1
|
Vorobyeva N, Kozlova AA. Three Naturally-Occurring Psychedelics and Their Significance in the Treatment of Mental Health Disorders. Front Pharmacol 2022; 13:927984. [PMID: 35837277 PMCID: PMC9274002 DOI: 10.3389/fphar.2022.927984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/06/2022] [Indexed: 12/20/2022] Open
Abstract
Classical psychedelics represent a family of psychoactive substances with structural similarities to serotonin and affinity for serotonin receptors. A growing number of studies have found that psychedelics can be effective in treating various psychiatric conditions, including post-traumatic stress disorder, major depressive disorder, anxiety, and substance use disorders. Mental health disorders are extremely prevalent in the general population constituting a major problem for the public health. There are a wide variety of interventions for mental health disorders, including pharmacological therapies and psychotherapies, however, treatment resistance still remains a particular challenge in this field, and relapse rates are also quite high. In recent years, psychedelics have become one of the promising new tools for the treatment of mental health disorders. In this review, we will discuss the three classic serotonergic naturally occurring psychedelics, psilocybin, ibogaine, and N, N-dimethyltryptamine, focusing on their pharmacological properties and clinical potential. The purpose of this article is to provide a focused review of the most relevant research into the therapeutic potential of these substances and their possible integration as alternative or adjuvant options to existing pharmacological and psychological therapies.
Collapse
Affiliation(s)
- Nataliya Vorobyeva
- Hive Bio Life Sciences Ltd., London, United Kingdom
- *Correspondence: Nataliya Vorobyeva,
| | - Alena A. Kozlova
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Barsuglia JP, Polanco M, Palmer R, Malcolm BJ, Kelmendi B, Calvey T. A case report SPECT study and theoretical rationale for the sequential administration of ibogaine and 5-MeO-DMT in the treatment of alcohol use disorder. PROGRESS IN BRAIN RESEARCH 2018; 242:121-158. [PMID: 30471678 DOI: 10.1016/bs.pbr.2018.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ibogaine is a plant-derived alkaloid and dissociative psychedelic that demonstrates anti-addictive properties with several substances of abuse, including alcohol. 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a naturally occurring psychedelic known to occasion potent mystical-type experiences and also demonstrates anti-addictive properties. The potential therapeutic effects of both compounds in treating alcohol use disorder require further investigation and there are no published human neuroimaging findings of either treatment to date. We present the case of a 31-year-old male military veteran with moderate alcohol use disorder who sought treatment at an inpatient clinic in Mexico that utilized a sequential protocol with ibogaine hydrochloride (1550mg, 17.9mg/kg) on day 1, followed by vaporized 5-MeO-DMT (bufotoxin source 50mg, estimated 5-MeO-DMT content, 5-7mg) on day 3. The patient received SPECT neuroimaging that included a resting-state protocol before, and 3 days after completion of the program. During the patient's ibogaine treatment, he experienced dream-like visions that included content pertaining to his alcohol use and resolution of past developmental traumas. He described his treatment with 5-MeO-DMT as a peak transformational and spiritual breakthrough. On post-treatment SPECT neuroimaging, increases in brain perfusion were noted in bilateral caudate nuclei, left putamen, right insula, as well as temporal, occipital, and cerebellar regions compared to the patient's baseline scan. The patient reported improvement in mood, cessation of alcohol use, and reduced cravings at 5 days post-treatment, effects which were sustained at 1 month, with a partial return to mild alcohol use at 2 months. In this case, serial administration of ibogaine and 5-MeO-DMT resulted in increased perfusion in multiple brain regions broadly associated with alcohol use disorders and known pharmacology of both compounds, which coincided with a short-term therapeutic outcome. We present theoretical considerations regarding the potential of both psychedelic medicines in treating alcohol use disorders in the context of these isolated findings, and areas for future investigation.
