1
|
Spontaneous head twitches in aged rats: behavioral and molecular study. Psychopharmacology (Berl) 2022; 239:3847-3857. [PMID: 36278982 PMCID: PMC9672005 DOI: 10.1007/s00213-022-06253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/03/2022] [Indexed: 10/31/2022]
Abstract
RATIONALE We have discovered that rats at the age of 18 months begin to twitch their heads spontaneously (spontaneous head twitching, SHT). To date, no one has described this phenomenon. OBJECTIVES The purpose of this study was to characterize SHT pharmacologically and to assess some possible mechanisms underlying SHT. METHODS Wistar male rats were used in the study. Animals at the age of 18 months were qualified as HSHT (SHT ≥ 7/10 min observations) or LSHT (SHT < 7/10 min observations). Quantitative real-time PCR with TaqMan low-density array (TLDA) approach was adopted to assess the mRNA expression of selected genes in rat's hippocampus. RESULTS HSHT rats did not differ from LSHT rats in terms of survival time, general health and behavior, water intake, and spontaneous locomotor activity. 2,5-dimethoxy-4-iodoamphetamine (DOI) at a dose of 2.5 mg/kg increased the SHT in HSHT and LSHT rats, while ketanserin dose-dependently abolished the SHT in the HSHT rats. The SHT was reduced or abolished by olanzapine, clozapine, risperidone, and pimavanserin. All these drugs have strong 5-HT2A receptor-inhibiting properties. Haloperidol and amisulpride, as antipsychotic drugs with a mostly dopaminergic mechanism of action, did not influence SHT. Similarly, escitalopram did not affect SHT. An in-depth gene expression analysis did not reveal significant differences between the HSHT and the LSHT rats. CONCLUSIONS SHT appears in some aging rats (about 50%) and is permanent over time and specific to individuals. The 5-HT2A receptor strongly controls SHT. HSHT animals can be a useful animal model for studying 5-HT2A receptor ligands.
Collapse
|
2
|
Halberstadt AL, Chatha M, Klein AK, Wallach J, Brandt SD. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology 2020; 167:107933. [PMID: 31917152 DOI: 10.1016/j.neuropharm.2019.107933] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
Serotonergic hallucinogens such as lysergic acid diethylamide (LSD) induce head twitches in rodents via 5-HT2A receptor activation. The goal of the present investigation was to determine whether a correlation exists between the potency of hallucinogens in the mouse head-twitch response (HTR) paradigm and their reported potencies in other species, specifically rats and humans. Dose-response experiments were conducted with phenylalkylamine and tryptamine hallucinogens in C57BL/6J mice, enlarging the available pool of HTR potency data to 41 total compounds. For agents where human data are available (n = 36), a strong positive correlation (r = 0.9448) was found between HTR potencies in mice and reported hallucinogenic potencies in humans. HTR potencies were also found to be correlated with published drug discrimination ED50 values for substitution in rats trained with either LSD (r = 0.9484, n = 16) or 2,5-dimethoxy-4-methylamphetamine (r = 0.9564, n = 21). All three of these behavioral effects (HTR in mice, hallucinogen discriminative stimulus effects in rats, and psychedelic effects in humans) have been linked to 5-HT2A receptor activation. We present evidence that hallucinogens induce these three effects with remarkably consistent potencies. In addition to having high construct validity, the HTR assay also appears to show significant predictive validity, confirming its translational relevance for predicting subjective potency of hallucinogens in humans. These findings support the use of the HTR paradigm as a preclinical model of hallucinogen psychopharmacology and in structure-activity relationship studies of hallucinogens. Future investigations with a larger number of test agents will evaluate whether the HTR assay can be used to predict the hallucinogenic potency of 5-HT2A agonists in humans. "This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Muhammad Chatha
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Adam K Klein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jason Wallach
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA, USA; Substance Use Disorders Institute, University of the Sciences, Philadelphia, PA, USA
