1
|
Sun W, Wang J, Liu C, Gao F, Ou Q, Tian H, Xu J, Zhang J, Li J, Xu J, Jia S, Zhang J, Xu G, Huang J, Jin C, Lu L. SUMOylation of GMFB regulates its stability and function in retinal pigment epithelial cells under hyperglycemia. Int J Biol Macromol 2024; 268:131678. [PMID: 38657921 DOI: 10.1016/j.ijbiomac.2024.131678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Glia maturation factor beta (GMFB) is a growth and differentiation factor that acts as an intracellular regulator of signal transduction pathways. The small ubiquitin-related modifier (SUMO) modification, SUMOylation, is a posttranslational modification (PTM) that plays a key role in protein subcellular localization, stability, transcription, and enzymatic activity. Recent studies have highlighted the importance of SUMOylation in the inflammation and progression of numerous diseases. However, the relationship between GMFB and SUMOylation is unclear. RESULTS Here, we report for the first time that GMFB and SUMO1 are markedly increased in retinal pigment epithelial (RPE) cells at the early stage of diabetes mellitus (DM) under hyperglycemia. The GMFΒ protein could be mono-SUMOylated by SUMO1 at the K20, K35, K58 or K97 sites. SUMOylation of GMFB led to its increased protein stability and subcellular translocation. Furthermore, deSUMOylation of GMFΒ downregulates multiple signaling pathways, including the Jak-STAT signaling pathway, p38 pathway and NF-kappa B signaling pathway. CONCLUSIONS This work provides novel insight into the role of SUMOylated GMFB in RPE cells and provides a novel therapeutic target for diabetic retinopathy (DR).
Collapse
Affiliation(s)
- Wan Sun
- Department of Ophthalmology of Shanghai Tongji Hospital and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University, Shanghai 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200065, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tongji Hospital and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University, Shanghai 200065, China; Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200065, China
| | - Caiying Liu
- Department of Ophthalmology of Shanghai Tongji Hospital and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University, Shanghai 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200065, China
| | - Furong Gao
- Department of Ophthalmology of Shanghai Tongji Hospital and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University, Shanghai 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200065, China
| | - Qingjian Ou
- Department of Ophthalmology of Shanghai Tongji Hospital and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University, Shanghai 200065, China; Department of Pharmacology, School of Medicine, Tongji University, Shanghai 200065, China
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tongji Hospital and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University, Shanghai 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jingying Xu
- Department of Ophthalmology of Shanghai Tongji Hospital and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University, Shanghai 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tongji Hospital and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University, Shanghai 200065, China; Department of Pharmacology, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jiao Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jie Xu
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200065, China
| | - Song Jia
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - GuoTong Xu
- Department of Ophthalmology of Shanghai Tongji Hospital and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University, Shanghai 200065, China; Department of Pharmacology, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Caixia Jin
- Department of Ophthalmology of Shanghai Tongji Hospital and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University, Shanghai 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tongji Hospital and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University, Shanghai 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200065, China.
| |
Collapse
|
2
|
Zhu T, Li Y, Zhu L, Xu J, Feng Z, Chen H, Shi S, Liu C, Ou Q, Gao F, Zhang J, Jin C, Xu J, Li J, Zhang J, Bi Y, Xu GT, Wang J, Tian H, Lu L. GMFB/AKT/TGF-β3 in Müller cells mediated early retinal degeneration in a streptozotocin-induced rat diabetes model. Glia 2024; 72:504-528. [PMID: 37904673 DOI: 10.1002/glia.24486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/14/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023]
Abstract
Retinal degeneration, characterized by Müller cell gliosis and photoreceptor apoptosis, is considered an early event in diabetic retinopathy (DR). Our previous study proposed that GMFB may mediate diabetic retinal degeneration. This study identified GMFB as a sensitive and functional gliosis marker for DR. Compared to the wild type (WT) group, Gmfb knockout (KO) significantly improved visual function, attenuated gliosis, reduced the apoptosis of neurons, and decreased the mRNA levels of tumor necrosis factor α (Tnf-α) and interleukin-1β (Il-1β) in diabetic retinas. Tgf-β3 was enriched by hub genes using RNA sequencing in primary WT and KO Müller cells. Gmfb KO significantly upregulated the transforming growth factor (TGF)-β3 protein level via the AKT pathway. The protective effect of TGF-β3 in the vitreous resulted in significantly improved visual function and decreased the number of apoptotic cells in the diabetic retina. The protection of Gmfb KO in primary Müller cells against high glucose (HG)-induced photoreceptor apoptosis was partially counteracted by TGF-β3 antibody and administration of TGFBR1/2 inhibitors. Nuclear receptor subfamily 3 group C member 1 (NR3C1) binds to the promoter region of Gmfb and regulates Gmfb mRNA at the transcriptional level. NR3C1 was increased in the retinas of early diabetic rats but decreased in the retinas of late diabetic rats. N'-[(1E)-(3-Methoxyphenyl)Methylene]-3-Methyl-1H-Pyrazole-5-Carbohydrazide (DS-5) was identified as an inhibitor of GMFB, having a protective role in DR. We demonstrated that GMFB/AKT/TGF-β3 mediated early diabetic retinal degeneration in diabetic rats. This study provides a novel therapeutic strategy for treating retinal degeneration in patients with DR.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Yingao Li