Collapse
Affiliation(s)
- Joseph P Barsuglia
- Crossroads Treatment Center, Tijuana, Mexico; Mission Within, Oakland, CA, United States; New School Research, LLC, North Hollywood, CA, United States; Terra Incognita Project, NGO, Ben Lomond, CA, United States.
| | - Martin Polanco
- Crossroads Treatment Center, Tijuana, Mexico; Mission Within, Oakland, CA, United States
| | - Robert Palmer
- Yale School of Medicine, New Haven, CT, United States
| | - Benjamin J Malcolm
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Benjamin Kelmendi
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Tanya Calvey
- Faculty of Health Sciences, University of the Witwatersrand Medical School, Johannesburg, South Africa
| |
Collapse
|
3
|
Cachat J, Kyzar EJ, Collins C, Gaikwad S, Green J, Roth A, El-Ounsi M, Davis A, Pham M, Landsman S, Stewart AM, Kalueff AV. Unique and potent effects of acute ibogaine on zebrafish: The developing utility of novel aquatic models for hallucinogenic drug research. Behav Brain Res 2013; 236:258-269. [DOI: 10.1016/j.bbr.2012.08.041] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/23/2012] [Accepted: 08/28/2012] [Indexed: 01/06/2023]
|
4
|
Effects of spider venom toxin PWTX-I (6-Hydroxytrypargine) on the central nervous system of rats. Toxins (Basel) 2011; 3:142-62. [PMID: 22069702 PMCID: PMC3202814 DOI: 10.3390/toxins3020142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/01/2011] [Accepted: 02/12/2011] [Indexed: 11/17/2022] Open
Abstract
The 6-hydroxytrypargine (6-HT) is an alkaloidal toxin of the group of tetrahydro-β-carbolines (THβC) isolated from the venom of the colonial spider Parawixia bistriata. These alkaloids are reversible inhibitors of the monoamine-oxidase enzyme (MAO), with hallucinogenic, tremorigenic and anxiolytic properties. The toxin 6-HT was the first THβC chemically reported in the venom of spiders; however, it was not functionally well characterized up to now. The action of 6-HT was investigated by intracerebroventricular (i.c.v.) and intravenous (i.v.) applications of the toxin in adult male Wistar rats, followed by the monitoring of the expression of fos-protein, combined with the use of double labeling immunehistochemistry protocols for the detection of some nervous receptors and enzymes related to the metabolism of neurotransmitters in the central nervous system (CNS). We also investigated the epileptiform activity in presence of this toxin. The assays were carried out in normal hippocampal neurons and also in a model of chronic epilepsy obtained by the use of neurons incubated in free-magnesium artificial cerebro-spinal fluid (ACSF). Trypargine, a well known THβC toxin, was used as standard compound for comparative purposes. Fos-immunoreactive cells (fos-ir) were observed in hypothalamic and thalamic areas, while the double-labeling identified nervous receptors of the sub-types rGlu2/3 and NMR1, and orexinergic neurons. The 6-HT was administrated by perfusion and ejection in "brain slices" of hippocampus, inducing epileptic activity after its administration; the toxin was not able to block the epileptogenic crisis observed in the chronic model of the epilepsy, suggesting that 6-HT did not block the overactive GluRs responsible for this epileptic activity.
Collapse
|
5
|
Induction of energy metabolism related enzymes in yeast Saccharomyces cerevisiae exposed to ibogaine is adaptation to acute decrease in ATP energy pool. Eur J Pharmacol 2009; 627:131-5. [PMID: 19853595 DOI: 10.1016/j.ejphar.2009.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 09/23/2009] [Accepted: 10/13/2009] [Indexed: 11/21/2022]
Abstract
Ibogaine has been extensively studied in the last decades in relation to its anti-addictive properties that have been repeatedly reported as being addiction interruptive and craving eliminative. In our previous study we have already demonstrated induction of energy related enzymes in rat brains treated with ibogaine at a dose of 20mg/kg i.p. 24 and 72 h prior to proteomic analysis. In this study a model organism yeast Saccharomyces cerevisiae was cultivated with ibogaine in a concentration of 1mg/l. Energy metabolism cluster enzymes glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, enolase and alcohol dehydrogenase were induced after 5h of exposure. This is a compensation of demonstrated ATP pool decrease after ibogaine. Yeast in a stationary growth phase is an accepted model for studies of housekeeping metabolism of eukaryotes, including humans. Study showed that ibogaine's influence on metabolism is neither species nor tissue specific. Effect is not mediated by binding of ibogaine to receptors, as previously described in literature since they are lacking in this model.