| | - Simon D Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
3
|
Haberzettl R, Fink H, Bert B. The murine serotonin syndrome - evaluation of responses to 5-HT-enhancing drugs in NMRI mice. Behav Brain Res 2014; 277:204-10. [PMID: 24780865 DOI: 10.1016/j.bbr.2014.04.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/16/2014] [Accepted: 04/20/2014] [Indexed: 11/29/2022]
Abstract
In humans, the ingestion of the combination of two or more serotonin (5-HT)-enhancing drugs but also of a single drug in overdose can induce serious adverse effects, which are characteristics of the serotonin syndrome (SS). In mice, acute administration of direct and indirect 5-HT agonists also leads to behavioral and autonomic responses, but in literature different responses are thought to be essential. In order to detect common behavioral SS responses induced by 5-HT-enhancing drugs with different mechanisms of action, we investigated the effects of the 5-HT precursor 5-hydroxy-l-tryptophan (5-HTP), the selective serotonin reuptake inhibitor (SSRI) fluoxetine (FLX), and the monoaminooxidase (MAO) inhibitor tranylcypromine (TCP) in male NMRI mice. The drugs were administered alone or in combination to investigate additive effects or drug potentiation. Moreover, we compared the 5-HT responses to the effects induced by the dopamine, noradrenaline, and cholinergic agonists, apomorphine (APO), atomoxetine (ATO), and oxotremorine (OXO). Our results show that the studied 5-HT-enhancing drugs induced a different number of concomitant responses. The following five responses consistently and dose-dependently occurred in NMRI mice: flat body posture, hindlimb abduction, piloerection, tremor, and decreased rearings. Like in humans, the combination of 5-HT-enhancing drugs leads to a potentiation of drug effects. With the exception of flat body posture the responses are not specific for serotonergic hyperactivity. The findings demonstrate that the SS in NMRI mice is a suitable animal model for preclinical research, if it is taken into account that the spectrum of typical responses to 5-HT enhancing drugs may differ depending on drug and mouse strain and that some responses might be evoked by activation of other transmission systems, too.
Collapse
Affiliation(s)
- Robert Haberzettl
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Koserstrasse 20, 14195 Berlin, Germany
| | - Heidrun Fink
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Koserstrasse 20, 14195 Berlin, Germany
| | - Bettina Bert
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Koserstrasse 20, 14195 Berlin, Germany.
| |
Collapse
|
4
|
Lockridge A, Newland B, Printen S, Romero GE, Yuan LL. Head movement: a novel serotonin-sensitive behavioral endpoint for tail suspension test analysis. Behav Brain Res 2013; 246:168-78. [PMID: 23499706 DOI: 10.1016/j.bbr.2013.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/08/2013] [Accepted: 02/25/2013] [Indexed: 12/01/2022]
Abstract
The tail suspension test (TST) as an antidepressant and depression-related behavior screen, has many advantages over the forced swim test (FST) in terms of procedural simplicity and consistent SSRI response. However, the FST has traditionally offered more specific neuromodulatory information by differentiating between serotonin (5-HT) and norepinephrine sensitive behavior categories. Head movement is a newly characterized behavior endpoint in the FST and TST with a selective 5-HT sensitivity. In this investigation, we show that the baseline and drug response profile of head movement previously found in the 129S6 strain of mice (Lockridge et al., 2010) is reproducible in the C57 strain. Head movement is inversely correlated to FST swimming and elevated in the TST by SSRI administration. The use of a weighted bin sample analysis method differentiates TST behaviors into fluoxetine-responsive head movement and desipramine-responsive struggling. The use of 5-HT subtype receptor agonists, after depleting endogenous 5-HT with pCPA, shows the head movement suppressing effect of 5-HT2A and 5-HT2C postsynaptic receptor activation. 5-HT1A and 5-HT1B agonists were ineffective. We propose that a head movement focused analysis can add sensitive and reliable 5-HT detection capability to mouse TST testing with minimal effort but significant reward.
