1
|
Han Y, Luo L, Li H, Zhang L, Yan Y, Fang M, Yu J, Gao X, Liu Y, Huang C, Fan S. Nomilin and its analogue obacunone alleviate NASH and hepatic fibrosis in mice via enhancing antioxidant and anti-inflammation capacity. Biofactors 2023; 49:1189-1204. [PMID: 37401768 DOI: 10.1002/biof.1987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) and hepatic fibrosis are leading causes of cirrhosis with rising morbidity and mortality worldwide. Currently, there is no appropriate treatment for NASH and hepatic fibrosis. Many studies have shown that oxidative stress is a main factor inducing NASH. Nomilin (NML) and obacunone (OBA) are limonoid compounds naturally occurring in citrus fruits with various biological properties. However, whether OBA and NML have beneficial effects on NASH remains unclear. Here, we demonstrated that OBA and NML inhibited hepatic tissue necrosis, inflammatory infiltration and liver fibrosis progression in methionine and choline-deficient (MCD) diet, carbon tetrachloride (CCl4 )-treated and bile duct ligation (BDL) NASH and hepatic fibrosis mouse models. Mechanistic studies showed that NML and OBA enhanced anti-oxidative effects, including reduction of malondialdehyde (MDA) level, increase of catalase (CAT) activity and the gene expression of glutathione S-transferases (GSTs) and Nrf2-keap1 signaling. Additional, NML and OBA inhibited the expression of inflammatory gene interleukin 6 (Il-6), and regulated the bile acid metabolism genes Cyp3a11, Cyp7a1, multidrug resistance-associated protein 3 (Mrp3). Overall, these findings indicate that NML and OBA may alleviate NASH and liver fibrosis in mice via enhancing antioxidant and anti-inflammation capacity. Our study proposed that NML and OBA may be potential strategies for NASH treatment.
Collapse
Affiliation(s)
- Yongli Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingling Luo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongli Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingxuan Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Coppo L, Scheggi S, DeMontis G, Priora R, Frosali S, Margaritis A, Summa D, Di Giuseppe D, Ulivelli M, Di Simplicio P. Does Risk of Hyperhomocysteinemia Depend on Thiol-Disulfide Exchange Reactions of Albumin and Homocysteine? Antioxid Redox Signal 2023; 38:920-958. [PMID: 36352822 DOI: 10.1089/ars.2021.0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Significance: Increased plasma concentrations of total homocysteine (tHcy; mild-moderate hyperhomocysteinemia: 15-50 μM tHcy) are considered an independent risk factor for the onset/progression of various diseases, but it is not known about how the increase in tHcy causes pathological conditions. Recent Advances: Reduced homocysteine (HSH ∼1% of tHcy) is presumed to be toxic, unlike homocystine (∼9%) and mixed disulfide between homocysteine and albumin (HSS-ALB; homocysteine [Hcy]-albumin mixed disulfide, ∼90%). This and other notions make it difficult to explain the pathogenicity of Hcy because: (i) lowering tHcy does not improve pathological outcomes; (ii) damage due to HSH usually emerges at supraphysiological doses; and (iii) it is not known why tiny increments in plasma concentrations of HSH can be pathological. Critical Issues: Albumin may have a role in Hcy toxicity, because HSS-ALB could release toxic HSH via thiol-disulfide (SH/SS) exchange reactions in cells. Similarly, thiol-disulfide exchange processes of reduced albumin (albumin with free SH group of Cys34 [HS-ALB]) or N-homocysteinylated albumin are plausible alternatives for initiating Hcy pathological events. Adverse effects of albumin and other data reviewed here suggest the hypothesis of a role of albumin in Hcy toxicity. Future Directions: HSS-ALB might be involved in disruption of the antioxidant/oxidant balance in critical tissues (brain, liver, kidney). Since homocysteine-albumin mixed disulfide is a possible intermediate of thiol-disulfide exchange reactions, we suggest that homocysteinylated albumin could be a new pathological factor, and that studies on the redox role of albumin and mixed disulfide production via thiol-disulfide exchange reactions could offer new therapeutic insights for reducing Hcy toxicity.
Collapse
Affiliation(s)
- Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Simona Scheggi
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Graziella DeMontis
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Raffaella Priora
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Simona Frosali
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Antonio Margaritis
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Domenico Summa
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Danila Di Giuseppe
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Monica Ulivelli
- Department of Surgery, Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Paolo Di Simplicio
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
3
|
Monné M, Marobbio CMT, Agrimi G, Palmieri L, Palmieri F. Mitochondrial transport and metabolism of the major methyl donor and versatile cofactor S-adenosylmethionine, and related diseases: A review †. IUBMB Life 2022; 74:573-591. [PMID: 35730628 DOI: 10.1002/iub.2658] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/19/2022] [Indexed: 11/08/2022]
Abstract
S-adenosyl-L-methionine (SAM) is a coenzyme and the most commonly used methyl-group donor for the modification of metabolites, DNA, RNA and proteins. SAM biosynthesis and SAM regeneration from the methylation reaction product S-adenosyl-L-homocysteine (SAH) take place in the cytoplasm. Therefore, the intramitochondrial SAM-dependent methyltransferases require the import of SAM and export of SAH for recycling. Orthologous mitochondrial transporters belonging to the mitochondrial carrier family have been identified to catalyze this antiport transport step: Sam5p in yeast, SLC25A26 (SAMC) in humans, and SAMC1-2 in plants. In mitochondria SAM is used by a vast number of enzymes implicated in the following processes: the regulation of replication, transcription, translation, and enzymatic activities; the maturation and assembly of mitochondrial tRNAs, ribosomes and protein complexes; and the biosynthesis of cofactors, such as ubiquinone, lipoate, and molybdopterin. Mutations in SLC25A26 and mitochondrial SAM-dependent enzymes have been found to cause human diseases, which emphasizes the physiological importance of these proteins.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,Department of Sciences, University of Basilicata, Potenza, Italy
| | - Carlo M T Marobbio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| |
Collapse
|
4
|
Gangwar A, Paul S, Arya A, Ahmad Y, Bhargava K. Altitude acclimatization via hypoxia-mediated oxidative eustress involves interplay of protein nitrosylation and carbonylation: A redoxomics perspective. Life Sci 2021; 296:120021. [PMID: 34626604 DOI: 10.1016/j.lfs.2021.120021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022]
Abstract
AIM Hypoxia is an important feature of multiple diseases like cancer and obesity and also an environmental stressor to high altitude travelers. Emerging research suggests the importance of redox signaling in physiological responses transforming the notion of oxidative stress into eustress and distress. However, the behavior of redox protein post-translational modifications (PTMs), and their correlation with stress acclimatization in humans remains sketchy. Scant information exists about modifications in redoxome during physiological exposure to environmental hypoxia. In this study, we investigated redox PTMs, nitrosylation and carbonylation, in context of extended environmental hypoxia exposure. METHODS The volunteers were confirmed to be free of any medical conditions and matched for age and weight. The human global redoxome and the affected networks were investigated using TMT-labeled quantitative proteo-bioinformatics and biochemical assays. The percolator PSM algorithm was used for peptide-spectrum match (PSM) validation in database searches. The FDR for peptide matches was set to 0.01. 1-way ANOVA and Tukey's Multiple Comparison test were used for biochemical assays. p-value<0.05 was considered statistically significant. Three independent experiments (biological replicates) were performed. Results were presented as Mean ± standard error of mean (SEM). KEY FINDINGS This investigation revealed direct and indirect interplay between nitrosylation and carbonylation especially within coagulation and inflammation networks; interlinked redox signaling (via nitrosylation‑carbonylation); and novel nitrosylation and carbonylation sites in individual proteins. SIGNIFICANCE This study elucidates the role of redox PTMs in hypoxia signaling favoring tolerance and survival. Also, we demonstrated direct and indirect interplay between nitrosylation and carbonylation is crucial to extended hypoxia tolerance.
