1
|
Peng Q, Guo X, Wang Y. Synergic Fabrication of Cabazitaxel-Loaded Dendritic Supramolecular Iron Nanomaterials for the Delivery of Tumor Regression and Magnetic Drug Targeting (MDT) in the Melanoma Tumor Model. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Xiong J, Yuan H, Wu H, Cheng J, Yang S, Hu T. Black phosphorus conjugation of chemotherapeutic ginsenoside Rg3: enhancing targeted multimodal nanotheranostics against lung cancer metastasis. Drug Deliv 2021; 28:1748-1758. [PMID: 34463184 PMCID: PMC8409949 DOI: 10.1080/10717544.2021.1966129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
It is a significant challenge in lung cancer chemophotothermal (CPT) therapy to develop multifunctional theranostic nanoagent (MTN) for precise targeting and successful tumor treatments, especially for lung metastasis. To overcome this problem, we effectively design and construct multifunctional black phosphorus (BP) nanoagents, BPs/G-Rg3@PLGA. BPs quantum dots (BPsQDs) are co-loaded onto poly(lactic-co-glycolic acid) (PLGA) with subsequent conjugations of a cancer therapeutic compound, ginsenoside Rg3 (G-Rg3), in this composite nanoagent. The in vivo delivery findings suggest that BPs/G-Rg3@PLGA has an excellent affinity for primary tumors and metastatic lung tumors. Furthermore, when paired with near-light irradiation, BPs/G-Rg3@PLGA shows superior controllable CPT therapy synergetic therapeutics, significantly increasing photothermal tumor ablation effectiveness. Mechanistically, heating causes rapid G-Rg3 release from the non-complex, and thermal therapy induces apoptosis, culminating in the reduction of lung cancer metastasis. Additionally, in vivo and in vitro findings support the biocompatibility of BPs/G-Rg3@PLGA. This thesis identifies a versatile BPs-based MTN for lung cancer metastasis control.
Collapse
Affiliation(s)
- Jie Xiong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Yuan
- Department of Pathology, Wuhan Jinyintan Hospital, Wuhan, China
| | - Hongge Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Cheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengli Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Edwards-Gayle CJC, Hamley IW. Self-assembly of bioactive peptides, peptide conjugates, and peptide mimetic materials. Org Biomol Chem 2018; 15:5867-5876. [PMID: 28661532 DOI: 10.1039/c7ob01092c] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular self-assembly is a multi-disciplinary field of research, with potential chemical and biological applications. One of the main driving forces of self-assembly is molecular amphiphilicity, which can drive formation of complex and stable nanostructures. Self-assembling peptide and peptide conjugates have attracted great attention due to their biocompatibility, biodegradability and biofunctionality. Understanding assembly enables the better design of peptide amphiphiles which may form useful and functional nanostructures. This review covers self-assembly of amphiphilic peptides and peptide mimetic materials, as well as their potential applications.
Collapse
Affiliation(s)
| | - Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK.
| |
Collapse
|
4
|
Castelletto V, Gouveia RM, Connon CJ, Hamley IW, Seitsonen J, Nykänen A, Ruokolainen J. Alanine-rich amphiphilic peptide containing the RGD cell adhesion motif: a coating material for human fibroblast attachment and culture. Biomater Sci 2013; 2:362-369. [PMID: 32481862 DOI: 10.1039/c3bm60232j] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We studied the self-assembly of peptide A6RGD (A: alanine, R: arginine, G: glycine, D: aspartic acid) in water, and the use of A6RGD substrates as coatings to promote the attachment of human cornea stromal fibroblasts (hCSFs). The self-assembled motif of A6RGD was shown to depend on the peptide concentration in water, where both vesicle and fibril formation were observed. Oligomers were detected for 0.7 wt% A6RGD, which evolved into short peptide fibres at 1.0 wt% A6RGD, while a co-existence of vesicles and long peptide fibres was revealed for 2-15 wt% A6RGD. A6RGD vesicle walls were shown to have a multilayer structure built out of highly interdigitated A6 units, while A6RGD fibres were based on β-sheet assemblies. Changes in the self-assembly motif with concentration were reflected in the cell culture assay results. Films dried from 0.1-1.0 wt% A6RGD solutions allowed hCSFs to attach and significantly enhanced cell proliferation relative to the control. In contrast, films dried from 2.5 wt% A6RGD solutions were toxic to hCSFs.
Collapse
Affiliation(s)
- V Castelletto
- School of Chemistry, Food Science and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK.
