliation(s)
- E Hochhauser
- The Cardiac Research Laboratory of the Department of Cardiothoracic Surgery, Felsenstein Medical Research Center, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
39
|
Koti RS, Tsui J, Lobos E, Yang W, Seifalian AM, Davidson BR. Nitric oxide synthase distribution and expression with ischemic preconditioning of the rat liver. FASEB J 2005; 19:1155-7. [PMID: 15870170 DOI: 10.1096/fj.04-3220fje] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was undertaken to identify nitric oxide synthase (NOS) isoforms responsible for the generation of cytoprotective NO during liver ischemic preconditioning (IPC). Sprague-Dawley rats were subjected to 45 min lobar ischemia followed by 2 h reperfusion. L-arginine or Nomega-nitro-L-arginine methyl ester (L-NAME) was administered to stimulate or block NO synthesis. Study groups (n=6) had 1) sham laparotomy, 2) ischemia reperfusion (IR), 3) IPC with 5 min ischemia and 10 min reperfusion before IR, 4) L-arginine before IR, or 5) L-NAME + IPC before IR. Liver function tests, nitrite + nitrate (NOx) and plasma amino acids were analyzed. The endothelial cell and inducible isoforms of NOS (eNOS and iNOS) were identified using immunohistochemistry and Western blotting. Both IPC and L-arginine treatment increased NOx (P<0.05) and improved serum liver enzymes (P<0.05) when compared with IR. These effects were prevented by L-NAME. Hepatic vein NOx was significantly higher than circulating NOx. iNOS expression was absent within the groups. The preconditioned livers were associated with up-regulation of eNOS expression and also increased L-arginine levels. The effects of L-arginine administration were similar to those evident following IPC. Thus, cytoprotective NO generation during IPC of the liver was a result of increased eNOS expression and increased L-arginine substrate availability.
Collapse
Affiliation(s)
- Rahul S Koti
- Academic Division of Surgical and Interventional Sciences, University College London, London, UK
| | | | | | | | | | | |
Collapse
|
40
|
Vairetti M, Ferrigno A, Bertone R, Rizzo V, Richelmi P, Bertè F, Reiter RJ, Freitas I. Exogenous melatonin enhances bile flow and ATP levels after cold storage and reperfusion in rat liver: implications for liver transplantation. J Pineal Res 2005; 38:223-30. [PMID: 15813898 DOI: 10.1111/j.1600-079x.2004.00193.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although the use of melatonin in the transplantation field has been suggested, it has not been previously tested in a liver cold-storage model. We used a rat liver model to study (a) the dose-dependent effect of melatonin on bile production, and (b) the potential of melatonin to improve liver function after cold-storage. Male Wistar rats were perfused with Krebs-Henseleit bicarbonate buffer (KHB) at 37 degrees C without or with 25, 50, 100 and 200 microM melatonin. Each dose of melatonin stimulated bile production. For cold-storage studies, livers were flushed with either University of Wisconsin (UW) or Celsior solution and stored for 20 hr at 4 degrees C. Reperfusion (120 min) was performed with KHB at 37 degrees C. In subsequent studies, 100 microM melatonin were added to the perfusate during the reperfusion period. ATP and melatonin levels in the tissue were measured. Bile analysis was performed by measuring melatonin, bilirubin and gamma-glutamyl transpeptidase (gamma-GT) levels in the fluid. A dose-dependent increase in bile secretion, associated with an enhanced melatonin and bilirubin levels in the bile were observed. Also, tissue levels of melatonin increased in a dose-dependent manner. When melatonin was added during the reperfusion period, bile production and bile bilirubin levels increased both with UW and Celsior solutions. The analysis of gamma-GT in the bile showed an increase in the Celsior-preserved liver and the addition of melatonin to the perfusate reduced this effect. Tissue ATP levels were higher when melatonin was added to the perfusion medium. Higher levels of melatonin in bile than in tissue were found. In conclusion, we demonstrate that melatonin improves significantly the restoration of liver function after cold-storage and reperfusion.