Collapse
Affiliation(s)
- Anamika Gangwar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Subhojit Paul
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Aditya Arya
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Yasmin Ahmad
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India.
| | - Kalpana Bhargava
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India.
| |
Collapse
|
5
|
Carrascal L, Gorton E, Pardillo-Díaz R, Perez-García P, Gómez-Oliva R, Castro C, Nunez-Abades P. Age-Dependent Vulnerability to Oxidative Stress of Postnatal Rat Pyramidal Motor Cortex Neurons. Antioxidants (Basel) 2020; 9:antiox9121307. [PMID: 33352810 PMCID: PMC7766683 DOI: 10.3390/antiox9121307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/02/2023] Open
Abstract
Oxidative stress is one of the main proposed mechanisms involved in neuronal degeneration. To evaluate the consequences of oxidative stress on motor cortex pyramidal neurons during postnatal development, rats were classified into three groups: Newborn (P2-P7); infantile (P11-P15); and young adult (P20-P40). Oxidative stress was induced by 10 µM of cumene hydroperoxide (CH) application. In newborn rats, using the whole cell patch-clamp technique in brain slices, no significant modifications in membrane excitability were found. In infantile rats, the input resistance increased and rheobase decreased due to the blockage of GABAergic tonic conductance. Lipid peroxidation induced by CH resulted in a noticeable increase in protein-bound 4-hidroxynonenal in homogenates in only infantile and young adult rat slices. Interestingly, homogenates of newborn rat brain slices showed the highest capacity to respond to oxidative stress by dramatically increasing their glutathione and free thiol content. This increase correlated with a time-dependent increase in the glutathione reductase activity, suggesting a greater buffering capacity of newborn rats to resist oxidative stress. Furthermore, pre-treatment of the slices with glutathione monoethyl ester acted as a neuroprotector in pyramidal neurons of infantile rats. We conclude that during maturation, the vulnerability to oxidative stress in rat motor neurons increases with age.
Collapse
Affiliation(s)
- Livia Carrascal
- Departament of Physiology, Pharmacy School, University of Seville, 41012 Seville, Spain; (L.C.); (E.G.); (P.P.-G.)
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), 11003 Cadiz, Spain; (R.P.-D.); (R.G.-O.); (C.C.)
| | - Ella Gorton
- Departament of Physiology, Pharmacy School, University of Seville, 41012 Seville, Spain; (L.C.); (E.G.); (P.P.-G.)
| | - Ricardo Pardillo-Díaz
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), 11003 Cadiz, Spain; (R.P.-D.); (R.G.-O.); (C.C.)
- Area of Physiology, School of Medicine, University of Cádiz, 11003 Cadiz, Spain
| | - Patricia Perez-García
- Departament of Physiology, Pharmacy School, University of Seville, 41012 Seville, Spain; (L.C.); (E.G.); (P.P.-G.)
| | - Ricardo Gómez-Oliva
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), 11003 Cadiz, Spain; (R.P.-D.); (R.G.-O.); (C.C.)
- Area of Physiology, School of Medicine, University of Cádiz, 11003 Cadiz, Spain
| | - Carmen Castro
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), 11003 Cadiz, Spain; (R.P.-D.); (R.G.-O.); (C.C.)
- Area of Physiology, School of Medicine, University of Cádiz, 11003 Cadiz, Spain
| | - Pedro Nunez-Abades
- Departament of Physiology, Pharmacy School, University of Seville, 41012 Seville, Spain; (L.C.); (E.G.); (P.P.-G.)
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), 11003 Cadiz, Spain; (R.P.-D.); (R.G.-O.); (C.C.)
- Correspondence:
| |
Collapse
|
6
|
Umbreen S, Lubega J, Cui B, Pan Q, Jiang J, Loake GJ. Specificity in nitric oxide signalling. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3439-3448. [PMID: 29767796 DOI: 10.1093/jxb/ery184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/07/2018] [Indexed: 05/20/2023]
Abstract
Reactive nitrogen species (RNS) and their cognate redox signalling networks pervade almost all facets of plant growth, development, immunity, and environmental interactions. The emerging evidence implies that specificity in redox signalling is achieved by a multilayered molecular framework. This encompasses the production of redox cues in the locale of the given protein target and protein tertiary structures that convey the appropriate local chemical environment to support redox-based, post-translational modifications (PTMs). Nascent nitrosylases have also recently emerged that mediate the formation of redox-based PTMs. Reversal of these redox-based PTMs, rather than their formation, is also a major contributor of signalling specificity. In this context, the activities of S-nitrosoglutathione (GSNO) reductase and thioredoxin h5 (Trxh5) are a key feature. Redox signalling specificity is also conveyed by the unique chemistries of individual RNS which is overlaid on the structural constraints imposed by tertiary protein structure in gating access to given redox switches. Finally, the interactions between RNS and ROS (reactive oxygen species) can also indirectly establish signalling specificity through shaping the formation of appropriate redox cues. It is anticipated that some of these insights might function as primers to initiate their future translation into agricultural, horticultural, and industrial biological applications.
Collapse
Affiliation(s)
- Saima Umbreen
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
| | - Jibril Lubega
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
| | - Beimi Cui
- Key Laboratory of Biotechnology for Medicinal Plants, Jiangsu Normal University, Xuzhou, PR China
- Jiangsu Normal University-Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, Xuzhou, PR China
| | - Qiaona Pan
- Key Laboratory of Biotechnology for Medicinal Plants, Jiangsu Normal University, Xuzhou, PR China
- Jiangsu Normal University-Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, Xuzhou, PR China
| | - Jihong Jiang
- Key Laboratory of Biotechnology for Medicinal Plants, Jiangsu Normal University, Xuzhou, PR China
- Jiangsu Normal University-Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, Xuzhou, PR China
| | - Gary J Loake
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
- Jiangsu Normal University-Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, Xuzhou, PR China
| |
Collapse
|
7
|
García-Giménez JL, Romá-Mateo C, Pérez-Machado G, Peiró-Chova L, Pallardó FV. Role of glutathione in the regulation of epigenetic mechanisms in disease. Free Radic Biol Med 2017; 112:36-48. [PMID: 28705657 DOI: 10.1016/j.freeradbiomed.2017.07.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 12/14/2022]
Abstract
Epigenetics is a rapidly growing field that studies gene expression modifications not involving changes in the DNA sequence. Histone H3, one of the basic proteins in the nucleosomes that make up chromatin, is S-glutathionylated in mammalian cells and tissues, making Gamma-L-glutamyl-L-cysteinylglycine, glutathione (GSH), a physiological antioxidant and second messenger in cells, a new post-translational modifier of the histone code that alters the structure of the nucleosome. However, the role of GSH in the epigenetic mechanisms likely goes beyond a mere structural function. Evidence supports the hypothesis that there is a link between GSH metabolism and the control of epigenetic mechanisms at different levels (i.e., substrate availability, enzymatic activity for DNA methylation, changes in the expression of microRNAs, and participation in the histone code). However, little is known about the molecular pathways by which GSH can control epigenetic events. Studying mutations in enzymes involved in GSH metabolism and the alterations of the levels of cofactors affecting epigenetic mechanisms appears challenging. However, the number of diseases induced by aberrant epigenetic regulation is growing, so elucidating the intricate network between GSH metabolism, oxidative stress and epigenetics could shed light on how their deregulation contributes to the development of neurodegeneration, cancer, metabolic pathologies and many other types of diseases.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Institute of Health Carlos III, Valencia, Spain; Mixed Unit INCLIVA-CIPF Research Institutes, Valencia, Spain; Dept. Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain; Epigenetics Research Platform (CIBERER/UV), Valencia, Spain.