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Lilin Zhu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jinyuan Xu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Zijun Feng
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Hao Chen
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Si Shi
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Caiying Liu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Furong Gao
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Caixia Jin
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jingying Xu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jiao Li
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology of Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yanlong Bi
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Human Genetics, Tongji University School of Medicine, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Liu C, Sun W, Zhu T, Shi S, Zhang J, Wang J, Gao F, Ou Q, Jin C, Li J, Xu JY, Zhang J, Tian H, Xu GT, Lu L. Glia maturation factor-β induces ferroptosis by impairing chaperone-mediated autophagic degradation of ACSL4 in early diabetic retinopathy. Redox Biol 2022; 52:102292. [PMID: 35325805 PMCID: PMC8942824 DOI: 10.1016/j.redox.2022.102292] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 12/27/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the leading causes of blindness in the world, and timely prevention and treatment are very important. Previously, we found that a neurodegenerative factor, Glia maturation factor-β (GMFB), was upregulated in the vitreous at a very early stage of diabetes, which may play an important role in pathogenesis. Here, we found that in a high glucose environment, large amounts of GMFB protein can be secreted in the vitreous, which translocates the ATPase ATP6V1A from the lysosome, preventing its assembly and alkalinizing the lysosome in the retinal pigment epithelial (RPE) cells. ACSL4 protein can be recognized by HSC70, the receptor for chaperone-mediated autophagy, and finally digested in the lysosome. Abnormalities in the autophagy–lysosome degradation process lead to its accumulation, which catalyzes the production of lethal lipid species and finally induces ferroptosis in RPE cells. GMFB antibody, lysosome activator NKH477, CMA activator QX77, and ferroptosis inhibitor Liproxstatin-1 were all effective in preventing early diabetic retinopathy and maintaining normal visual function, which has powerful clinical application value. Our research broadens the understanding of the relationship between autophagy and ferroptosis and provides a new therapeutic target for the treatment of DR. Glia maturation factor-β (GMFB) was upregulated in the vitreous at a very early stage of diabetes. Extracellular GMFB can induce ferroptosis and lysosome dysfunction in retinal RPE cells. ACSL4 protein can be degraded through chaperone-mediated autophagy (CMA), and finally digested in the lysosome. Lysosome dysfunction leads to the accumulation of ACSL4, which induces ferroptosis in RPE cells.
Collapse
|
4
|
Yuan Z, Yu Z, Zhang Y, Yang H. Analysis of the Clinical Diagnostic Value of GMFB in Cerebral Infarction. Curr Pharm Biotechnol 2020; 21:955-963. [PMID: 32039676 DOI: 10.2174/1389201021666200210102425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/12/2019] [Accepted: 01/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glial Maturation Factor Beta (GMFB) is a highly conserved brain-enriched protein implicated in immunoregulation, neuroplasticity and apoptosis, processes central to neural injury and repair following cerebral ischaemia. Therefore, we examined if changes in neurocellular GMFB expression and release can be used to assess brain injury following ischaemia. METHODS AND RESULTS Immunofluorescence staining, Western blotting, immunohistochemistry and ELISA were used to measure GMFB in cultured neurons and astrocytes, rat brain tissues and plasma samples from stroke model rats and stroke patients, while cell viability assays, TTC staining and micro- PET were used to assess neural cell death and infarct severity. Immunofluorescence and immunohistochemistry revealed GMFB expression mainly in astrocyte and neuronal nuclei but also in neuronal axons and dendrites. Free GMFB concentration increased progressively in the culture medium during hypoxia-hypoglycaemia treatment. Plasma GMFB concentration increased in rats subjected to middle cerebral artery occlusion (MCAO, a model of stroke-reperfusion) and in stroke patients. Plasma GMFB in MCAO model rats was strongly correlated with infarct size (R2=0.9582). Plasma GMFB concentration was also markedly elevated in stroke patients within 24 h of onset and remained elevated for more than one week. Conversely, plasma GMFB elevations were not significant in myocardial infarct patients and stroke patients without infarction. CONCLUSION GMFB has the prerequisite stability, expression specificity and response dynamics to serve as a reliable indicator of ischaemic injury in animal models and stroke patients. Plasma GMFB may be a convenient non-invasive adjunct to neuroimaging for stroke diagnosis and prognosis.
