1
|
Nile AH, Bankaitis VA, Grabon A. Mammalian diseases of phosphatidylinositol transfer proteins and their homologs. CLINICAL LIPIDOLOGY 2010; 5:867-897. [PMID: 21603057 PMCID: PMC3097519 DOI: 10.2217/clp.10.67] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inositol and phosphoinositide signaling pathways represent major regulatory systems in eukaryotes. The physiological importance of these pathways is amply demonstrated by the variety of diseases that involve derangements in individual steps in inositide and phosphoinositide production and degradation. These diseases include numerous cancers, lipodystrophies and neurological syndromes. Phosphatidylinositol transfer proteins (PITPs) are emerging as fascinating regulators of phosphoinositide metabolism. Recent advances identify PITPs (and PITP-like proteins) to be coincidence detectors, which spatially and temporally coordinate the activities of diverse aspects of the cellular lipid metabolome with phosphoinositide signaling. These insights are providing new ideas regarding mechanisms of inherited mammalian diseases associated with derangements in the activities of PITPs and PITP-like proteins.
Collapse
Affiliation(s)
- Aaron H Nile
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| | - Vytas A Bankaitis
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| | - Aby Grabon
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| |
Collapse
|
2
|
Cosker KE, Shadan S, van Diepen M, Morgan C, Li M, Allen-Baume V, Hobbs C, Doherty P, Cockcroft S, Eickholt BJ. Regulation of PI3K signalling by the phosphatidylinositol transfer protein PITPα during axonal extension in hippocampal neurons. J Cell Sci 2008; 121:796-803. [DOI: 10.1242/jcs.019166] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Phosphatidylinositol transfer proteins (PITPs) mediate the transfer of phosphatidylinositol (PtdIns) or phosphatidylcholine (PtdCho) between two membrane compartments, thereby regulating the interface between signalling, phosphoinositide (PI) metabolism and membrane traffic. Here, we show that PITPα is enriched in specific areas of the postnatal and adult brain, including the hippocampus and cerebellum. Overexpression of PITPα, but not PITPβ or a PITPα mutant deficient in binding PtdIns, enhances laminin-dependent extension of axonal processes in hippocampal neurons, whereas knockdown of PITPα protein by siRNA suppresses laminin and BDNF-induced axonal growth. PITPα-mediated axonal outgrowth is sensitive to phosphoinositide 3-kinase (PI3K) inhibition and shows dependency on the Akt/GSK-3/CRMP-2 pathway. We conclude that PITPα controls the polarized extension of axonal processes through the provision of PtdIns for localized PI3K-dependent signalling.
Collapse
Affiliation(s)
- Katharina E. Cosker
- MRC Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| | - Sadaf Shadan
- Department of Physiology, University College London, London, WC1E 6JJ, UK
| | - Michiel van Diepen
- MRC Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| | - Clive Morgan
- Department of Physiology, University College London, London, WC1E 6JJ, UK
| | - Michelle Li
- Department of Physiology, University College London, London, WC1E 6JJ, UK
| | | | - Carl Hobbs
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
| | - Patrick Doherty
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
| | - Shamshad Cockcroft
- Department of Physiology, University College London, London, WC1E 6JJ, UK
| | - Britta J. Eickholt
- MRC Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| |
Collapse
|
3
|
Shimizu T, Imai H, Seki K, Tomizawa S, Nakamura M, Honda F, Kawahara N, Saito N. Cyclophilin C-associated protein and cyclophilin C mRNA are upregulated in penumbral neurons and microglia after focal cerebral ischemia. J Cereb Blood Flow Metab 2005; 25:325-37. [PMID: 15647740 DOI: 10.1038/sj.jcbfm.9600029] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immunophilin ligands, such as cyclosporin A and FK506, have neuroprotective effects in experimental stroke models, although the precise mechanism is unclear. Cyclophilin C-associated protein (CyCAP) is a natural cellular ligand for the immunophilin, cyclophilin C, and has a protective effect against endotoxins by downmodulating the proinflammatory response. Expressions of CyCAP and cyclophilin C mRNA in a rat middle cerebral artery (MCA) occlusion ischemia model were investigated by Northern blotting and in situ hybridization. Both CyCAP and cyclophilin C mRNAs were ubiquitously distributed in the neurons of the normal brain. Expression increased in neurons of the periinfarct zone up to 7 days after MCA occlusion. The neuronal distribution was confirmed by counterimmunostaining of NeuN. Both mRNAs were predominantly expressed in microglia of the ischemic core at 7 days, confirmed by immunostaining with the microglial marker, ED1. The quantification of CyCAP and cyclophilin C mRNAs at 7 days by Northern blot analysis showed the 8.5-fold increase (P<0.005, n=6) and 6.8-fold increase (P<0.005, n=6), respectively, in ischemic core compared with control. The coincidence of CyCAP and cyclophilin C expression in neurons and microglia suggests distinct roles in each cellular population. In particular, the early increase in penumbral neurons might be related to protection in periinfarct neurons.
Collapse
Affiliation(s)
- Tatsuya Shimizu
- Department of Neurosurgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Cockcroft S. Mammalian phosphatidylinositol transfer proteins: emerging roles in signal transduction and vesicular traffic. Chem Phys Lipids 1999; 98:23-33. [PMID: 10358925 DOI: 10.1016/s0009-3084(99)00015-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphatidylinositol transfer proteins (PITP) are abundant cytosolic proteins found in all mammalian cells. Two cytosolic isoforms of 35 and 36 kDa (PITP alpha and PITP beta) have been identified which share 77% identity. These proteins are characterized by having a single phospholipid binding site which exhibits dual headgroup specificity. The preferred lipid that can occupy the site can be either phosphatidylinositol (PI) or phosphatidylcholine (PC). In addition, PITP beta can also bind sphingomyelin. A second characteristic of these proteins is the ability to transfer PI and PC (or SM) from one membrane compartment to another in vitro. The function of PITP in mammalian cells has been examined mainly using reconstitution studies utilizing semi-intact cells or cell-free systems. From such analyses, a requirement for PITP has been identified in phospholipase C-mediated phosphatidylinositol bisphosphate (PI(4,5)P2) hydrolysis, in phosphoinositide 3-kinase catalyzed PIP3 generation, in regulated exocytosis, in the biogenesis of secretory granules and vesicles and in intra-golgi transport. Studies aimed at elucidating the mechanism of action of PITP in each of these seemingly disparate processes have yielded a singular theme: the activity of PITP stems from its ability to transfer PI from its site of synthesis to sites of cellular activity. This function was predicted from its in vitro characteristics. The second feature of PITP that was not predicted is the ability to stimulate the local synthesis of several phosphorylated forms of PI including PI(4)P, PI(4,5)P2, PI(3)P, PI(3,4,5)P3 by presenting PI to the lipid kinases involved in phosphoinositide synthesis. We conclude that PITP contributes in multiple aspects of cell biology ranging from signal transduction to membrane trafficking events where a central role for phosphoinositides is recognized either as a substrate or as an intact lipid signalling molecule.
Collapse
Affiliation(s)
- S Cockcroft
- Department of Physiology, University College London, UK.
| |
Collapse
|