| | - Carlos Romá-Mateo
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Institute of Health Carlos III, Valencia, Spain; Mixed Unit INCLIVA-CIPF Research Institutes, Valencia, Spain; Dept. Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain; Epigenetics Research Platform (CIBERER/UV), Valencia, Spain; Faculty of Biomedicine and Health Sciences, Universidad Europea de Valencia, Valencia, Spain
| | - Gisselle Pérez-Machado
- Dept. Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain; Epigenetics Research Platform (CIBERER/UV), Valencia, Spain
| | | | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Institute of Health Carlos III, Valencia, Spain; Mixed Unit INCLIVA-CIPF Research Institutes, Valencia, Spain; Dept. Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain; Epigenetics Research Platform (CIBERER/UV), Valencia, Spain.
| |
Collapse
|
8
|
Pretzel J, Gehr M, Eisenkolb M, Wang L, Fritz-Wolf K, Rahlfs S, Becker K, Jortzik E. Characterization and redox regulation of Plasmodium falciparum methionine adenosyltransferase. J Biochem 2016; 160:355-367. [PMID: 27466371 DOI: 10.1093/jb/mvw045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/14/2016] [Indexed: 11/12/2022] Open
Abstract
As a methyl group donor for biochemical reactions, S-adenosylmethionine plays a central metabolic role in most organisms. Depletion of S-adenosylmethionine has downstream effects on polyamine metabolism and methylation reactions, and is an effective way to combat pathogenic microorganisms such as malaria parasites. Inhibition of both the methylation cycle and polyamine synthesis strongly affects Plasmodium falciparum growth. Despite its central position in the methylation cycle, not much is currently known about P. falciparum methionine adenosyltransferase (PfalMAT). Notably, however, PfalMAT has been discussed as a target of different redox regulatory modifications. Modulating the redox state of critical cysteine residues is a way to regulate enzyme activity in different pathways in response to changes in the cellular redox state. In the present study, we optimized an assay for detailed characterization of enzymatic activity and redox regulation of PfalMAT. While the presence of reduced thioredoxin increases the activity of the enzyme, it was found to be inhibited upon S-glutathionylation and S-nitrosylation. A homology model and site-directed mutagenesis studies revealed a contribution of the residues Cys52, Cys113 and Cys187 to redox regulation of PfalMAT by influencing its structure and activity. This phenomenon connects cellular S-adenosylmethionine synthesis to the redox state of PfalMAT and therefore to the cellular redox homeostasis.
Collapse
Affiliation(s)
- Jette Pretzel
- Biochemistry and Molecular Biology, Justus Liebig University Giessen, Germany
| | - Marina Gehr
- Biochemistry and Molecular Biology, Justus Liebig University Giessen, Germany
| | - Maike Eisenkolb
- Biochemistry and Molecular Biology, Justus Liebig University Giessen, Germany
| | - Lihui Wang
- Biochemistry and Molecular Biology, Justus Liebig University Giessen, Germany
| | - Karin Fritz-Wolf
- Biochemistry and Molecular Biology, Justus Liebig University Giessen, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Justus Liebig University Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Justus Liebig University Giessen, Germany
| | - Esther Jortzik
- Biochemistry and Molecular Biology, Justus Liebig University Giessen, Germany
| |
Collapse
|
9
|
|
10
|
Butler LM, Arning E, Wang R, Bottiglieri T, Govindarajan S, Gao YT, Yuan JM. Prediagnostic levels of serum one-carbon metabolites and risk of hepatocellular carcinoma. Cancer Epidemiol Biomarkers Prev 2013; 22:1884-93. [PMID: 23897582 DOI: 10.1158/1055-9965.epi-13-0497] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rats fed diets deficient in choline develop hepatocellular carcinoma. Tumor DNA from these animals is characteristically hypomethylated, suggesting that disruption of the one-carbon metabolism pathway is an underlying mechanism for hepatocarcinogenesis. Prospective studies in humans on circulating choline and other one-carbon metabolites and hepatocellular carcinoma risk have been lacking. METHODS We prospectively examined the association between prediagnostic serum concentrations of one-carbon metabolites including betaine, choline, cystathionine, homocysteine, methionine, 5-methyltetrahydrofolate (5-MTHF), pyridoxal-5-phosphate (PLP, the bioactive form of vitamin B6) and S-adenosylmethionine (SAM), and risk of developing hepatocellular carcinoma based on a nested case-control study of 297 incident cases and 631 matched controls from a cohort of 18,244 men in Shanghai, China. Logistic regression methods were used to calculate ORs and 95% confidence intervals (CI) adjusted for established risk factors for hepatocellular carcinoma. RESULTS Serum choline and PLP were associated with statistically significant reduced risk of hepatocellular carcinoma, whereas serum cystathionine, methionine, and SAM were associated with increased hepatocellular carcinoma risk (all Ptrend < 0.05). The inverse associations for hepatocellular carcinoma risk with choline and PLP remained statistically significant after adjusting for all potential confounders. The multivariate-adjusted ORs (95% CIs) for the highest versus lowest quintiles of serum choline and PLP were 0.35 (0.16-0.78; P = 0.010) and 0.44 (0.25-0.78; P = 0.005), respectively. There were no associations for hepatocellular carcinoma risk with 5-MTHF, betaine, or homocysteine. CONCLUSION The inverse associations between choline and vitamin B6 and the risk of hepatocellular carcinoma development are novel and warrant further investigation. IMPACT Identifying new modifiable factors for hepatocellular carcinoma prevention is warranted.
Collapse
Affiliation(s)
- Lesley M Butler
- Authors' Affiliations: Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute; and Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania; Institute of Metabolic Disease, Baylor Research Institute, Dallas, Texas; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California; and Department of Epidemiology, Shanghai Cancer Institute, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
11
|
Pajares MA, Markham GD. Methionine adenosyltransferase (s-adenosylmethionine synthetase). ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:449-521. [PMID: 22220481 DOI: 10.1002/9781118105771.ch11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- María A Pajares
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid Spain
| | | |
Collapse
|
12
|
Schonhoff CM, Ramasamy U, Anwer MS. Nitric oxide-mediated inhibition of taurocholate uptake involves S-nitrosylation of NTCP. Am J Physiol Gastrointest Liver Physiol 2011; 300:G364-70. [PMID: 21109590 PMCID: PMC3043645 DOI: 10.1152/ajpgi.00170.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The sodium-taurocholate (TC) cotransporting polypeptide (NTCP) facilitates bile formation by mediating sinusoidal Na(+)-TC cotransport. During sepsis-induced cholestasis, there is a decrease in NTCP-dependent uptake of bile acids and an increase in nitric oxide (NO) levels in hepatocytes. In rat hepatocytes NO inhibits Na(+)-dependent uptake of taurocholate. The aim of this study was to extend these findings to human NTCP and to further investigate the mechanism by which NO inhibits TC uptake. Using a human hepatoma cell line stably expressing NTCP (HuH-NTCP), we performed experiments with the NO donors sodium nitroprusside and S-nitrosocysteine and demonstrated that NO inhibits TC uptake in these cells. Kinetic analyses revealed that NO significantly decreased the V(max) but not the K(m) of TC uptake by NTCP, indicating noncompetitive inhibition. NO decreased the amount of NTCP in the plasma membrane, providing a molecular mechanism for the noncompetitive inhibition of TC uptake. One way that NO can modify protein function is through a posttranslational modification known as S-nitrosylation: the binding of NO to cysteine thiols. Using a biotin switch technique we observed that NTCP is S-nitrosylated under conditions in which NO inhibits TC uptake. Moreover, dithiothreitol reversed NO-mediated inhibition of TC uptake and S-nitrosylation of NTCP, indicating that NO inhibits TC uptake via modification of cysteine thiols. In addition, NO treatment led to a decrease in Ntcp phosphorylation. Taken together these results indicate that the inhibition of TC uptake by NO involves S-nitrosylation of NTCP.