Collapse
Affiliation(s)
- Zhaohu Yuan
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong, China
| | - Zhiwu Yu
- Division of Laboratory Science, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, China
| | - Yiyu Zhang
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong, China
| | - Huikuan Yang
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong, China
| |
Collapse
|
5
|
Fan J, Fong T, Chen X, Chen C, Luo P, Xie H. Glia maturation factor-β: a potential therapeutic target in neurodegeneration and neuroinflammation. Neuropsychiatr Dis Treat 2018; 14:495-504. [PMID: 29445286 PMCID: PMC5810533 DOI: 10.2147/ndt.s157099] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glia maturation factor-β (GMFB) is considered to be a growth and differentiation factor for both glia and neurons. GMFB has been found to be upregulated in several neuroinflammation and neurodegeneration conditions. It may function by mediating apoptosis and by modulating the expression of superoxide dismutase, granulocyte-macrophage colony-stimulating factor, and neurotrophin. In this review, we mainly discussed the role of GMFB in several neuroinflammatory and neurodegenerative diseases. On review of the literature, we propose that GMFB may be a promising therapeutic target for neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Junsheng Fan
- Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Tszhei Fong
- Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xinjie Chen
- Second School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuyun Chen
- Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Peng Luo
- Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Haiting Xie
- Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
de Iriarte Rodríguez R, Magariños M, Pfeiffer V, Rapp UR, Varela-Nieto I. C-Raf deficiency leads to hearing loss and increased noise susceptibility. Cell Mol Life Sci 2015; 72:3983-98. [PMID: 25975225 PMCID: PMC4575698 DOI: 10.1007/s00018-015-1919-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022]
Abstract
The family of RAF kinases transduces extracellular information to the nucleus, and their activation is crucial for cellular regulation on many levels, ranging from embryonic development to carcinogenesis. B-RAF and C-RAF modulate neurogenesis and neuritogenesis during chicken inner ear development. C-RAF deficiency in humans is associated with deafness in the rare genetic insulin-like growth factor 1 (IGF-1), Noonan and Leopard syndromes. In this study, we show that RAF kinases are expressed in the developing inner ear and in adult mouse cochlea. A homozygous C-Raf deletion in mice caused profound deafness with no evident cellular aberrations except for a remarkable reduction of the K+ channel Kir4.1 expression, a trait that suffices as a cause of deafness. To explore the role of C-Raf in cellular protection and repair, heterozygous C-Raf+/− mice were exposed to noise. A reduced C-RAF level negatively affected hearing preservation in response to noise through mechanisms involving the activation of JNK and an exacerbated apoptotic response. Taken together, these results strongly support a role for C-RAF in hearing protection.
Collapse
Affiliation(s)
- Rocío de Iriarte Rodríguez
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029, Madrid, Spain.,Centre for Biomedical Network Research (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Marta Magariños
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029, Madrid, Spain. .,Centre for Biomedical Network Research (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain. .,Departamento de Biología, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain.