Collapse
Affiliation(s)
- Amber Lockridge
- Department of Neuroscience, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
5
|
Canal CE, Morgan D. Head-twitch response in rodents induced by the hallucinogen 2,5-dimethoxy-4-iodoamphetamine: a comprehensive history, a re-evaluation of mechanisms, and its utility as a model. Drug Test Anal 2012; 4:556-76. [PMID: 22517680 DOI: 10.1002/dta.1333] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 11/06/2022]
Abstract
Two primary animal models persist for assessing hallucinogenic potential of novel compounds and for examining the pharmacological and neurobiological substrates underlying the actions of classical hallucinogens, the two-lever drug discrimination procedure and the drug-induced head-twitch response (HTR) in rodents. The substituted amphetamine hallucinogen, serotonin 2 (5-HT(2) ) receptor agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI) has emerged as the most popular pharmacological tool used in HTR studies of hallucinogens. Synthesizing classic, recent, and relatively overlooked findings, addressing ostensibly conflicting observations, and considering contemporary theories in receptor and behavioural pharmacology, this review provides an up-to-date and comprehensive synopsis of DOI and the HTR model, from neural mechanisms to utility for understanding psychiatric diseases. Also presented is support for the argument that, although both the two-lever drug discrimination and the HTR models in rodents are useful for uncovering receptors, interacting proteins, intracellular signalling pathways, and neurochemical processes affected by DOI and related classical hallucinogens, results from both models suggest they are not reporting hallucinogenic experiences in animals.
Collapse
Affiliation(s)
- Clint E Canal
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA.
| | | |
Collapse
|
6
|
Dougherty JP, Aloyo VJ. Pharmacological and behavioral characterization of the 5-HT2A receptor in C57BL/6N mice. Psychopharmacology (Berl) 2011; 215:581-93. [PMID: 21340474 DOI: 10.1007/s00213-011-2207-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 01/27/2011] [Indexed: 11/30/2022]
Abstract
RATIONALE The serotonin (5-HT) 2A receptor is implicated in numerous psychiatric disorders, making it an important, clinically relevant target. Despite the availability of transgenic mouse lines, the native mouse 5-HT(2A) receptor is not well-characterized. OBJECTIVES The goals of the current study were to determine 5-HT(2A) and 5-HT(2C) receptor densities in mouse cortex, establish a pharmacological profile of the mouse 5-HT(2A) receptor, and determine the effects of chronic drug treatment on 5-HT(2A) receptor density and 5-HT(2A) receptor-mediated behavior. METHODS Receptor densities were determined in cortex and frontal cortex via saturation binding assays using [(3)H]ketanserin or [(3)H]mesulergine. A pharmacological profile was established by displacing [(3)H]ketanserin binding with several ligands. Chronic treatment with 5-HT(2A/2C) receptor agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI), 5-HT(2A) receptor antagonist, MDL 11939, or vehicle was followed by 5-HT(2A) receptor density determination. Head twitch responses (HTRs) were counted on select days. RESULTS Mice had high 5-HT(2A), but low 5-HT(2C) receptor densities. Ligand binding affinities for mouse 5-HT(2A) receptors correlated with rat, but not rabbit or human, affinities. Chronically DOI-treated mice displayed reduced HTRs and 5-HT(2A) receptor density compared to saline-treated mice. Receptor density was unchanged following chronic treatment with MDL 11939. CONCLUSIONS The current study provides some basic information about mouse 5-HT(2A) and 5-HT(2C) receptors and provides comparisons to rats, rabbits, and humans. The current chronic agonist treatment study demonstrated an important similarity between the 5-HT(2A) receptor in mice, rats, and rabbits, while antagonist treatment revealed an interesting difference from previous studies in rabbits.