Collapse
Affiliation(s)
- Christopher M. Schonhoff
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - Umadevi Ramasamy
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - M. Sawkat Anwer
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| |
Collapse
|
13
|
Cederbaum AI. Hepatoprotective effects of S-adenosyl-L-methionine against alcohol- and cytochrome P450 2E1-induced liver injury. World J Gastroenterol 2010; 16:1366-76. [PMID: 20238404 PMCID: PMC2842529 DOI: 10.3748/wjg.v16.i11.1366] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
S-adenosyl-L-methionine (SAM) acts as a methyl donor for methylation reactions and participates in the synthesis of glutathione. SAM is also a key metabolite that regulates hepatocyte growth, differentiation and death. Hepatic SAM levels are decreased in animal models of alcohol liver injury and in patients with alcohol liver disease or viral cirrhosis. This review describes the protection by SAM against alcohol and cytochrome P450 2E1-dependent cytotoxicity both in vitro and in vivo and evaluates mechanisms for this protection.
Collapse
|
14
|
Nijhout HF, Gregory JF, Fitzpatrick C, Cho E, Lamers KY, Ulrich CM, Reed MC. A mathematical model gives insights into the effects of vitamin B-6 deficiency on 1-carbon and glutathione metabolism. J Nutr 2009; 139:784-91. [PMID: 19244383 PMCID: PMC2666368 DOI: 10.3945/jn.109.104265] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We experimented with a mathematical model for 1-carbon metabolism and glutathione (GSH) synthesis to investigate the effects of vitamin B-6 deficiency on the reaction velocities and metabolite concentrations in this metabolic network. The mathematical model enabled us to independently alter the activities of each of the 5 vitamin B-6-dependent enzymes and thus determine which inhibitions were responsible for the experimentally observed consequences of a vitamin B-6 deficiency. The effect of vitamin B-6 deficiency on serine and glycine concentrations in tissues and plasma was almost entirely due to its effects on the activity of glycine decarboxylase. The effect of vitamin B-6 restriction on GSH concentrations appeared to be indirect, arising from the fact that vitamin B-6 restriction increases oxidative stress, which, in turn, affects several enzymes in 1-carbon metabolism as well as the GSH transporter. Vitamin B-6 restriction causes an abnormally high and prolonged homocysteine response to a methionine load test. This effect appeared to be mediated solely by its effects on cystathionine beta-synthase. Reduction of the enzymatic activity of serine hydroxymethyltransferase (SHMT) had negligible effects on most metabolite concentrations and reaction velocities. Reduction or total elimination of cytoplasmic SHMT had a surprisingly moderate effect on metabolite concentrations and reaction velocities. This corresponds to the experimental findings that a reduction in the enzymatic activity of SHMT has little effect on 1-carbon metabolism. Our simulations showed that the primary function of SHMT was to increase the rate by which the glycine-serine balance was reequilibrated after a perturbation.
Collapse
Affiliation(s)
- H. Frederik Nijhout
- Department of Biology, Duke University, Durham, NC 27708; Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611; Department of Mathematics, Duke University, Durham, NC 27708; Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and University of Washington, Department of Epidemiology and Interdisciplinary Graduate Program in the Nutrition Sciences, Seattle, WA 98195
| | - Jesse F. Gregory
- Department of Biology, Duke University, Durham, NC 27708; Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611; Department of Mathematics, Duke University, Durham, NC 27708; Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and University of Washington, Department of Epidemiology and Interdisciplinary Graduate Program in the Nutrition Sciences, Seattle, WA 98195
| | - Courtney Fitzpatrick
- Department of Biology, Duke University, Durham, NC 27708; Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611; Department of Mathematics, Duke University, Durham, NC 27708; Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and University of Washington, Department of Epidemiology and Interdisciplinary Graduate Program in the Nutrition Sciences, Seattle, WA 98195
| | - Eugenia Cho
- Department of Biology, Duke University, Durham, NC 27708; Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611; Department of Mathematics, Duke University, Durham, NC 27708; Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and University of Washington, Department of Epidemiology and Interdisciplinary Graduate Program in the Nutrition Sciences, Seattle, WA 98195
| | - K. Yvonne Lamers
- Department of Biology, Duke University, Durham, NC 27708; Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611; Department of Mathematics, Duke University, Durham, NC 27708; Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and University of Washington, Department of Epidemiology and Interdisciplinary Graduate Program in the Nutrition Sciences, Seattle, WA 98195
| | - Cornelia M. Ulrich
- Department of Biology, Duke University, Durham, NC 27708; Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611; Department of Mathematics, Duke University, Durham, NC 27708; Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and University of Washington, Department of Epidemiology and Interdisciplinary Graduate Program in the Nutrition Sciences, Seattle, WA 98195
| | - Michael C. Reed
- Department of Biology, Duke University, Durham, NC 27708; Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611; Department of Mathematics, Duke University, Durham, NC 27708; Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and University of Washington, Department of Epidemiology and Interdisciplinary Graduate Program in the Nutrition Sciences, Seattle, WA 98195
| |
Collapse
|
15
|
Abstract
Methionine adenosyltransferases (MATs) are the family of enzymes that synthesize the main biological methyl donor, S-adenosylmethionine. The high sequence conservation among catalytic subunits from bacteria and eukarya preserves key residues that control activity and oligomerization, which is reflected in the protein structure. However, structural differences among complexes with substrates and products have led to proposals of several reaction mechanisms. In parallel, folding studies begin to explain how the three intertwined domains of the catalytic subunit are produced, and to highlight the importance of certain intermediates in attaining the active final conformation. This review analyzes the available structural data and proposes a consensus interpretation that facilitates an understanding of the pathological problems derived from impairment of MAT function. In addition, new research opportunities directed toward clarification of aspects that remain obscure are also identified.
