1
|
Qiu Y, Sha L, Zhang X, Li G, Zhu W, Xu Q. Induction of A Disintegrin and Metalloproteinase with Thrombospondin motifs 1 by a rare variant or cognitive activities reduces hippocampal amyloid-β and consequent Alzheimer’s disease risk. Front Aging Neurosci 2022; 14:896522. [PMID: 36016856 PMCID: PMC9395645 DOI: 10.3389/fnagi.2022.896522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Amyloid-β (Aβ) derived from amyloid precursor protein (APP) hydrolysis is acknowledged as the predominant hallmark of Alzheimer’s disease (AD) that especially correlates to genetics and daily activities. In 2019, meta-analysis of AD has discovered five new risk loci among which A Disintegrin and Metalloproteinase with Thrombospondin motifs 1 (ADAMTS1) has been further suggested in 2021 and 2022. To verify the association, we re-sequenced ADAMTS1 of clinical AD samples and subsequently identified a novel rare variant c.–2067A > C with watchable relevance (whereas the P-value was not significant after adjustment). Dual-luciferase assay showed that the variant sharply stimulated ADAMTS1 expression. In addition, ADAMTS1 was also clearly induced by pentylenetetrazol-ignited neuronal activity and enriched environment (EE). Inspired by the above findings, we investigated ADAMTS1’s role in APP metabolism in vitro and in vivo. Results showed that ADAMTS1 participated in APP hydrolysis and consequently decreased Aβ generation through inhibiting β-secretase-mediated cleavage. In addition, we also verified that the hippocampal amyloid load of AD mouse model was alleviated by the introduction of ADAMTS1, and thus spatial cognition was restored as well. This study revealed the contribution of ADAMTS1 to the connection of genetic and acquired factors with APP metabolism, and its potential in reducing hippocampal amyloid and consequent risk of AD.
Collapse
Affiliation(s)
- Yunjie Qiu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Longze Sha
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiuneng Zhang
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Guanjun Li
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Wanwan Zhu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Qi Xu,
| |
Collapse
|
2
|
Abstract
Temporal lobe epilepsy is considered to be one of the most common and severe forms of focal epilepsies. Patients frequently develop cognitive deficits and emotional blunting along progression of the disease. The high incidence of refractoriness to antiepileptic drugs and a frequent lack of admissibility to surgery pose an unmet medical challenge. In the urgent quest for novel treatment strategies, neuropeptides and their receptors are interesting candidates. However, their therapeutic potential has not yet been fully exploited. This chapter focuses on the functional role of the dynorphins (Dyns) and the kappa opioid receptor (KOR) system in temporal lobe epilepsy and the hippocampus.Genetic polymorphisms in the prepro-dynorphin (pDyn) gene causing lower levels of Dyns in humans and pDyn gene knockout in mice increase the risk to develop epilepsy. This suggests a role of Dyns and KOR as modulators of neuronal excitability. Indeed, KOR agonists induce inhibition of presynaptic neurotransmitter release, as well as postsynaptic hyperpolarization in glutamatergic neurons, both producing anticonvulsant effects.The development of new approaches to modulate the complex KOR signalling cascade (e.g. biased agonism and gene therapy) opens up new exciting therapeutic opportunities with regard to seizure control and epilepsy. Potential adverse side effects of KOR agonists may be minimized through functional selectivity or locally restricted treatment. Preclinical data suggest a high potential of such approaches to control seizures.