Collapse
Affiliation(s)
- John P Dougherty
- Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | | |
Collapse
|
7
|
Dwyer ND, Manning DK, Moran JL, Mudbhary R, Fleming MS, Favero CB, Vock VM, O'Leary DDM, Walsh CA, Beier DR. A forward genetic screen with a thalamocortical axon reporter mouse yields novel neurodevelopment mutants and a distinct emx2 mutant phenotype. Neural Dev 2011; 6:3. [PMID: 21214893 PMCID: PMC3024922 DOI: 10.1186/1749-8104-6-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 01/07/2011] [Indexed: 12/02/2022] Open
Abstract
Background The dorsal thalamus acts as a gateway and modulator for information going to and from the cerebral cortex. This activity requires the formation of reciprocal topographic axon connections between thalamus and cortex. The axons grow along a complex multistep pathway, making sharp turns, crossing expression boundaries, and encountering intermediate targets. However, the cellular and molecular components mediating these steps remain poorly understood. Results To further elucidate the development of the thalamocortical system, we first created a thalamocortical axon reporter line to use as a genetic tool for sensitive analysis of mutant mouse phenotypes. The TCA-tau-lacZ reporter mouse shows specific, robust, and reproducible labeling of thalamocortical axons (TCAs), but not the overlapping corticothalamic axons, during development. Moreover, it readily reveals TCA pathfinding abnormalities in known cortical mutants such as reeler. Next, we performed an unbiased screen for genes involved in thalamocortical development using random mutagenesis with the TCA reporter. Six independent mutant lines show aberrant TCA phenotypes at different steps of the pathway. These include ventral misrouting, overfasciculation, stalling at the corticostriatal boundary, and invasion of ectopic cortical cell clusters. An outcross breeding strategy coupled with a genomic panel of single nucleotide polymorphisms facilitated genetic mapping with small numbers of mutant mice. We mapped a ventral misrouting mutant to the Emx2 gene, and discovered that some TCAs extend to the olfactory bulbs in this mutant. Mapping data suggest that other lines carry mutations in genes not previously known for roles in thalamocortical development. Conclusions These data demonstrate the feasibility of a forward genetic approach to understanding mammalian brain morphogenesis and wiring. A robust axonal reporter enabled sensitive analysis of a specific axon tract inside the mouse brain, identifying mutant phenotypes at multiple steps of the pathway, and revealing a new aspect of the Emx2 mutant. The phenotypes highlight vulnerable choice points and latent tendencies of TCAs, and will lead to a refined understanding of the elements and interactions required to form the thalamocortical system. See Commentary: http://www.biomedcentral.com/1741-7007/9/1
Collapse
Affiliation(s)
- Noelle D Dwyer
- Howard Hughes Medical Institute, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Perspectives on genetic animal models of serotonin toxicity. Neurochem Int 2008; 52:649-58. [DOI: 10.1016/j.neuint.2007.08.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 08/23/2007] [Accepted: 08/29/2007] [Indexed: 12/28/2022]
|
9
|
Caspary T, Anderson KV. Uncovering the uncharacterized and unexpected: unbiased phenotype-driven screens in the mouse. Dev Dyn 2006; 235:2412-23. [PMID: 16724327 DOI: 10.1002/dvdy.20853] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phenotype-based chemical mutagenesis screens for mouse mutations have undergone a transformation in the past five years from a potential approach to a practical tool. This change has been driven by the relative ease of identifying causative mutations now that the complete genome sequence is available. These unbiased screens make it possible to identify genes, gene functions and processes that are uniquely important to mammals. In addition, because chemical mutagenesis generally induces point mutations, these alleles often uncover previously unappreciated functions of known proteins. Here we provide examples of the success stories from forward genetic screens, emphasizing the examples that illustrate the discovery of mammalian-specific processes that could not be discovered in other model organisms. As the efficiency of sequencing and mutation detection continues to improve, it is likely that forward genetic screens will provide an even more important part of the repertoire of mouse genetics in the future.