Collapse
Affiliation(s)
- Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Corradini SG, Elisei W, De Marco R, Siciliano M, Iappelli M, Pugliese F, Ruberto F, Nudo F, Pretagostini R, Bussotti A, Mennini G, Eramo A, Liguori F, Merli M, Attili AF, Muda AO, Natalizi S, Berloco P, Rossi M. Preharvest donor hyperoxia predicts good early graft function and longer graft survival after liver transplantation. Liver Transpl 2005; 11:140-51. [PMID: 15666381 DOI: 10.1002/lt.20339] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A total of 44 donor/recipient perioperative and intraoperative variables were prospectively analyzed in 89 deceased-donor liver transplantations classified as initial good graft function (IGGF) or initial poor graft function (IPGF) according to a scoring system based on values obtained during the 1st 72 postoperative hours from the serum alanine aminotransferase (ALT) concentration, bile output, and prothrombin activity. The IGGF compared with the IPGF group showed: 1) longer graft (P = .002) and patient (P = .0004) survival; 2) at univariate analysis, a higher (mean [95% confidence interval]) preharvest donor arterial partial pressure of oxygen (PaO(2)) (152 [136-168] and 104 [91-118] mmHg, respectively; P = .0008) and arterial hemoglobin oxygen saturation (97.9 [97.2-98.7] and 96.7 [95.4-98.0]%, respectively; P = .0096), a lower percentage of donors older than 65 years (13 and 33%, respectively; P = .024), a lower percentage of donors treated with noradrenaline (16 and 41%, respectively; P = .012). At multivariate analysis, IGGF was associated positively with donor PaO(2) and negatively with donor age greater than 65 years and with donor treatment with noradrenaline. Independently from the grouping according to initial graft function, graft survival was longer when donor PaO(2) was >150 mmHg than when donor PaO(2) was < or =150 mmHg (P = .045). In conclusion, preharvest donor hyperoxia predicts IGGF and longer graft survival.
Collapse
|
42
|
Tejima K, Arai M, Ikeda H, Tomiya T, Yanase M, Inoue Y, Nagashima K, Nishikawa T, Watanabe N, Omata M, Fujiwara K. Ischemic preconditioning protects hepatocytes via reactive oxygen species derived from Kupffer cells in rats. Gastroenterology 2004; 127:1488-96. [PMID: 15521017 DOI: 10.1053/j.gastro.2004.07.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND AIMS Hepatic ischemic preconditioning decreases sinusoidal endothelial cell injury and Kupffer cell activation after cold ischemia/reperfusion, leading to improved survival of liver transplant recipients in rats. Ischemic preconditioning also protects livers against warm ischemia/reperfusion injury, in which hepatocyte injury is remarkable. We aimed to determine whether ischemic preconditioning directly protects hepatocytes and to elucidate its mechanisms. METHODS Rats were injected with gadolinium chloride to deplete Kupffer cells or with N -acetyl- l -cysteine, superoxide dismutase, or catalase to scavenge reactive oxygen species. Livers were then preconditioned by 10 minutes of ischemia and 10 minutes of reperfusion. Subsequently, livers were subjected to 40 minutes of warm ischemia and 60 minutes of reperfusion in vivo or in a liver perfusion system. In other rats, livers were preconditioned by H(2)O(2) perfusion instead of ischemia. In the other experiments, livers were perfused with nitro blue tetrazolium to detect reactive oxygen species formation. RESULTS Ischemic preconditioning decreased injury in hepatocytes, but not in sinusoidal endothelial cells. Kupffer cell depletion itself did not change hepatocyte injury after ischemia/reperfusion, indicating no contribution of Kupffer cells to ischemia/reperfusion injury. However, Kupffer cell depletion reversed hepatoprotection by ischemic preconditioning. Reactive oxygen species formation occurred in Kupffer cells after ischemic preconditioning. Scavenging of reactive oxygen species reversed the effect of ischemic preconditioning, and H(2)O(2) preconditioning mimicked ischemic preconditioning. CONCLUSIONS Ischemic preconditioning directly protected hepatocytes after warm ischemia/reperfusion, which is not via suppression of changes in sinusoidal cells as in cold ischemia/reperfusion injury. This hepatocyte protection was mediated by reactive oxygen species produced by Kupffer cells.