Collapse
Affiliation(s)
- G. D. Markham
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111 USA
| | - M. A. Pajares
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| |
Collapse
|
16
|
Kim SJ, Kwon DY, Choi KH, Choi DW, Kim YC. Impaired Metabolomics of Sulfur-Containing Substances in Rats Acutely Treated with Carbon Tetrachloride. Toxicol Res 2008; 24:281-287. [PMID: 32038806 PMCID: PMC7006244 DOI: 10.5487/tr.2008.24.4.281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 11/17/2008] [Accepted: 11/17/2008] [Indexed: 12/20/2022] Open
Abstract
Impairment of hepatic metabolism of sulfur-containing amino acids has been known to be linked with induction of liver injury. We determined the early changes in the transsulfuration reactions in liver of rats challenged with a toxic dose of CCl4 (2 mmol/kg, ip). Both hepatic methionine concentration and methionine adenosyltransferase activity were increased, but S-adenosylmethionine level did not change. Hepatic cysteine was increased significantly from 4 h after CCl4 treatment. Glutathione (GSH) concentration in liver was elevated in 4~8 h and then returned to normal in accordance with the changes in glutamate cysteine ligase activity. Cysteine dioxygenase activity and hypotaurine concentration were also elevated from 4 h after the treatment. However, plasma GSH concentration was increased progressively, reaching a level at least several fold greater than normal in 24 h. γ-Glutamyltransferase activity in kidney or liver was not altered by CCl4, suggesting that the increase in plasma GSH could not be attributed to a failure of GSH cycling. The results indicate that acute liver injury induced by CCl4 is accompanied with extensive alterations in the metabolomics of sulfur-containing amino acids and related substances. The major metabolites and products of the transsul-furation pathway, including methionine, cysteine, hypotaurine, and GSH, are all increased in liver and plasma. The physiological significance of the change in the metabolomics of sulfur-containing substances and its role in the induction of liver injury need to be explored in future studies.
Collapse
Affiliation(s)
- Sun Ju Kim
- College of Pharmacy, Seoul National University, San 56-1 Shinrim-Dong, Kwanak-Ku, Seoul, 151-742 Korea
| | - Do Young Kwon
- College of Pharmacy, Seoul National University, San 56-1 Shinrim-Dong, Kwanak-Ku, Seoul, 151-742 Korea
| | - Kwon Hee Choi
- College of Pharmacy, Seoul National University, San 56-1 Shinrim-Dong, Kwanak-Ku, Seoul, 151-742 Korea
| | - Dal Woong Choi
- College of Health Science, Korea University, Seoul, 136-703 Korea
| | - Young Chul Kim
- College of Pharmacy, Seoul National University, San 56-1 Shinrim-Dong, Kwanak-Ku, Seoul, 151-742 Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 151-742 Korea
| |
Collapse
|
17
|
Reed MC, Thomas RL, Pavisic J, James SJ, Ulrich CM, Nijhout HF. A mathematical model of glutathione metabolism. Theor Biol Med Model 2008; 5:8. [PMID: 18442411 PMCID: PMC2391141 DOI: 10.1186/1742-4682-5-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 04/28/2008] [Indexed: 12/04/2022] Open
Abstract
Background Glutathione (GSH) plays an important role in anti-oxidant defense and detoxification reactions. It is primarily synthesized in the liver by the transsulfuration pathway and exported to provide precursors for in situ GSH synthesis by other tissues. Deficits in glutathione have been implicated in aging and a host of diseases including Alzheimer's disease, Parkinson's disease, cardiovascular disease, cancer, Down syndrome and autism. Approach We explore the properties of glutathione metabolism in the liver by experimenting with a mathematical model of one-carbon metabolism, the transsulfuration pathway, and glutathione synthesis, transport, and breakdown. The model is based on known properties of the enzymes and the regulation of those enzymes by oxidative stress. We explore the half-life of glutathione, the regulation of glutathione synthesis, and its sensitivity to fluctuations in amino acid input. We use the model to simulate the metabolic profiles previously observed in Down syndrome and autism and compare the model results to clinical data. Conclusion We show that the glutathione pools in hepatic cells and in the blood are quite insensitive to fluctuations in amino acid input and offer an explanation based on model predictions. In contrast, we show that hepatic glutathione pools are highly sensitive to the level of oxidative stress. The model shows that overexpression of genes on chromosome 21 and an increase in oxidative stress can explain the metabolic profile of Down syndrome. The model also correctly simulates the metabolic profile of autism when oxidative stress is substantially increased and the adenosine concentration is raised. Finally, we discuss how individual variation arises and its consequences for one-carbon and glutathione metabolism.
Collapse
Affiliation(s)
- Michael C Reed
- Department of Mathematics, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Redox regulation of methylthioadenosine phosphorylase in liver cells: molecular mechanism and functional implications. Biochem J 2008; 411:457-65. [PMID: 18237276 DOI: 10.1042/bj20071569] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MTAP (5'-methylthioadenosine phosphorylase) catalyses the reversible phosphorolytic cleavage of methylthioadenosine leading to the production of methylthioribose-1-phosphate and adenine. Deficient MTAP activity has been correlated with human diseases including cirrhosis and hepatocellular carcinoma. In the present study we have investigated the regulation of MTAP by ROS (reactive oxygen species). The results of the present study support the inactivation of MTAP in the liver of bacterial LPS (lipopolysaccharide)-challenged mice as well as in HepG2 cells after exposure to t-butyl hydroperoxide. Reversible inactivation of purified MTAP by hydrogen peroxide results from a reduction of V(max) and involves the specific oxidation of Cys(136) and Cys(223) thiols to sulfenic acid that may be further stabilized to sulfenyl amide intermediates. Additionally, we found that Cys(145) and Cys(211) were disulfide bonded upon hydrogen peroxide exposure. However, this modification is not relevant to the mediation of the loss of MTAP activity as assessed by site-directed mutagenesis. Regulation of MTAP by ROS might participate in the redox regulation of the methionine catabolic pathway in the liver. Reduced MTA (5'-deoxy-5'-methylthioadenosine)-degrading activity may compensate for the deficient production of the precursor S-adenosylmethionine, allowing maintenance of intracellular MTA levels that may be critical to ensure cellular adaptation to physiopathological conditions such as inflammation.
Collapse
|
19
|
Forrester MT, Foster MW, Stamler JS. Assessment and application of the biotin switch technique for examining protein S-nitrosylation under conditions of pharmacologically induced oxidative stress. J Biol Chem 2007; 282:13977-83. [PMID: 17376775 DOI: 10.1074/jbc.m609684200] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein S-nitrosylation has emerged as a principal mechanism by which nitric oxide exerts biological effects. Among methods for studying protein S-nitrosylation, the biotin switch technique (BST) has rapidly gained popularity because of the ease with which it can detect individual S-nitrosylated (SNO) proteins in biological samples. The identification of SNO sites by the BST relies on the ability of ascorbate to generate a thiol from an S-nitrosothiol, but not from alternatively S-oxidized thiols (e.g. disulfides, sulfenic acids). However, the specificity of this reaction has recently been challenged, prompting several claims that the BST may produce false-positive results and raising concerns about the application of the BST under oxidizing conditions. Here we perform a comparative analysis of the BST using differentially S-oxidized and S-nitrosylated forms of protein tyrosine phosphatase 1B, as well as intact and lysed human embryonic kidney 293 cells treated with S-oxidizing and S-nitrosylating agents, and verify that the assay is highly specific for SNO. Strikingly, exposure of samples to indirect sunlight from a laboratory window resulted in artifactual ascorbate-dependent signals that are likely promoted by the semidehydroascorbate radical; protection from sunlight eliminated the artifact. In contrast, exposure of SNO proteins to a strong ultraviolet light source (SNO photolysis) prior to the BST provided independent verification of assay specificity. By combining BST with photolysis, we have shown that anti-cancer drug-induced oxidative stress facilitates the S-nitrosylation of the major apoptotic effector glyceraldehyde-3-phosphate dehydrogenase. Collectively, these experiments demonstrate that SNO-dependent signaling pathways can be modulated by oxidative conditions and suggest a potential role for S-nitrosylation in antineoplastic drug action.