| | - Verena Pfeiffer
- Institute for Medical Radiation and Cell Research (MSZ), University of Würzburg, Versbacher Strasse 5, 97078, Würzburg, Germany.,Institute for Anatomy and Cell Biology, University of Würzburg, Koellikerstraße 6, 97070, Würzburg, Germany
| | - Ulf R Rapp
- Institute for Medical Radiation and Cell Research (MSZ), University of Würzburg, Versbacher Strasse 5, 97078, Würzburg, Germany.,Molecular Mechanisms of Lung Cancer, Max Planck Institute for Heart and Lung Research, Parkstr. 1, 61231, Bad Nauheim, Germany
| | - Isabel Varela-Nieto
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029, Madrid, Spain.,Centre for Biomedical Network Research (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| |
Collapse
|
7
|
|
8
|
Zuo P, Fu Z, Tao T, Ye F, Chen L, Wang X, Lu W, Xie X. The expression of glia maturation factors and the effect of glia maturation factor-γ on angiogenic sprouting in zebrafish. Exp Cell Res 2013; 319:707-17. [PMID: 23333559 DOI: 10.1016/j.yexcr.2013.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/16/2012] [Accepted: 01/07/2013] [Indexed: 11/15/2022]
Abstract
Angiogenesis is a vital process for proper embryonic development, wound healing, malignant tumor growth and metastasis. Two glia maturation factor genes, glia maturation factor-β (GMFB) and glia maturation factor-γ (GMFG), presenting different expression patterns and distinct biological functions are found in vertebrates. But, the role of GMFB and GMFG in vascular development remains largely unknown. Here, we showed that both GMFB and GMFG are highly conserved in vertebrates. Whole-mount in situ hybridization and quantitative RT-PCR results revealed that GMFB and GMFG were differently expressed during zebrafish embryogenesis. GMFB was highly enriched in brain and GMFG was predominantly expressed in endothelial cells. By gene specific MO, knockdown of GMFG, but not GMFB, severely disrupted angiogenic sprouting of intersegmental vessels (ISVs), but this angiogenic defects were prevented by overexpression of a MO-resistant form of zebrafish GMFG mRNA. In addition, the expressions of angiogenic factors VEGF-A, STAT3, MMP2, MMP9, and MMP13 were significantly decreased in endothelial cells of GMFG morphants. Our findings provide the first in vivo evidence that GMFG is an important regulator for angiogenic sprouting during angiogenesis in zebrafish and suggest that GMFG may act as a novel potential target for anti-angiogenesis therapy in clinical settings.
Collapse
Affiliation(s)
- Peng Zuo
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Li YL, Ye F, Cheng XD, Hu Y, Zhou CY, LÜ WG, Xie X. Identification of glia maturation factor beta as an independent prognostic predictor for serous ovarian cancer. Eur J Cancer 2010; 46:2104-18. [DOI: 10.1016/j.ejca.2010.04.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/06/2010] [Accepted: 04/19/2010] [Indexed: 12/15/2022]
|
10
|
Zaheer A, Zaheer S, Sahu SK, Knight S, Khosravi H, Mathur SN, Lim R. A novel role of glia maturation factor: induction of granulocyte-macrophage colony-stimulating factor and pro-inflammatory cytokines. J Neurochem 2007; 101:364-76. [PMID: 17250654 DOI: 10.1111/j.1471-4159.2006.04385.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The glia maturation factor (GMF), which was discovered in our laboratory, is a highly conserved protein predominantly localized in astrocytes. GMF is an intracellular regulator of stress-related signal transduction. We now report that the overexpression of GMF in astrocytes leads to the destruction of primary oligodendrocytes by interactions between highly purified cultures of astrocytes, microglia, and oligodendrocytes. We infected astrocytes with a replication-defective adenovirus carrying the GMF cDNA. The overexpression of GMF caused the activation of p38 MAP kinase and transcription factor NF-kappaB, as well as the induction of granulocyte-macrophage colony-stimulating factor (GM-CSF) mRNA and protein in astrocytes. Small interfering RNA-mediated GMF knockdown completely blocked the GMF-dependent activation of p38 mitogen-activated protein kinase (MAPK), NF-kappaB, and enhanced expression of GM-CSF by astrocytes. Inhibition of p38 MAPK or NF-kappaB by specific inhibitors prevented GM-CSF production. The cell-free conditioned medium from overexpressing GMF astrocytes contained 320 +/- 33 pg/mL of GM-CSF, which was responsible for enhanced production and secretion of TNF-alpha, IL-1beta, IL-6, and IP-10 by microglia. Presence of these inflammatory cytokines in the conditioned medium from microglia efficiently destroyed oligodendrocytes in culture. These results suggest that GMF-induced production of GM-CSF in astrocytes is depending on p38 MAPK and NF-kappaB activation. The GM-CSF-dependent expression and secretion of inflammatory cytokine/chemokine, TNF-alpha, IL-1beta, IL-6, and IP-10, is cytotoxic to oligodendrocytes, the myelin-forming cells in the central nervous system, and as well as neurons. Our results suggest a novel pathway of GMF-initiated cytotoxicity of brain cells, and implicate its involvement in inflammatory diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Asgar Zaheer