Collapse
Affiliation(s)
- Luca Zangrandi
- Institute of Virology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Kim JE, Hyun HW, Min SJ, Lee DS, Jeon AR, Kim MJ, Kang TC. PLPP/CIN Regulates Seizure Activity by the Differential Modulation of Calsenilin Binding to GluN1 and Kv4.2 in Mice. Front Mol Neurosci 2017; 10:303. [PMID: 28993724 PMCID: PMC5622162 DOI: 10.3389/fnmol.2017.00303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 09/11/2017] [Indexed: 12/28/2022] Open
Abstract
Calsenilin (CSEN) binds to Kv4.2 (an A-type K+ channel) as well as N-methyl-D-aspartate receptor (NMDAR), and modulates their activities. However, the regulatory mechanisms for CSEN-binding to Kv4.2 or NMDAR remain elusive. Here, we demonstrate the novel role of pyridoxal-5′-phosphate phosphatase/chronophin (PLPP/CIN), one of the cofilin-mediated F-actin regulators, in the CSEN binding to Kv4.2 or GluN1 (an NMDAR subunit). PLPP/CIN dephosphorylated CSEN in competition with casein kinase 1, independent of cofilin dephosphorylation. As compared to wild-type mice, PLPP/CIN transgenic (PLPP/CINTg) mice showed the enhancement of Kv4.2–CSEN binding, but the reduction in CSEN–GluN1 binding. In addition, PLPP/CINTg mice exhibited the higher intensity (severity), duration and progression of seizures, but the longer latency of seizure on-set in response to kainic acid. PLPP/CIN knockout mice reversed these phenomena. Therefore, we suggest that PLPP/CIN-mediated CSEN dephosphorylation may play an important role in the functional coupling of NMDAR and Kv4.2, which regulates the neuronal excitability.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym UniversityChuncheon, South Korea
| | - Hye-Won Hyun
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym UniversityChuncheon, South Korea
| | - Su-Ji Min
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym UniversityChuncheon, South Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym UniversityChuncheon, South Korea
| | - A Ran Jeon
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym UniversityChuncheon, South Korea
| | - Min Ju Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym UniversityChuncheon, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym UniversityChuncheon, South Korea
| |
Collapse
|
4
|
Burtscher J, Schwarzer C. The Opioid System in Temporal Lobe Epilepsy: Functional Role and Therapeutic Potential. Front Mol Neurosci 2017; 10:245. [PMID: 28824375 PMCID: PMC5545604 DOI: 10.3389/fnmol.2017.00245] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
Temporal lobe epilepsy is considered to be one of the most common and severe forms of focal epilepsies. Patients often develop cognitive deficits and emotional blunting along the progression of the disease. The high incidence of resistance to antiepileptic drugs and a frequent lack of admissibility to surgery poses an unmet medical challenge. In the urgent quest of novel treatment strategies, neuropeptides are interesting candidates, however, their therapeutic potential has not yet been exploited. This review focuses on the functional role of the endogenous opioid system with respect to temporal lobe epilepsy, specifically in the hippocampus. The role of dynorphins and kappa opioid receptors (KOPr) as modulators of neuronal excitability is well understood: both the reduced release of glutamate as well of postsynaptic hyperpolarization were shown in glutamatergic neurons. In line with this, low levels of dynorphin in humans and mice increase the risk of epilepsy development. The role of enkephalins is not understood so well. On one hand, some agonists of the delta opioid receptors (DOPr) display pro-convulsant properties probably through inhibition of GABAergic interneurons. On the other hand, enkephalins play a neuro-protective role under hypoxic or anoxic conditions, most probably through positive effects on mitochondrial function. Despite the supposed absence of endorphins in the hippocampus, exogenous activation of the mu opioid receptors (MOPr) induces pro-convulsant effects. Recently-expanded knowledge of the complex ways opioid receptors ligands elicit their effects (including biased agonism, mixed binding, and opioid receptor heteromers), opens up exciting new therapeutic potentials with regards to seizures and epilepsy. Potential adverse side effects of KOPr agonists may be minimized through functional selectivity. Preclinical data suggest a high potential of such compounds to control seizures, with a strong predictive validity toward human patients. The discovery of DOPr-agonists without proconvulsant potential stimulates the research on the therapeutic use of neuroprotective potential of the enkephalin/DOPr system.
Collapse
Affiliation(s)
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of InnsbruckInnsbruck, Austria
| |
Collapse
|
5
|
Siran R, Ahmad AH, Abdul Aziz CB, Ismail Z. REM sleep deprivation induces changes of Down Regulatory Antagonist Modulator (DREAM) expression in the ventrobasal thalamic nuclei of Sprague–Dawley rats. J Physiol Biochem 2014; 70:877-89. [DOI: 10.1007/s13105-014-0356-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 09/02/2014] [Indexed: 01/24/2023]
|
6
|
Transcriptional control of KCNQ channel genes and the regulation of neuronal excitability. J Neurosci 2010; 30:13235-45. [PMID: 20926649 DOI: 10.1523/jneurosci.1981-10.2010] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Regulation of the resting membrane potential and the repolarization of neurons are important in regulating neuronal excitability. The potassium channel subunits Kv7.2 and Kv7.3 play a key role in stabilizing neuronal activity. Mutations in KCNQ2 and KCNQ3, the genes encoding Kv7.2 and Kv7.3, cause a neonatal form of epilepsy, and activators of these channels have been identified as novel antiepileptics and analgesics. Despite the observations that regulation of these subunits has profound effects on neuronal function, almost nothing is known about the mechanisms responsible for controlling appropriate expression levels. Here we identify two mechanisms responsible for regulating KCNQ2 and KCNQ3 mRNA levels. We show that the transcription factor Sp1 activates expression of both KCNQ2 and KCNQ3, whereas the transcriptional repressor REST (repressor element 1-silencing transcription factor) represses expression of both of these genes. Furthermore, we show that transcriptional regulation of KCNQ genes is mirrored by the correlated changes in M-current density and excitability of native sensory neurons. We propose that these mechanisms are important in the control of excitability of neurons and may have implications in seizure activity and pain.