Collapse
Affiliation(s)
- Michael T Forrester
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
20
|
Grillo MA, Colombatto S. S-adenosylmethionine and its products. Amino Acids 2007; 34:187-93. [PMID: 17334902 DOI: 10.1007/s00726-007-0500-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 02/01/2007] [Indexed: 01/10/2023]
Abstract
S-adenosylmethionine is involved in many processes, mainly methylation, polyamine synthesis and radical-based catalysis. It is synthesised through the catalysis of differently regulated enzyme forms. When it is used, the compounds formed are reutilized in different ways: in case of methylation, its end product is homocysteine, which can be remethylated to methionine, give rise to cysteine in the so-called transsulphuration pathway, or be released; in the case of polyamine synthesis, the methylthioadenosine formed is cleaved and gives rise to compounds which can be reutilized; during radical-based catalysis, 5-deoxyadenosine is formed and this, too, is cleaved and reutilized.
Collapse
Affiliation(s)
- M A Grillo
- Dipartimento di Medicina e Oncologia Sperimentale, Sezione di Biochimica, Università di Torino, Torino, Italy.
| | | |
Collapse
|
21
|
Floyd RA, Kotake Y, Towner RA, Guo WX, Nakae D, Konishi Y. Nitric Oxide and Cancer Development. J Toxicol Pathol 2007. [DOI: 10.1293/tox.20.77] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Robert A. Floyd
- Oklahoma Medical Research Foundation
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center
| | | | | | | | - Dai Nakae
- Tokyo Metropolitan Institute of Public Health
- Tokyo University of Agriculture
| | - Yoichi Konishi
- International Federation of Societies of Toxicologic Pathologists
| |
Collapse
|
22
|
Kedderis GL, Elmore AR, Crecelius EA, Yager JW, Goldsworthy TL. Kinetics of arsenic methylation by freshly isolated B6C3F1 mouse hepatocytes. Chem Biol Interact 2006; 161:139-45. [PMID: 16725132 DOI: 10.1016/j.cbi.2006.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 03/30/2006] [Accepted: 04/03/2006] [Indexed: 11/28/2022]
Abstract
The toxic and carcinogenic effects of arsenic may be mediated by both inorganic and methylated arsenic species. The methylation of arsenic(III) is thought to take place via sequential oxidative methylation and reduction steps to form monomethylarsenic (MMA) and dimethylarsenic (DMA) species, but recent evidence indicates that glutathione complexes of arsenic(III) can be methylated without oxidation. The kinetics of arsenic methylation were determined in freshly isolated hepatocytes from male B6C3F1 mice. Hepatocytes (>90% viability) were isolated by collagenase perfusion and suspended in Williams' Medium E with various concentrations of arsenic(III) (sodium m-arsenite). Aliquots of the lysed cell suspension were analyzed for arsenic species by hydride generation-atomic absorption spectrometry. The formation of MMA(III) from sodium arsenite (1 microM) was linear with respect to time for >90 min. DMA(III) formation did not become significant until 60 min. MMA(V) and DMA(V) were not consistently observed in the incubations. These results suggest that the glutathione complex mechanism of methylation plays an important role in arsenic biotransformation in mouse hepatocytes. Metabolism of arsenic(V) was not observed in mouse hepatocytes, consistent with inhibition of arsenic(V) active cellular uptake by phosphate in the medium. The formation of MMA(III) increased with increasing arsenic(III) concentrations up to approximately 2 microM and declined thereafter. The concentration dependence is consistent with a saturable methylation reaction accompanied by uncompetitive substrate inhibition of the reaction by arsenic(III). Kinetic analysis of the data suggested an apparent K(M) of approximately 3.6 microM arsenic(III), an apparent V(max) of approximately 38.9 microg MMA(III) formed/L/h/million cells, and an apparent K(I) of approximately 1.3 microM arsenic(III). The results of this study can be used in the physiologically based pharmacokinetic model for arsenic disposition in mice to predict the concentration of MMA(III) in liver and other tissues.
Collapse
|
23
|
Soga T, Baran R, Suematsu M, Ueno Y, Ikeda S, Sakurakawa T, Kakazu Y, Ishikawa T, Robert M, Nishioka T, Tomita M. Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Biol Chem 2006; 281:16768-76. [PMID: 16608839 DOI: 10.1074/jbc.m601876200] [Citation(s) in RCA: 537] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Metabolomics is an emerging tool that can be used to gain insights into cellular and physiological responses. Here we present a metabolome differential display method based on capillary electrophoresis time-of-flight mass spectrometry to profile liver metabolites following acetaminophen-induced hepatotoxicity. We globally detected 1,859 peaks in mouse liver extracts and highlighted multiple changes in metabolite levels, including an activation of the ophthalmate biosynthesis pathway. We confirmed that ophthalmate was synthesized from 2-aminobutyrate through consecutive reactions with gamma-glutamylcysteine and glutathione synthetase. Changes in ophthalmate level in mouse serum and liver extracts were closely correlated and ophthalmate levels increased significantly in conjunction with glutathione consumption. Overall, our results provide a broad picture of hepatic metabolite changes following acetaminophen treatment. In addition, we specifically found that serum ophthalmate is a sensitive indicator of hepatic GSH depletion, and may be a new biomarker for oxidative stress. Our method can thus pinpoint specific metabolite changes and provide insights into the perturbation of metabolic pathways on a large scale and serve as a powerful new tool for discovering low molecular weight biomarkers.
Collapse
Affiliation(s)
- Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ming Z, Fan YJ, Yang X, Lautt WW. Synergistic protection by S-adenosylmethionine with vitamins C and E on liver injury induced by thioacetamide in rats. Free Radic Biol Med 2006; 40:617-24. [PMID: 16458192 PMCID: PMC2925887 DOI: 10.1016/j.freeradbiomed.2005.09.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 08/18/2005] [Accepted: 09/12/2005] [Indexed: 01/19/2023]
Abstract
Free radicals are involved in the pathogenesis of acute liver injury induced by thioacetamide (TAA). We investigated the effects of S-adenosylmethionine (SAMe) combined with/without vitamins C and E on TAA-induced acute liver injury in rats. TAA was given intraperitoneally (200 mg kg-1). Antioxidant treatments (SAMe, 25 mg kg-1; vitamin C, 100 mg kg-1; vitamin E, 200 mg kg-1, intraperitoneal) were given 1 h later. Liver histology, enzymology, and ability to release hepatic insulin-sensitizing substance (HISS) were assessed. TAA caused liver tissue injury, increased liver enzymes, and decreased insulin sensitivity (p<0.01). Blockade of HISS release by atropine did not further decrease insulin sensitivity in rats with TAA insult, indicating that the decrease in insulin sensitivity was HISS dependent. Treatment with SAMe alone or vitamins C+E slightly improved liver histology but not the changes in liver enzymes and insulin sensitivity. Combined treatment with SAMe plus vitamins C+E greatly protected the liver from tissue injury, the increase in liver enzymes, and the decrease in insulin sensitivity. In conclusion, acute liver injury causes HISS-dependent insulin resistance (HDIR). There are synergistic antioxidative effects among the antioxidants, SAMe and vitamins C and E, that protect the liver from TAA-induced HDIR, suggesting that antioxidant treatment may best be done using a balanced "cocktail."