Collapse
|
6
|
Zhu P, Aller MI, Baron U, Cambridge S, Bausen M, Herb J, Sawinski J, Cetin A, Osten P, Nelson ML, Kügler S, Seeburg PH, Sprengel R, Hasan MT. Silencing and un-silencing of tetracycline-controlled genes in neurons. PLoS One 2007; 2:e533. [PMID: 17579707 PMCID: PMC1888723 DOI: 10.1371/journal.pone.0000533] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 05/14/2007] [Indexed: 11/19/2022] Open
Abstract
To identify the underlying reason for the controversial performance of tetracycline (Tet)-controlled regulated gene expression in mammalian neurons, we investigated each of the three components that comprise the Tet inducible systems, namely tetracyclines as inducers, tetracycline-transactivator (tTA) and reverse tTA (rtTA), and tTA-responsive promoters (Ptets). We have discovered that stably integrated Ptet becomes functionally silenced in the majority of neurons when it is inactive during development. Ptet silencing can be avoided when it is either not integrated in the genome or stably-integrated with basal activity. Moreover, long-term, high transactivator levels in neurons can often overcome integration-induced Ptet gene silencing, possibly by inducing promoter accessibility.
Collapse
Affiliation(s)
- Peixin Zhu
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - M. Isabel Aller
- Department of Clinical Neurobiology, University of Heidelberg, Heidelberg, Germany
| | | | - Sidney Cambridge
- Max Planck Institute of Neurobiology, Munich-Martinsried, Germany
| | - Melanie Bausen
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Jan Herb
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Jürgen Sawinski
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Ali Cetin
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Pavel Osten
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Mark L. Nelson
- Paratek Pharmaceuticals Inc., Boston, Massachusetts, United States of America
| | - Sebastian Kügler
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | | | - Rolf Sprengel
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Mazahir T. Hasan
- Max Planck Institute for Medical Research, Heidelberg, Germany
- Max Planck Institute of Neurobiology, Munich-Martinsried, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
7
|
Paskulin R, Jamnik P, Zivin M, Raspor P, Strukelj B. Ibogaine affects brain energy metabolism. Eur J Pharmacol 2006; 552:11-4. [PMID: 17054944 DOI: 10.1016/j.ejphar.2006.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 08/31/2006] [Accepted: 09/05/2006] [Indexed: 10/24/2022]
Abstract
Ibogaine is an indole alkaloid present in the root of the plant Tabernanthe iboga. It is known to attenuate abstinence syndrome in animal models of drug addiction. Since the anti-addiction effect lasts longer than the presence of ibogaine in the body, some profound metabolic changes are expected. The aim of this study was to investigate the effect of ibogaine on protein expression in rat brains. Rats were treated with ibogaine at 20 mg/kg body weight i.p. and subsequently examined at 24 and 72 h. Proteins were extracted from whole brain and separated by two-dimensional (2-D) electrophoresis. Individual proteins were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Enzymes of glycolysis and tricarboxylic acid (TCA) cycle namely glyceraldehyde-3-phosphate dehydrogenase, aldolase A, pyruvate kinase and malate dehydrogenase were induced. The results suggest that the remedial effect of ibogaine could be mediated by the change in energy availability. Since energy dissipating detoxification and reversion of tolerance to different drugs of abuse requires underlying functional and structural changes in the cell, higher metabolic turnover would be favourable. Understanding the pharmacodynamics of anti-addiction drugs highlights the subcellular aspects of addiction diseases, in addition to neurological and psychological perspectives.