- Veterans Affair Medical Center, Iowa City, Iowa, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Zaheer A, Zaheer S, Sahu SK, Yang B, Lim R. Reduced severity of experimental autoimmune encephalomyelitis in GMF-deficient mice. Neurochem Res 2006; 32:39-47. [PMID: 17151915 DOI: 10.1007/s11064-006-9220-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 11/03/2006] [Indexed: 11/26/2022]
Abstract
Glia maturation factor (GMF), a highly conserved brain-specific protein, isolated, sequenced and cloned in our laboratory. Overexpression of GMF in astrocytes induces the production and secretion of granulocyte-macrophage-colony stimulating factor (GM-CSF), and subsequent immune activation of microglia, expression of several proinflammatory genes including major histocompatibility complex proteins, IL-1beta, and MIP-1beta, all associated with the development of experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. Based on GMF's ability to activate microglia and induce well-established proinflammatory mediators, including GM-CSF, we hypothesize that GMF is involved in the pathogenesis of inflammatory disease EAE. In this present investigation, using GMF-deficient mice, we study the role of GMF and how the lack of GMF affects the EAE disease. Our results show a significant decrease in incidence, delay in onset, and reduced severity of EAE in GMF-deficient mice, and support the hypothesis that GMF plays a major role in the pathogenesis of disease.
Collapse
Affiliation(s)
- Asgar Zaheer
- Veterans Affair Medical Center, Iowa City, IA, USA.
| | | | | | | | | |
Collapse
|
12
|
Liedtke T, Naskar R, Eisenacher M, Thanos S. Transformation of adult retina from the regenerative to the axonogenesis state activates specific genes in various subsets of neurons and glial cells. Glia 2006; 55:189-201. [PMID: 17078023 DOI: 10.1002/glia.20447] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to identify the gene expression profile of the regenerating retina in vitro. To achieve this goal, three experimental groups were studied: (1) an injury control group (OC-LI group) that underwent open crush (OC) of the optic nerve and lens injury (LI) in vivo; (2) an experimental group (OC-LI-R group) that comprised animals treated like those in the OC-LI group except that retinal axons were allowed to regenerate (R) in vitro; and (3) an experimental group (OC-LI-NR group) that comprised animals treated as those in the OC-LI group, except that the retinas were cultured in vitro with the retinal ganglion cell (RGC) layer facing upwards to prevent axonal regeneration (NR). Gene expression in each treatment group was compared to that of untreated controls. Immunohistochemistry was used to examine whether expression of differentially regulated genes also occurred at the protein level and to localize these proteins to the respective retinal cells. Genes that were regulated belonged to different functional categories such as antioxidants, antiapoptotic molecules, transcription factors, secreted signaling molecules, inflammation-related genes, and others. Comparison of changes in gene expression among the various treatment groups revealed a relatively small cohort of genes that was expressed in different subsets of cells only in the OC-LI-R group; these genes can be considered to be regeneration-specific. Our findings demonstrate that axonal regeneration of RGC involves an orchestrated response of all retinal neurons and glia, and could provide a platform for the development of therapeutic strategies for the regeneration of injured ganglion cells.
Collapse
Affiliation(s)
- Thomas Liedtke
- Department of Experimental Ophthalmology, University Eye Hospital Münster Domagkstrasse, Muenster, Germany
| | | | | | | |
Collapse
|
13
|
Yamazaki H, Tateyama H, Asai K, Fukai I, Fujii Y, Tada T, Eimoto T. Glia maturation factor-beta is produced by thymoma and may promote intratumoral T-cell differentiation. Histopathology 2005; 47:292-302. [PMID: 16115230 DOI: 10.1111/j.1365-2559.2005.02224.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS To investigate whether Glia maturation factor-beta (GMFB) is expressed in thymomas and is associated with T-cell development. METHODS AND RESULTS We investigated the expression of GMFB by immunohistochemistry in 86 cases of thymoma classified into five type A, 35 type AB, 11 type B1, 26 type B2, and nine type B3 thymomas according to the World Health Organization classification system. Immunoblotting and in situ hybridization (ISH) studies were also performed in selected cases. The results of the immunoblot analysis were in accordance with those of immunohistochemical scoring. The ISH study ascertained the tumour cells producing the protein. Immunohistochemically, GMFB expression was observed in one (20%) of type A, 32 (80%) of type AB, all (100%) of type B1 and B2, and eight (89%) of type B3 thymoma with statistically significant differences between type A and type AB, type B1, or type B2 thymoma, and between type B3 and type AB or type B2 thymoma. There was a significant correlation between GMFB expression and the amount of accompanying non-neoplastic T cells. GMFB promoted T-cell differentiation into CD4-/CD8+ cells when analysed by two-colour flow cytometry. CONCLUSIONS The present study suggests that T-cell development in thymoma may be maintained partly by GMFB produced by the tumour cells.