Collapse
Affiliation(s)
- Kazuaki Tejima
- Department of Gastroenterology, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Each vascular occlusion technique has a place in major and minor hepatic resectional surgery, based on the tumor location, presence of associated underlying liver disease, patient cardiovascular status, and experience of the operating surgeon. Understanding of the potential application of different techniques, anticipation of the expected and potential hemodynamic responses, and knowledge of the limitations of each technique are fundamental to appropriate surgical planning adapted to each patient. Experience with the various clamping methods enables an aggressive but safe approach to surgical treatment of hepatobiliary diseases, with acceptable blood loss and transfusion requirements. In all cases, surgical strategy should be defined with the anesthesiologist, particularly in regard to hemodynamic monitoring, in order to optimize perioperative patient management and to minimize the risk for complications such as bleeding and air embolism. Importantly, randomized study has shown that the added dissection, operative, and postoperative risks associated with HVE are not balanced by decreased blood loss compared with hepatic pedicle clamping, except in exceptional cases when tumors involve the major hepatic veins or vena cava. In addition, dissection in preparation for clamping may be used as safe approach techniques to tumors in difficult locations, even when eventual clamping is not performed. Similarly, the liver-hanging maneuver enables resection without mobilization, compression, and manipulation of large tumors. In the future, renewed interest in the impact of hepatic ischemia and reperfusion may reveal that some clamping methods, in particular inflow occlusion, act as a means of preconditioning before a period of prolonged hepatic ischemia, for complex hepatic resection or for graft harvest from a living donor. Finally, the addition of infrahepatic caval clamping may add a new, simple, effective technique to the armamentarium of the liver surgeon, particularly as more routine hepatic surgery moves from the specialized center to the community.
Collapse
Affiliation(s)
- Eddie K Abdalla
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Box 444, Houston, TX 77030, USA
| | | | | |
Collapse
|
44
|
Guo L, Haga S, Enosawa S, Naruse K, Harihara Y, Sugawara Y, Irani K, Makuuchi M, Ozaki M. Improved hepatic regeneration with reduced injury by redox factor-1 in a rat small-sized liver transplant model. Am J Transplant 2004; 4:879-87. [PMID: 15147421 DOI: 10.1111/j.1600-6143.2004.00444.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Redox factor-1 (Ref-1) has been shown to function in a redox-dependent manner in the cell. This study was designed to examine the effects of Ref-1 on liver regeneration as well as protection against postischemic injury in a rat model of 20% partial liver transplantation. Adenovirus carrying the full length of Ref-1 gene was introduced into liver grafts by ex vivo perfusion via the portal vein during preservation. Liver graft weights were assessed, as well as graft histology, serum levels of alanine aminotransferase (ALT)/bilirubin, DNA binding activities of AP-1 and Stat3. Redox factor-1 successfully expressed in the liver graft, improved regeneration by promoting cell proliferation. Overexpression of Ref-1 protein also reduced post-transplant injury and inflammatory reactions in the grafts. The increased serum levels of ALT and bilirubin observed after transplantation were significantly reduced by Ref-1 overexpression. Furthermore, adenovirally overexpressed Ref-1 in mouse liver successfully promoted liver regeneration after simple partial hepatectomy. Interestingly, Ref-1 significantly increased DNA binding of Stat3, but not AP-1. Overexpressed Ref-1 effectively promoted graft regeneration and reduced postischemic injury in a small-sized liver transplantation model. The results of the present study may open a new avenue to clinical transplantation of disproportionately sized grafts in living-related liver transplantation.