Collapse
|
7
|
Schwarzer C. 30 years of dynorphins--new insights on their functions in neuropsychiatric diseases. Pharmacol Ther 2009; 123:353-70. [PMID: 19481570 DOI: 10.1016/j.pharmthera.2009.05.006] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/13/2009] [Indexed: 11/28/2022]
Abstract
Since the first description of their opioid properties three decades ago, dynorphins have increasingly been thought to play a regulatory role in numerous functional pathways of the brain. Dynorphins are members of the opioid peptide family and preferentially bind to kappa opioid receptors. In line with their localization in the hippocampus, amygdala, hypothalamus, striatum and spinal cord, their functions are related to learning and memory, emotional control, stress response and pain. Pathophysiological mechanisms that may involve dynorphins/kappa opioid receptors include epilepsy, addiction, depression and schizophrenia. Most of these functions were proposed in the 1980s and 1990s following histochemical, pharmacological and electrophysiological experiments using kappa receptor-specific or general opioid receptor agonists and antagonists in animal models. However, at that time, we had little information on the functional relevance of endogenous dynorphins. This was mainly due to the complexity of the opioid system. Besides actions of peptides from all three classical opioid precursors (proenkephalin, prodynorphin, proopiomelanocortin) on the three classical opioid receptors (delta, mu and kappa), dynorphins were also shown to exert non-opioid effects mainly through direct effects on NMDA receptors. Moreover, discrepancies between the distribution of opioid receptor binding sites and dynorphin immunoreactivity contributed to the difficulties in interpretation. In recent years, the generation of prodynorphin- and opioid receptor-deficient mice has provided the tools to investigate open questions on network effects of endogenous dynorphins. This article examines the physiological, pathophysiological and pharmacological implications of dynorphins in the light of new insights in part obtained from genetically modified animals.
Collapse
Affiliation(s)
- Christoph Schwarzer
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, A-6020 Innsbruck, Austria.
| |
Collapse
|
8
|
Chavira-Suárez E, Ramírez M, Lamas M. d-Serine/N-methyl-d-aspartate receptor signaling decreases DNA-binding activity of the transcriptional repressor DREAM in Müller glia from the retina. Neurosci Lett 2008; 432:121-6. [DOI: 10.1016/j.neulet.2007.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/03/2007] [Accepted: 12/07/2007] [Indexed: 11/26/2022]
|
9
|
Gabellini N. Transcriptional regulation by cAMP and Ca2+ links the Na+/Ca2+ exchanger 3 to memory and sensory pathways. Mol Neurobiol 2004; 30:91-116. [PMID: 15247490 DOI: 10.1385/mn:30:1:091] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The signaling cascades triggered by neurotrophins such as BDNF and by several neurotransmitters and hormones lead to the rapid induction of gene transcription by increasing the intracellular concentration of cAMP and Ca2+. This review examines the mechanisms by which these second messengers control transcriptional initiation at CRE promoters via transcription factor CREB, as well as at DRE sites via transcriptional repressor DREAM. The regulation of the SLC8A3 gene encoding the Na+/Ca2+ exchanger 3 (NCX3) is taken as an example to illustrate both mechanisms since it includes a CRE site in the promoter and several DRE sites in the exon 1 sequence. The upregulation of the NCX3 by Ca2+ signals may be specifically required to establish the Ca2+ balance that regulates several physiological and pathological processes in neurons. The regulatory features and the expression pattern of SLC8A3 gene suggest that NCX3 activity could be crucial in neuronal functions such as memory formation and sensory processing.
Collapse
Affiliation(s)
- Nadia Gabellini
- Department of Biological Chemistry, University of Padova, Padova, Italy.
| |
Collapse
|
10
|
Birnbaum SG, Varga AW, Yuan LL, Anderson AE, Sweatt JD, Schrader LA. Structure and function of Kv4-family transient potassium channels. Physiol Rev 2004; 84:803-33. [PMID: 15269337 DOI: 10.1152/physrev.00039.2003] [Citation(s) in RCA: 268] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Shal-type (Kv4.x) K(+) channels are expressed in a variety of tissue, with particularly high levels in the brain and heart. These channels are the primary subunits that contribute to transient, voltage-dependent K(+) currents in the nervous system (A currents) and the heart (transient outward current). Recent studies have revealed an enormous degree of complexity in the regulation of these channels. In this review, we describe the surprisingly large number of ancillary subunits and scaffolding proteins that can interact with the primary subunits, resulting in alterations in channel trafficking and kinetic properties. Furthermore, we discuss posttranslational modification of Kv4.x channel function with an emphasis on the role of kinase modulation of these channels in regulating membrane properties. This concept is especially intriguing as Kv4.2 channels may integrate a variety of intracellular signaling cascades into a coordinated output that dynamically modulates membrane excitability. Finally, the pathophysiology that may arise from dysregulation of these channels is also reviewed.
Collapse
Affiliation(s)
- Shari G Birnbaum
- Div. of Neuroscience, S607, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|