Collapse
Affiliation(s)
- Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
10
|
Abstract
The study of human behavioural and psychiatric disorders benefits from the development of genetic models in mice and other organisms. Mouse mutants allow one to investigate the molecular basis of disease progression and to develop novel therapies. The number of potential mouse models is increasing dramatically through the implementation of mutagenesis screens for aberrant behavioural phenotypes. The alkylating agent N-ethyl-N-nitrosourea ENU is the mutagen of choice in these screens as it induces mutations at a very high rate. Progeny of chemically-mutagenised animals are screened either in systematic high-throughput test batteries or in specific low-throughput tests. Both approaches have been highly successful with large numbers of novel loci being identified and characterised. Many mutant lines are available for general research with phenotypes and genetic map positions on public websites. Of the mutant genes characterised, the majority have contributed to our knowledge of gene function in physiology and disease. The 'mutagenesis screening' approach continues to evolve through the design of new phenotyping strategies. The development of modifier screens in mice shows promise in the elucidation of complex phenotypes whereas the use of mutagenesis in combination with pharmacological agents targets specific neurochemical systems. Finally, the systematic screening approach has demonstrated that mutations are likely to affect more than one biological process.
Collapse
Affiliation(s)
- Sofia I H Godinho
- MRC Mammalian Genetics Unit, Harwell, Didcot, Oxfordshire OX11 0RD, UK
| | | |
Collapse
|
11
|
Speca DJ, Rabbee N, Chihara D, Speed TP, Peterson AS. A genetic screen for behavioral mutations that perturb dopaminergic homeostasis in mice. GENES BRAIN AND BEHAVIOR 2006; 5:19-28. [PMID: 16436185 DOI: 10.1111/j.1601-183x.2005.00127.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Disruption of dopaminergic (DA) systems is thought to play a central role in the addictive process and in the pathophysiology of schizophrenia. Although inheritance plays an important role in the predisposition to these disorders, the genetic basis of this is not well understood. To provide additional insight, we have performed a modifier screen in mice designed to identify mutations that perturb DA homeostasis. With a genetic background sensitized by a mutation in the dopamine transporter (DAT), we used random chemical mutagenesis and screened for mutant mice with locomotor abnormalities. Four mutant lines were identified with quantitatively elevated levels of locomotor activity. Mapping of mutations in these lines identified two loci that alter activity only when dopamine levels are elevated by a DAT mutation and thus would only have been uncovered by this type of approach. One of these quantitative trait loci behaves as an enhancer of DA neurotransmission, whereas the other may act as a suppressor. In addition, we also identified three loci which are not dependent on the sensitized background but which also contribute to the overall locomotor phenotype.
Collapse
Affiliation(s)
- D J Speca
- Department of Neurology and the Ernest Gallo Clinic and Research Center, University of California at San Francisco, Emeryville, CA 94608, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
In the mouse, random mutagenesis with N-ethyl-N-nitrosourea (ENU) has been used since the 1970s in forward mutagenesis screens. However, only in the last decade has ENU mutagenesis been harnessed to generate a myriad of new mouse mutations in large-scale genetic screens and focused, smaller efforts. The development of additional genetic tools, such as balancer chromosomes, refinements in genetic mapping strategies, and evolution of specialized assays, has allowed these screens to achieve new levels of sophistication. The impressive productivity of these screens has led to a deluge of mouse mutants that wait to be harnessed. Here the basic large- and small-scale strategies are described, as are the basics of screen design. Finally, and importantly, this review describes the mechanisms by which such mutants may be accessed now and in the future. Thus, this review should serve both as an overview of the power of forward mutagenesis in the mouse and as a resource for those interested in developing their own screens, adding onto existing efforts, or obtaining specific mouse mutants that have already been generated.
Collapse
Affiliation(s)
- Sabine P Cordes
- Samuel Lunenfeld Research Institute, Room 865, Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
| |
Collapse
|