Collapse
Affiliation(s)
- Lei Guo
- Department of Artificial Organ and Transplantation Surgery, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Rüdiger HA, Graf R, Clavien PA. Sub-lethal oxidative stress triggers the protective effects of ischemic preconditioning in the mouse liver. J Hepatol 2003; 39:972-7. [PMID: 14642614 DOI: 10.1016/s0168-8278(03)00415-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND/AIMS While ischemic preconditioning confers significant protection against subsequent prolonged periods of ischemia, the mechanisms triggering protection remain speculative. We hypothesize that a sub-lethal oxidative stress during ischemic preconditioning induces defense mechanisms preventing subsequent lethal injury. METHODS We used mouse models of partial and total hepatic ischemia for 75 min. Ischemic preconditioning consisted of 10-min ischemia and 15-min reperfusion prior to the prolonged ischemic insult. RESULTS Tissue levels of peroxides increased about three times after 10 min of ischemia and normalized within 15 min of reperfusion. This limited oxidative stress during ischemic preconditioning prevented the negative effects of subsequent prolonged ischemia as assessed by AST-levels, TUNEL-staining of hepatocytes and animal survival. N-Acetylcysteine inhibited the mild oxidative burst of ischemic preconditioning, and fully reversed the protective effects of preconditioning. The protective role of a sub-lethal oxidative stress was supported by the benefit of delivery of an H2O2-analog through the portal vein prior to a long ischemic insult. This challenge conferred similar protection as ischemic preconditioning. CONCLUSIONS We conclude that the mild burst of oxidative stress generated during ischemic preconditioning triggers protective mechanisms against subsequent, otherwise lethal, ischemic injury. The pathway possibly includes enhancement of natural anti-oxidative stress mechanisms.
Collapse
Affiliation(s)
- Hannes A Rüdiger
- Laboratory for Hepatobiliary Surgery and Liver Transplantation, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | | | | |
Collapse
|
46
|
Abstract
Ischemia/reperfusion is the main cause of hepatic damage consequent to temporary clamping of the hepatoduodenal ligament during liver surgery as well as graft failure after liver transplantation. In recent years, a number of animal studies have shown that pre-exposure of the liver to transient ischemia, hyperthermia, or mild oxidative stress increases the tolerance to reperfusion injury, a phenomenon known as hepatic preconditioning. The development of hepatic preconditioning can be differentiated into 2 phases. An immediate phase (early preconditioning) occurs within minutes and involves the direct modulation of energy supplies, pH regulation, Na(+) and Ca(2+) homeostasis, and caspase activation. The subsequent phase (late preconditioning) begins 12-24 hours after the stimulus and requires the synthesis of multiple stress-response proteins, including heat shock proteins HSP70, HSP27, and HSP32/heme oxygenase 1. Hepatic preconditioning is not limited to parenchymal cells but ameliorates sinusoidal perfusion, prevents postischemic neutrophil infiltration, and decreases the production of proinflammatory cytokines by Kupffer cells. This latter effect is important in improving systemic disorders associated with hepatic ischemia/reperfusion. The signals triggering hepatic preconditioning have been partially characterized, showing that adenosine, nitric oxide, and reactive oxygen species can activate multiple protein kinase cascades involving, among others, protein kinase C and p38 mitogen-activated protein kinase. These observations, along with preliminary studies in humans, give a rationale to perform clinical trials aimed at verifying the possible application of hepatic preconditioning in preventing ischemia/reperfusion injury during liver surgery.