Collapse
Affiliation(s)
- H Yamazaki
- Department of Pathology, Nagoya University Medical School, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Walker MG. Gene expression versus sequence for predicting function: Glia Maturation Factor gamma is not a glia maturation factor. GENOMICS PROTEOMICS & BIOINFORMATICS 2005; 1:52-7. [PMID: 15626333 PMCID: PMC5172355 DOI: 10.1016/s1672-0229(03)01007-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is standard practice, whenever a researcher finds a new gene, to search databases for genes that have a similar sequence. It is not standard practice, whenever a researcher finds a new gene, to search for genes that have similar expression (co-expression). Failure to perform co-expression searches has lead to incorrect conclusions about the likely function of new genes, and has lead to wasted laboratory attempts to confirm functions incorrectly predicted. We present here the example of Glia Maturation Factor gamma (GMF-gamma). Despite its name, it has not been shown to participate in glia maturation. It is a gene of unknown function that is similar in sequence to GMF-beta. The sequence homology and chromosomal location led to an unsuccessful search for GMF-gamma mutations in glioma. We examined GMF-gamma expression in 1432 human cDNA libraries. Highest expression occurs in phagocytic, antigen-presenting and other hematopoietic cells. We found GMF-gamma mRNA in almost every tissue examined, with expression in nervous tissue no higher than in any other tissue. Our evidence indicates that GMF-gamma participates in phagocytosis in antigen presenting cells. Searches for genes with similar sequences should be supplemented with searches for genes with similar expression to avoid incorrect predictions.
Collapse
|
15
|
Hotta N, Aoyama M, Inagaki M, Ishihara M, Miura Y, Tada T, Asai K. Expression of glia maturation factor beta after cryogenic brain injury. ACTA ACUST UNITED AC 2005; 133:71-7. [PMID: 15661366 DOI: 10.1016/j.molbrainres.2004.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2004] [Indexed: 11/22/2022]
Abstract
Glia maturation factor beta (GMFB) was identified as a growth and differentiation factor acting on neurons as well as glia. We investigated the expression of GMFB during 56 days after cryogenic brain injury, using immunohistochemistry, reverse transcriptase polymerase chain reaction (RT-PCR), Western blotting and enzyme immunoassay. Immunohistochemical analysis demonstrated that the GFAP-positive astrocytes around the lesion expressed GMFB protein, peaking 14 days after injury. Weak astrocytic expression of GMFB-immunoreactivity was seen in sham-operated animal brains. Cryogenic injury (CI) induced GMFB mRNA in the lesioned side after 7 days with a maximum at 14 days. Western blotting revealed the induction of GMFB protein starting 1 day after injury, and continuing until 14 days after injury. In the enzyme immunoassay, GMFB protein concentration peaked 14 days after injury in extracts from the injured side of the brain, whereas in serum it peaked 1 day after injury. These data indicate that the expression of GMFB increased in the astrocytes around the lesioned area after cortical cryogenic brain injury. These findings may provide new insight into GMFB function in pathological conditions following brain injury.