Collapse
|
8
|
Salzmann J, Marie-claire C, Guen SL, Roques BP, Noble F. Importance of ERK activation in behavioral and biochemical effects induced by MDMA in mice. Br J Pharmacol 2003; 140:831-8. [PMID: 14517176 PMCID: PMC1574098 DOI: 10.1038/sj.bjp.0705506] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 08/05/2003] [Accepted: 08/18/2003] [Indexed: 11/08/2022] Open
Abstract
Little is known about the cellular effects induced by 3,4-methylenedioxymethamphetamine (MDMA, ecstasy), although changes in gene expression have been observed following treatments with other psychostimulants. Thus, the aim of this study was to investigate in mice, the relationships between the ras-dependent protein kinase ERK and MDMA-induced reinforcement using the conditioned place preference (CPP) and locomotor activity measurements. This was completed using real-time quantitative PCR method by a study of immediate early-genes (IEGs) transcription known to be involved in neuronal plasticity. A significant CPP was observed after repeated MDMA treatment in CD-1 mice at a dose of 9 mg kg-1 i.p. but not at 3 and 6 mg kg-1. This rewarding effect was abolished by the selective inhibitor of ERK activation, SL327 (50 mg kg-1; i.p.). Similar results were obtained on MDMA-induced locomotor activity, clearly suggesting a role of ERK pathway in these behavioral responses. Following acute i.p. injection, MDMA induced a strong c-fos transcription in brain structures, such as caudate putamen, nucleus accumbens and hippocampus, whereas egr-1 and egr-3 transcripts were only increased in the caudate putamen. MDMA-induced IEGs transcription was selectively suppressed by SL327 in the caudate putamen, suggesting a role for other signaling pathways in regulation of IEGs transcription in the other brain structures. In agreement with these results, MDMA-induced c-fos protein expression was blocked by SL327 in the caudate putamen. This study confirms and extends to mice the reported role of ERK pathway in the development of addiction-like properties of MDMA. This could facilitate studies about the molecular mechanism of this process by using mutant mice.
Collapse
Affiliation(s)
- Julie Salzmann
- Département de Pharmacochimie Moléculaire et Structurale INSERM U266, CNRS FRE 2463, Université René Descartes, UFR des Sciences Pharmaceutiques et Biologiques, 4, Avenue de l'Observatoire, 75270 Paris, Cedex 06, France
| | - Cynthia Marie-claire
- Département de Pharmacochimie Moléculaire et Structurale INSERM U266, CNRS FRE 2463, Université René Descartes, UFR des Sciences Pharmaceutiques et Biologiques, 4, Avenue de l'Observatoire, 75270 Paris, Cedex 06, France
| | - Stéphanie Le Guen
- Département de Pharmacochimie Moléculaire et Structurale INSERM U266, CNRS FRE 2463, Université René Descartes, UFR des Sciences Pharmaceutiques et Biologiques, 4, Avenue de l'Observatoire, 75270 Paris, Cedex 06, France
| | - Bernard P Roques
- Département de Pharmacochimie Moléculaire et Structurale INSERM U266, CNRS FRE 2463, Université René Descartes, UFR des Sciences Pharmaceutiques et Biologiques, 4, Avenue de l'Observatoire, 75270 Paris, Cedex 06, France
| | - Florence Noble
- Département de Pharmacochimie Moléculaire et Structurale INSERM U266, CNRS FRE 2463, Université René Descartes, UFR des Sciences Pharmaceutiques et Biologiques, 4, Avenue de l'Observatoire, 75270 Paris, Cedex 06, France
| |
Collapse
|
9
|
Spektor BS, Miller DW, Hollingsworth ZR, Kaneko YA, Solano SM, Johnson JM, Penney JB, Young AB, Luthi-Carter R. Differential D1 and D2 receptor-mediated effects on immediate early gene induction in a transgenic mouse model of Huntington's disease. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 102:118-28. [PMID: 12191502 DOI: 10.1016/s0169-328x(02)00216-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The diminished expression of D1 and D2 dopamine receptors is a well-documented hallmark of Huntington's disease (HD), but relatively little is known about how these changes in receptor populations affect the dopaminergic responses of striatal neurons. Using transgenic mice expressing an N-terminal portion of mutant huntingtin (R6/2 mice), we have examined immediate early gene (IEG) expression as an index of dopaminergic signal transduction. c-fos, jun B, zif268, and N10 mRNA levels and expression patterns were analyzed using quantitative in situ hybridization histochemistry following intraperitoneal administration of selective D1 and D2 family pharmacological agents (SKF-82958 and eticlopride). Basal IEG levels were generally lower in the dorsal subregion of R6/2 striata relative to wild-type control striata at 10-11 weeks of age, a finding in accord with previously reported decreases in D1 and adenosine A2A receptors. D2-antagonist-stimulated IEG expression was significantly reduced in the striata of transgenic animals. In contrast, D1-agonist-induced striatal R6/2 IEG mRNA levels were either equivalent or significantly enhanced relative to control levels, an unexpected result given the reduced level of D1 receptors in R6/2 animals. Understanding the functional bases for these effects may further elucidate the complex pathophysiology of Huntington's disease.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Female