Collapse
Affiliation(s)
- Zhi Ming
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, A210–753, McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0T6
| | - Yi-jun Fan
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0W3
| | - Xi Yang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0W3
| | - W. Wayne Lautt
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, A210–753, McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0T6
- Corresponding author. Fax: +1 204 975 7784. (W.W. Lautt)
| |
Collapse
|
25
|
Lotková H, Cervinková Z, Kucera O, Kriváková P, Kand'ár R. Protective effect of S-adenosylmethionine on cellular and mitochondrial membranes of rat hepatocytes against tert-butylhydroperoxide-induced injury in primary culture. Chem Biol Interact 2005; 156:13-23. [PMID: 16098496 DOI: 10.1016/j.cbi.2005.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 05/24/2005] [Accepted: 06/03/2005] [Indexed: 10/25/2022]
Abstract
Accumulating evidence that administration of S-adenosylmethionine (SAMe) protects hepatocytes against oxidative stress-mediated injury led us to evaluate the effect of SAMe on hepatocyte injury induced in culture by oxidant substance tert-butylhydroperoxide (1.5 mM tBHP) with regard to prevent mitochondrial injury. The pretreatment of hepatocyte culture with SAMe in doses of 0.25, 0.5, 1, 2.5, 5, 10, 25 and 50 mg/l for 30 min prevented the release of LDH from cells incubated for 30 min with tBHP in a dose dependent manner. The inhibitory effect of SAMe on lipid peroxidation paralleled the effect on cell viability. SAMe also moderated the decrease of the mitochondrial membrane potential induced by tBHP. Our results indicate that the inhibition of lipid peroxidation by SAMe can contribute to the prevention of disruption of both cellular and mitochondrial membranes. While the protective effect of SAMe against tBHP-induced GSH depletion was not confirmed, probably the most potent effect of SAMe on membranes by phospholipid methylation should be verified.
Collapse
Affiliation(s)
- Halka Lotková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Simkova 870, 500 38 Hradec Králové, Czech Republic.
| | | | | | | | | |
Collapse
|
26
|
Moon KH, Kim BJ, Song BJ. Inhibition of mitochondrial aldehyde dehydrogenase by nitric oxide-mediated S-nitrosylation. FEBS Lett 2005; 579:6115-20. [PMID: 16242127 PMCID: PMC1350915 DOI: 10.1016/j.febslet.2005.09.082] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 09/22/2005] [Indexed: 12/24/2022]
Abstract
Mitochondrial aldehyde dehydrogenase (ALDH2) is responsible for the metabolism of acetaldehyde and other toxic lipid aldehydes. Despite many reports about the inhibition of ALDH2 by toxic chemicals, it is unknown whether nitric oxide (NO) can alter the ALDH2 activity in intact cells or in vivo animals. The aim of this study was to investigate the effects of NO on ALDH2 activity in H4IIE-C3 rat hepatoma cells. NO donors such as S-nitrosoglutathione (GSNO), S-nitroso-N-acetylpenicillamine, and 3-morpholinosydnonimine significantly increased the nitrite concentration while they inhibited the ALDH2 activity. Addition of GSH-ethylester (GSH-EE) completely blocked the GSNO-mediated ALDH2 inhibition and increased nitrite concentration. To directly demonstrate the NO-mediated S-nitrosylation and inactivation, ALDH2 was immunopurified from control or GSNO-treated cells and subjected to immunoblot analysis. The anti-nitrosocysteine antibody recognized the immunopurified ALDH2 only from the GSNO-treated samples. All these results indicate that S-nitrosylation of ALDH2 in intact cells leads to reversible inhibition of ALDH2 activity.
Collapse
Affiliation(s)
| | | | - Byoung J. Song
- Corresponding author. Fax: +1 301 594 3113., E-mail address: (B.J. Song)
| |
Collapse
|
27
|
Ebrahimkhani MR, Sadeghipour H, Dehghani M, Kiani S, Payabvash S, Riazi K, Honar H, Pasalar P, Mirazi N, Amanlou M, Farsam H, Dehpour AR. Homocysteine alterations in experimental cholestasis and its subsequent cirrhosis. Life Sci 2005; 76:2497-512. [PMID: 15763080 DOI: 10.1016/j.lfs.2004.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 12/28/2004] [Indexed: 10/25/2022]
Abstract
Homocysteine (Hcy), an intermediate in methionine metabolism, has been proposed to be involved in hepatic fibrogenesis. Impaired liver function can alter Hcy metabolism. The aim of the present study was to determine plasma Hcy alterations in acute obstructive cholestasis and the subsequent biliary cirrhosis. Cholestasis was induced by bile duct ligation and sham-operated and unoperated rats were used as controls. The animals were studied on the days 7th, 14th, 21st and 28th after the operation. Plasma Hcy, cysteine, methionine, nitric oxide (NO) and liver S-adenosyl-methionine (SAM), S-adenosyl-homocysteine (SAH), SAM to SAH ratio and glutathione were measured. Chronic L-NAME treatment was also included in the study. Plasma Hcy concentrations were transiently elevated by the day 14th after bile duct ligation (P < 0.01) and subsequently returned to control levels. Similar relative fluctuations in plasma Hcy were observed in BDL rats after intraperitoneal methionine overload. Plasma methionine, cysteine and nitrite and nitrate were significantly increased after bile duct ligation. SAM to SAH ratio was diminished by the 1st week of cholestasis and remained significantly decreased throughout the study. These events were accompanied by a decrease in GSH to GSSG ratio in the liver. Chronic L-NAME treatment improved SAM to SAH ratio and prevented the elevation of plasma Hcy and methionine (P < 0.05) while couldn't influence the other parameters. In conclusion, this study demonstrates alterations in plasma Hcy and liver SAM and SAH contents in precirrhotic stages and in secondary biliary cirrhosis, for the first time. In addition, we observed that plasma Hcy concentrations in BDL rats follow a distinct pattern of alteration from what has been previously reported in other models of cirrhosis. NO overproduction may contribute to plasma Hcy elevation and liver SAM depletion after cholestasis.
Collapse
Affiliation(s)
- Mohammad R Ebrahimkhani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Vázquez-Gil MJ, Mesonero MJ, Flores O, Criado M, Hidalgo F, Arévalo MA, Sánchez-Rodríguez A, Tuñón MJ, López-Novoa JM, Esteller A. Sequential changes in redox status and nitric oxide synthases expression in the liver after bile duct ligation. Life Sci 2004; 75:717-32. [PMID: 15172180 DOI: 10.1016/j.lfs.2004.01.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Accepted: 01/28/2004] [Indexed: 11/25/2022]
Abstract
Bile duct ligation (BDL) in rats induces portal fibrosis. This process has been linked to changes in the oxidative state of the hepatic cells and in the production of nitric oxide. Our objective was to find possible temporal connections between hepatic redox state, NO synthesis and liver injury. In this work we have characterized hepatic lesions 17 and 31 days after BDL and determined changes in hepatic function, oxidative state, and NO production. We have also analyzed the expression and localization of inducible NO synthase (NOS2) and constitutive NO synthase (NOS3). After 17 and 31 days from ligature, lipid peroxidation is increased and both plasma concentration and biliary excretion of nitrite+nitrate are rised. 17 days after BDL both NOS2 and NOS3 are expressed intensely and in the same regions. 31 days after BDL, the expression of NOS2 remains elevated and is localized mostly in preserved hepatocytes in portal areas and in neighborhoods of centrolobulillar vein. NOS3 is localized in vascular regions of portal spaces and centrolobulillar veins and in preserved sinusoids and although its expression is greater than in control animals (34%), it is clearly lower (50%) than 17 days after BDL. The time after BDL is crucial in the study of NO production, intrahepatic localization of NOS isoforms expression, and cell type involved, since all these parameters change with time. BDL-induced, peroxidation and fibrosis are not ligated by a cause-effect relationship, but rather they both seem to be the consequence of common inductors.