Collapse
Affiliation(s)
- Rita Carini
- Department of Medical Sciences, A. Avogdro University of East Piedmont, Via Solaroli 17, 28100 Novara, Italy
| | | |
Collapse
|
47
|
Wilson DJ, Fisher A, Das K, Goerlitz F, Holland BK, De La Torre AN, Merchant A, Seguel J, Samanta AK, Koneru B. Donors with cardiac arrest: improved organ recovery but no preconditioning benefit in liver allografts. Transplantation 2003; 75:1683-7. [PMID: 12777856 DOI: 10.1097/01.tp.0000064542.63798.6b] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Historically, organ recovery rates in donors with cardiac arrest (CA) have been low, presumably from hemodynamic instability. We hypothesized that donor resuscitation has improved hemodynamic stability and organ recovery in CA donors, and that CA triggers ischemic preconditioning (IP) in liver grafts. METHODS A total of 131 donor pairs with and without CA were matched in age, gender, and year of recovery. Hemodynamic stability was determined by vasopressor use. Abdominal and thoracic organs recovered and livers transplanted were compared between the groups. Liver graft function, injury, and IP benefit were examined by comparing liver chemistries after transplantation and postperfusion biopsies between recipients of grafts from both groups (n=40 each). RESULTS Hemodynamic stability was similar in both groups, but recovery of thoracic organs was significantly lower in CA versus non-CA donors (35 vs. 53%, P<0.01). On the other hand, recovery rates of three or more abdominal organs from CA donors approached those of non-CA donors (77 vs. 87%, not significant). Although significantly fewer livers were transplanted from CA donors (69 vs. 85%, P<0.01), posttransplantation graft function and injury parameters were similar between the two groups, and CA did not appear to trigger IP. CONCLUSION Compared with historical data, cardiovascular stability and abdominal organ recovery rates have improved considerably in CA donors. Liver grafts from CA donors function similarly to grafts from non-CA donors with no IP from CA. Our data support the increased use of livers and other organs from donors with CA.
Collapse
Affiliation(s)
- Dorian J Wilson
- Department of Surgery, New Jersey Medical School, Newark, New Jersey, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Schauer RJ, Gerbes AL, Vonier D, op den Winkel M, Fraunberger P, Bilzer M. Induction of cellular resistance against Kupffer cell-derived oxidant stress: a novel concept of hepatoprotection by ischemic preconditioning. Hepatology 2003; 37:286-95. [PMID: 12540778 DOI: 10.1053/jhep.2003.50064] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ischemic preconditioning (IP) triggers protection of the liver from prolonged subsequent ischemia. However, the underlying protective mechanisms are largely unknown. We investigated whether and how IP protects the liver against reperfusion injury caused by Kupffer cell (KC)-derived oxidants. IP before 90 minutes of warm ischemia of rat livers in vivo significantly reduced serum alanine aminotransferase (AST) levels and leukocyte adherence to sinusoids and postsinusoidal venules during reperfusion. This protective effect was mimicked by postischemic intravenous infusion of glutathione (GSH), an antioxidative strategy against KC-derived H(2)O(2). Interestingly, no additional protection was achieved by infusion of GSH to preconditioned animals. These findings and several additional experiments strongly suggest IP mediated antioxidative effects: IP prevented oxidant cell injury in isolated perfused rat livers after selective KC activation by zymosan. Moreover, IP prevented cell injury and pertubations of the intracellular GSH/GSSG redox system caused by direct infusion of H(2)O(2) (0.5 mmol/L). IP-mediated resistance against H(2)O(2) could neither be blocked by the adenosine A2a antagonist DMPX nor mimicked by A2a agonist CGS21680. In contrast, H(2)O(2) resistance was abolished by the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580, but induced when p38 MAPK was directly activated by anisomycin. In conclusion, we propose a novel concept of hepatoprotection by IP: protection of liver cells by enhancing their resistance against KC-derived H(2)O(2). Activation of p38 MAPK and preservation of the intracellular GSH/oxidized glutathione (GSSG) redox system, but not adenosine A2a receptor stimulation, seems to be pivotal for the development of H(2)O(2) resistance in preconditioned livers.
Collapse
Affiliation(s)
- Rolf J Schauer
- Department of Surgery, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Germany
| | | | | | | | | | | |
Collapse
|