Collapse
Affiliation(s)
- Naokazu Hotta
- Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Zaheer A, Yang B, Cao X, Lim R. Decreased copper-zinc superoxide dismutase activity and increased resistance to oxidative stress in glia maturation factor-null astrocytes. Neurochem Res 2004; 29:1473-80. [PMID: 15260123 DOI: 10.1023/b:nere.0000029558.82943.00] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glia maturation factor (GMF) is a highly conserved protein found mainly in the nervous system. The current work was undertaken to investigate the effect of GMF expression in astrocytes on CuZn superoxide dismutase (CuZnSOD or SOD I) and on the vulnerability of the cells to H2O2 toxicity. Primary astrocyte cultures were derived from mice in which the GMF gene was completely deleted by homologous recombination (knockout). Astocytes derived from knockout animals displayed a lower level of CuZnSOD activity and protein. The reduction in CuZnSOD was restored by transfection with a GMF/adenovirus construct, and the resulting increase was blocked by the p38 MAP kinase inhibitor SB203580. There was no change in the other isoform of SOD (MnSOD or SOD II). Endogenous H2O2 was lower in the knockout cells, and the cells became more resistant to H2O2 toxicity compared to the wild type. In the GMF-null cells, concurrent with a decrease in CuZnSOD, the function of which is to convert superoxide to H2O2, there was an increase in the activity of the two enzymes that degrade H2O2: catalase and glutathione peroxidase. By regulating the redox state of the cell, GMF may be involved in a wide spectrum of cellular events ranging from survival, proliferation, differentiation, to death.
Collapse
Affiliation(s)
- Asgar Zaheer
- Department of Neurology (Division of Neurochemistry and Neurobiology), Veterans Affairs Medical Center, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
17
|
Tajika M, Yamamoto K, Mekada A, Kani K, Okabe H. Neuronal Intermediate Filament in the Developing Rat Retina. Acta Histochem Cytochem 2004. [DOI: 10.1267/ahc.37.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Miwako Tajika
- Department of Laboratory Medicine, Shiga University of Medical Science
- Department of Ophthalmology, Shiga University of Medical Science
| | - Kazuo Yamamoto
- Department of Laboratory Medicine, Shiga University of Medical Science
| | - Atsushi Mekada
- Department of Ophthalmology, Shiga University of Medical Science
| | - Kazutaka Kani
- Department of Ophthalmology, Shiga University of Medical Science
| | - Hidetoshi Okabe
- Department of Laboratory Medicine, Shiga University of Medical Science
| |
Collapse
|
18
|
Yang Y, Cun S, Xie X, Lin J, Wei J, Yang W, Mou C, Yu C, Ye L, Lu Y, Fu Z, Xu A. EST analysis of gene expression in the tentacle of Cyanea capillata. FEBS Lett 2003; 538:183-91. [PMID: 12633876 DOI: 10.1016/s0014-5793(03)00164-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Jellyfish, Cyanea capillata, has an important position in head patterning and ion channel evolution, in addition to containing a rich source of toxins. In the present study, 2153 expressed sequence tags (ESTs) from the tentacle cDNA library of C. capillata were analyzed. The initial ESTs consisted of 198 clusters and 818 singletons, which revealed approximately 1016 unique genes in the data set. Among these sequences, we identified several genes related to head and foot patterning, voltage-dependent anion channel gene and genes related to biological activities of venom. Five kinds of proteinase inhibitor genes were found in jellyfish for the first time, and some of them were highly expressed with unknown functions.
Collapse
Affiliation(s)
- Yanzhen Yang
- Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kawai Y, Asai K, Miura Y, Inoue Y, Yamamoto M, Moriyama A, Yamamoto N, Kato T. Structure and promoter activity of the human glia maturation factor-gamma gene: a TATA-less, GC-rich and bidirectional promoter. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1625:246-52. [PMID: 12591611 DOI: 10.1016/s0167-4781(02)00627-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human glia maturation factor-gamma (hGMFG) was recently identified as a gene that is homologous to glia maturation factor-beta (GMFB). In this study, we determined the organization of the 9.5-kb hGMFG gene and characterized its promoter activity. The 5'-flanking region of the first exon has putative elements for binding transcription factors Sp-1, GATA-1, AML-1a, Lyf-1 and Ets-1, but there were no TATA or CAAT boxes within a 226-bp sequence upstream from the initiation codon. Primer extension analysis and 5'RACE (rapid amplification of cDNA 5' ends) identified multiple transcription initiation sites within the region -84 to -70 nucleotides from the first ATG codon in a Kozak consensus sequence. A core promoter region was determined by transfecting a series of deletion constructs with a dual luciferase reporter system into rat astrocyte-derived ACT-57 cells. We found that 226 bp of the core promoter region exhibited bidirectional promoter activity.
Collapse
Affiliation(s)
- Yoko Kawai
- Nagoya City University School of Nursing, Mizuho-ku, 467-8601, Nagoya, Japan.
| | | | | | | | | | | | | | | |
Collapse
|