Collapse
Affiliation(s)
- M José Vázquez-Gil
- Departamento de Fisiología y Farmacología, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca, 7007 Salamanca, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Liver damage ranges from acute hepatitis to hepatocellular carcinoma, through apoptosis, necrosis, inflammation, immune response, fibrosis, ischemia, altered gene expression and regeneration, all processes that involve hepatocyte, Kupffer, stellate, and endothelial cells. Reactive oxygen and nitrogen species (ROS, RNS) play a crucial role in the induction and in the progression of liver disease, independently from its etiology. They are involved in the transcription and activation of a large series of cytokines and growth factors that, in turn, can contribute to further production of ROS and RNS. The main sources of free radicals are represented by hepatocyte mitochondria and cytochrome p450 enzymes, by endotoxin-activated macrophages (Kupffer cells), and by neutrophils. The consequent alteration of cellular redox state is potentiated by the correlated decrease of antioxidant and energetic reserves. Indices of free radical-mediated damage, such as the increase of malondialdehyde, 4-hydroxynonenal, protein-adducts, peroxynitrite, nitrotyrosine, etc., and/or decrease of glutathione, vitamin E, vitamin C, selenium, etc., have been documented in patients with viral or alcoholic liver disease. These markers may contribute to the monitoring the degree of liver damage, the response to antiviral therapies and to the design of new therapeutic strategies. In fact, increasing attention is now paid to a possible "redox gene therapy." By enhancing the antioxidant ability of hepatocytes, through transgene vectors, one could counteract oxidative/nitrosative stress and, in this way, contribute to blocking the progression of liver disease.
Collapse
Affiliation(s)
- Carmela Loguercio
- Gastroenterology School, 2nd University of Naples, and Inter-University Research Center of Alimentary Intake, Nutrition and Digestive Tract (CIRANAD), Naples, Italy.
| | | |
Collapse
|
30
|
Martínez-Chantar ML, García-Trevijano ER, Latasa MU, Pérez-Mato I, Sánchez del Pino MM, Corrales FJ, Avila MA, Mato JM. Importance of a deficiency in S-adenosyl-l-methionine synthesis in the pathogenesis of liver injury. Am J Clin Nutr 2002. [DOI: 10.1093/ajcn/76.5.1177s] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
31
|
Bottiglieri T. S-Adenosyl-l-methionine (SAMe): from the bench to the bedside—molecular basis of a pleiotrophic molecule. Am J Clin Nutr 2002. [DOI: 10.1093/ajcn/76.5.1151s] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Corrales FJ, Pérez-Mato I, Sánchez Del Pino MM, Ruiz F, Castro C, García-Trevijano ER, Latasa U, Martínez-Chantar ML, Martínez-Cruz A, Avila MA, Mato JM. Regulation of mammalian liver methionine adenosyltransferase. J Nutr 2002; 132:2377S-2381S. [PMID: 12163696 DOI: 10.1093/jn/132.8.2377s] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
S-adenosylmethionine (SAM) is an essential metabolite in all cells. SAM is the most important biological methyl group donor and is a precursor in the synthesis of polyamines. Methionine adenosyltransferase (MAT; EC 2.5.1.6) catalyzes the only known SAM biosynthetic reaction from methionine and ATP. In mammalian tissues, three different forms of MAT (MAT I, MAT III and MAT II) have been identified that are the product of two different genes (MAT1A and MAT2A). Although MAT2A is expressed in all mammalian tissues, the expression of MAT1A is primarily restricted to adult liver. In mammals, up to 85% of all methylation reactions and as much as 48% of methionine metabolism occurs in the liver, which indicates the important role of this organ in the regulation of blood methionine. Recent evidence indicates that not only is SAM the main biological methyl group donor and an intermediate metabolite in methionine catabolism, but it is also an intracellular control switch that regulates essential hepatic functions such as liver regeneration and differentiation as well as the sensitivity of this organ to injury. Therefore, knowledge of factors that regulate the activity of MAT I/III, the specific liver enzyme, is essential to understand how cellular SAM levels are controlled.
Collapse
Affiliation(s)
- Fernando J Corrales
- Division of Hepatology and Gene Therapy, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Avila MA, García-Trevijano ER, Martínez-Chantar ML, Latasa MU, Pérez-Mato I, Martínez-Cruz LA, del Pino MM, Corrales FJ, Mato JM. S-Adenosylmethionine revisited: its essential role in the regulation of liver function. Alcohol 2002; 27:163-7. [PMID: 12163144 DOI: 10.1016/s0741-8329(02)00228-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dietary methionine is mainly metabolized in the liver where it is converted into S-adenosylmethionine (AdoMet), the main biologic methyl donor. This reaction is catalyzed by methionine adenosyltransferase I/III (MAT I/III), the product of MAT1A gene, which is exclusively expressed in this organ. It was first observed that serum methionine levels were elevated in experimental models of liver damage and in liver cirrhosis in human beings. Results of further studies showed that this pathological alteration was due to reduced MAT1A gene expression and MAT I/III enzyme inactivation associated with liver injury. Synthesis of AdoMet is essential to all cells in the organism, but it is in the liver where most of the methylation reactions take place. The central role played by AdoMet in cellular function, together with the observation that AdoMet administration reduces liver damage caused by different agents and improves survival of alcohol-dependent patients with cirrhosis, led us to propose that alterations in methionine metabolism could play a role in the onset of liver disease and not just be a consequence of it. In the present work, we review the recent findings that support this hypothesis and highlight the mechanisms behind the hepatoprotective role of AdoMet.
Collapse
Affiliation(s)
- Matiías A Avila
- Division of Hepatology and Gene Therapy, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mato JM, Corrales FJ, Lu SC, Avila MA. S-Adenosylmethionine: a control switch that regulates liver function. FASEB J 2002; 16:15-26. [PMID: 11772932 DOI: 10.1096/fj.01-0401rev] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genome sequence analysis reveals that all organisms synthesize S-adenosylmethionine (AdoMet) and that a large fraction of all genes is AdoMet-dependent methyltransferases. AdoMet-dependent methylation has been shown to be central to many biological processes. Up to 85% of all methylation reactions and as much as 48% of methionine metabolism occur in the liver, which indicates the crucial importance of this organ in the regulation of blood methionine. Of the two mammalian genes (MAT1A, MAT2A) that encode methionine adenosyltransferase (MAT, the enzyme that makes AdoMet), MAT1A is specifically expressed in adult liver. It now appears that growth factors, cytokines, and hormones regulate liver MAT mRNA levels and enzyme activity and that AdoMet should not be viewed only as an intermediate metabolite in methionine catabolism, but also as an intracellular control switch that regulates essential hepatic functions such as regeneration, differentiation, and the sensitivity of this organ to injury. The aim of this review is to integrate these recent findings linking AdoMet with liver growth, differentiation, and injury into a comprehensive model. With the availability of AdoMet as a nutritional supplement and evidence of its beneficial role in various liver diseases, this review offers insight into its mechanism of action.
Collapse
Affiliation(s)
- Jose M Mato
- Division of Hepatology and Gene Therapy, School of Medicine, University of Navarra, 31008 Pamplona, Spain.
| | | | | | | |
Collapse
|