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Genes, Immediate-Early/drug effects
- Genes, Immediate-Early/genetics
- Huntingtin Protein
- Huntington Disease/genetics
- Huntington Disease/metabolism
- Huntington Disease/physiopathology
- Male
- Mice
- Mice, Transgenic
- Neostriatum/drug effects
- Neostriatum/metabolism
- Neostriatum/physiopathology
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Neurons/drug effects
- Neurons/metabolism
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- RNA, Messenger/metabolism
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Boris S Spektor
- Department of Neurology and Center for Aging, Genetics, and Neurodegeneration, Neurology/B114-2001, Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129-4404, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Onaivi ES, Ali SF, Chirwa SS, Zwiller J, Thiriet N, Akinshola BE, Ishiguro H. Ibogaine signals addiction genes and methamphetamine alteration of long-term potentiation. Ann N Y Acad Sci 2002; 965:28-46. [PMID: 12105083 DOI: 10.1111/j.1749-6632.2002.tb04149.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mapping of the human genetic code will enable us to identify potential gene products involved in human addictions and diseases that have hereditary components. Thus, large-scale, parallel gene-expression studies, made possible by advances in microarray technologies, have shown insights into the connection between specific genes, or sets of genes, and human diseases. The compulsive use of addictive substances despite adverse consequences continues to affect society, and the science underlying these addictions in general is intensively studied. Pharmacological treatment of drug and alcohol addiction has largely been disappointing, and new therapeutic targets and hypotheses are needed. As the usefulness of the pharmacotherapy of addiction has been limited, an emerging potential, yet controversial, therapeutic agent is the natural alkaloid ibogaine. We have continued to investigate programs of gene expression and the putative signaling molecules used by psychostimulants such as amphetamine in in vivo and in vitro models. Our work and that of others reveal that complex but defined signal transduction pathways are associated with psychostimulant administration and that there is broad-spectrum regulation of these signals by ibogaine. We report that the actions of methamphetamine were similar to those of cocaine, including the propensity to alter long-term potentiation (LTP) in the hippocampus of the rat brain. This action suggests that there may be a "threshold" beyond which the excessive brain stimulation that probably occurs with compulsive psychostimulant use results in the occlusion of LTP. The influence of ibogaine on immediate early genes (IEGs) and other candidate genes possibly regulated by psychostimulants and other abused substances requires further evaluation in compulsive use, reward, relapse, tolerance, craving and withdrawal reactions. It is therefore tempting to suggest that ibogaine signals addiction gene products.
Collapse
Affiliation(s)
- Emmanuel S Onaivi
- Department of Biology, William Paterson University, Wayne, New Jersey 07470, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Sershen H, Hashim A, Lajtha A. Characterization of multiple sites of action of ibogaine. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2002; 56:115-33. [PMID: 11705104 DOI: 10.1016/s0099-9598(01)56010-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- H Sershen
- Nathan Kline Institute, Orangeburg, New York 10962, USA
| | | | | |
Collapse
|
12
|
Binienda ZK, Scallet AC, Schmued LC, Ali SF. Ibogaine neurotoxicity assessment: electrophysiological, neurochemical, and neurohistological methods. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2002; 56:193-210. [PMID: 11705108 DOI: 10.1016/s0099-9598(01)56014-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Z K Binienda
- Division of Neurotoxicology, FDA/National Center for Toxicological Research, Jefferson, AR 72079-9502, USA
| | | | | | | |
Collapse
|