| | | | | | | | | | | | | |
Collapse
|
5
|
Lesoin L, Crampon C, Boutin O, Badens E. Preparation of liposomes using the supercritical anti-solvent (SAS) process and comparison with a conventional method. J Supercrit Fluids 2011. [DOI: 10.1016/j.supflu.2011.01.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
CO2/water/surfactant ternary systems and liposome formation using supercritical CO2: A review. Colloids Surf A Physicochem Eng Asp 2011. [DOI: 10.1016/j.colsurfa.2011.01.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Versluis F, Marsden HR, Kros A. Power struggles in peptide-amphiphile nanostructures. Chem Soc Rev 2010; 39:3434-44. [DOI: 10.1039/b919446k] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Cavalli S, Albericio F, Kros A. Amphiphilic peptides and their cross-disciplinary role as building blocks for nanoscience. Chem Soc Rev 2010; 39:241-63. [DOI: 10.1039/b906701a] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Demirgöz D, Garg A, Kokkoli E. PR_b-targeted PEGylated liposomes for prostate cancer therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:13518-13524. [PMID: 18954096 DOI: 10.1021/la801961r] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In recent years, there has been considerable effort in designing improved delivery systems by including site-directed surface ligands to further enhance their selective targeting. The goal of this study is to engineer alpha5beta1-targeted stealth liposomes (nanoparticles covered with poly(ethylene glycol) (PEG)) that will bind to alpha5beta1-expressing LNCaP human prostate cancer cells and efficiently release the encapsulated load intracellularly. For this purpose, liposomes (with and without PEG2000) were functionalized with a fibronectin-mimetic peptide (PR_b) and delivered to LNCaPs. The amount of PEG2000 and other liposomal components were characterized by 1H NMR, and the amount of peptide by the bicinchoninic acid protein assay. Fibronectin is the natural ligand for alpha5beta1, and a promising design for a fibronectinmimetic peptide includes both the primary binding site (RGD) and the synergy site (PHSRN) connected by a linker and extended off a surface by a spacer. We have previously designed a peptide-amphiphile, PRb, that employed a hydrophobic tail, connected to the N-terminus of a peptide headgroup composed of a spacer, the synergy site sequence, a linker mimicking both the distance and hydrophobicity/hydrophilicity present in the native protein fibronectin (thus presenting an overall "neutral" linker), and finally the primary binding sequence. We have examined different liposomal formulations, functionalized only with PR_b or with PR_b and PEG2000. For PR_b-targeted PEGylated liposomes, efficient cell binding was observed for peptide concentrations of 2 mol % and higher. When compared to GRGDSP-targeted stealth liposomes, PR_b functionalization was superior to that of GRGDSP as shown by increased LNCaP binding, internalization efficiency, as well as cytotoxicity after incubation of LNCaPs with tumor necrosis factor-alpha (TNFalpha)-encapsulated liposomes. More importantly, PR_b is alpha5beta1-specific, whereas many integrins bind to small RGD peptides. Thus, the proposed PR_b-targeted delivery system has the potential to deliver a therapeutic payload to prostate cancer cells in an efficient and specific manner.
Collapse
Affiliation(s)
- Döne Demirgöz
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
10
|
Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 2003; 24:4385-415. [PMID: 12922151 DOI: 10.1016/s0142-9612(03)00343-0] [Citation(s) in RCA: 1759] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since RGD peptides (R: arginine; G: glycine; D: aspartic acid) have been found to promote cell adhesion in 1984 (Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule, Nature 309 (1984) 30), numerous materials have been RGD functionalized for academic studies or medical applications. This review gives an overview of RGD modified polymers, that have been used for cell adhesion, and provides information about technical aspects of RGD immobilization on polymers. The impacts of RGD peptide surface density, spatial arrangement as well as integrin affinity and selectivity on cell responses like adhesion and migration are discussed.
Collapse
Affiliation(s)
- Ulrich Hersel
- Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstr. 4, D-85747, Garching, Germany
| | | | | |
Collapse
|
11
|
Takikawa M, Kikkawa H, Asai T, Yamaguchi N, Ishikawa D, Tanaka M, Ogino K, Taki T, Oku N. Suppression of GD1alpha ganglioside-mediated tumor metastasis by liposomalized WHW-peptide. FEBS Lett 2000; 466:381-4. [PMID: 10682865 DOI: 10.1016/s0014-5793(00)01110-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
GD1alpha ganglioside-replica peptides were recently isolated from a phage-displayed random pentadecapeptide library by assaying for inhibition of adhesion of RAW117-H10 lymphosarcoma cells to hepatic sinusoidal microvessel endothelial (HSE) cells. We show here that the Trp-His-Trp (WHW) peptide was identified as a minimal sequence of the GD1alpha-replica peptide WHWRHRIPLQLAAGR. The addition of WHW peptide-attached liposomes displayed efficient inhibition of liver metastasis of RAW117-H10 cells as well as of GD1alpha-mediated adhesion of RAW117-H10 cells to HSE cells in vitro. These results suggest that engineered liposomes for peptide delivery are applicable to treatment for metastasis.
Collapse
Affiliation(s)
- M Takikawa
- Department of Radiobiochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Liposomes have gained increased attention as systemic drug delivery vehicles following recent regulatory approvals of several vesicle-formulated drugs. These products have demonstrated improved therapeutic indices over their corresponding conventional drugs by avoiding sensitive tissues and/or increasing delivery to specific targets in vivo. They have achieved these improvements primarily through physical means: (1) by retaining drug within vesicles while in the circulation, thus avoiding or minimizing uptake by sensitive normal tissues; and (2) by selectively extravasating into target tissues, releasing active drug. In order to improve upon these therapies in the future, clinically active liposome delivery systems most likely will need to include site-directed surface ligands to further enhance their selective delivery. This may be crucial for the in vivo transport and delivery of macromolecules, including antisense, oligonucleotide aptamers, and genes, which-unlike most conventional drugs-do not circulate well and often require cellular uptake by fusion, endocytosis, or other processes to reach their active sites. This manuscript reviews technologies applicable to directing liposomes and their contents to selected in vivo targets using surface-bound, site-specific ligands. Presented are the biological barriers to be overcome, criteria for selecting the determinants to be targeted, various targeting ligands and overall delivery system design considerations. Several novel targets as well as novel ligand constructs for site-directed therapy are reviewed and discussed. Systemic liposome therapy, which currently must be administered by the intravenous route, is the principal focus of this analysis.
Collapse
Affiliation(s)
- M Willis
- NeXstar Pharmaceuticals, Inc., Boulder, CO, USA
| | | |
Collapse
|